Differentiated Thyroid Cancer in Children and Adolescents: Long Term Outcome and Risk Factors for Persistent Disease
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Initial Post-Operative Classification
2.2. Treatment
2.3. Response to Initial Therapy
2.4. Thyroglobulin Assay
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Patients
3.2. Postoperative RAI Administration
3.3. Response to Initial Therapy, 6–12 Months after Initial Treatment and at Last Follow-Up
3.4. Surgical Reoperations and Complication Rates
3.5. Predictors of Early and Late Persistent Disease
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohtsuru, A.; Takahashi, H.; Kamiya, K. Incidence of Thyroid Cancer Among Children and Young Adults in Fukushima, Japan-Reply. JAMA Otolaryngol. Neck Surg. 2019, 145, 770. [Google Scholar] [CrossRef] [PubMed]
- Vaccarella, S.; Lortet-Tieulent, J.; Colombet, M.; Davies, L.; Stiller, C.A.; Schüz, J.; Togawa, K.; Bray, F.; Franceschi, S.; Maso, L.D.; et al. Global patterns and trends in incidence and mortality of thyroid cancer in children and adolescents: A population-based study. Lancet Diabetes Endocrinol. 2021, 9, 144–152. [Google Scholar] [CrossRef]
- Vergamini, L.B.; Frazier, A.L.; Abrantes, F.L.; Ribeiro, K.B.; Rodriguez-Galindo, C. Increase in the Incidence of Differentiated Thyroid Carcinoma in Children, Adolescents, and Young Adults: A Population-Based Study. J. Pediatr. 2014, 164, 1481–1485. [Google Scholar] [CrossRef] [PubMed]
- Lamartina, L.; Leboulleux, S.; Schlumberger, M. Thyroid cancer incidence in children and adolescents. Lancet Diabetes Endocrinol. 2021, 9, 128–129. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Wada, N.; Sugino, K.; Mimura, T.; Nagahama, M.; Kitagawa, W.; Shibuya, H.; Ohkuwa, K.; Nakayama, H.; Hirakawa, S.; Yukawa, N.; et al. Treatment Strategy of Papillary Thyroid Carcinoma in Children and Adolescents: Clinical Significance of the Initial Nodal Manifestation. Ann. Surg. Oncol. 2009, 16, 3442–3449. [Google Scholar] [CrossRef]
- Borson-Chazot, F.; Causeret, S.; Lifante, J.-C.; Augros, M.; Berger, N.; Peix, J.-L. Predictive Factors for Recurrence from a Series of 74 Children and Adolescents with Differentiated Thyroid Cancer. World J. Surg. 2004, 28, 1088–1092. [Google Scholar] [CrossRef]
- Lee, K.; Sharabiani, M.; Tumino, D.; Wadsley, J.; Gill, V.; Gerrard, G.; Sindhu, R.; Gaze, M.; Moss, L.; Newbold, K. Differentiated Thyroid Cancer in Children: A UK Multicentre Review and Review of the Literature. Clin. Oncol. 2019, 31, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Hay, I.; Gonzalez-Losada, T.; Reinalda, M.S.; Honetschlager, J.A.; Richards, M.L.; Thompson, G.B. Long-Term Outcome in 215 Children and Adolescents with Papillary Thyroid Cancer Treated During 1940 Through 2008. World J. Surg. 2010, 34, 1192–1202. [Google Scholar] [CrossRef] [PubMed]
- Hogan, A.R.; Zhuge, Y.; Perez, E.A.; Koniaris, L.G.; Lew, J.I.; Sola, J. Pediatric Thyroid Carcinoma: Incidence and Outcomes in 1753 Patients. J. Surg. Res. 2009, 156, 167–172. [Google Scholar] [CrossRef]
- Vassilopoulou-Sellin, R.; Goepfert, H.; Raney, B.; Schultz, P.N. Differentiated thyroid cancer in children and adolescents: Clinical outcome and mortality after long-term follow-up. Head Neck 1998, 20, 549–555. [Google Scholar] [CrossRef]
- Pawelczak, M.; David, R.; Franklin, B.; Kessler, M.; Lam, L.; Shah, B. Outcomes of Children and Adolescents with Well-Differentiated Thyroid Carcinoma and Pulmonary Metastases Following 131I Treatment: A Systematic Review. Thyroid 2010, 20, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- La Quaglia, M.P.; Black, T.; Holcomb, G.W., III; Sklar, C.; Azizkhan, R.G.; Haase, G.M.; Newman, K.D. Differentiated thyroid cancer: Clinical characteristics, treatment, and outcome in patients under 21 years of age who present with distant metastases. A report from the Surgical Discipline Committee of the Children’s Cancer Group. J. Pediatric Surg. 2020, 35, 955–959, discussion 960. [Google Scholar] [CrossRef]
- Biko, J.; Reiners, C.; Kreissl, M.C.; Verburg, F.A.; Demidchik, Y.; Drozd, V. Favourable course of disease after incomplete remission on 131I therapy in children with pulmonary metastases of papillary thyroid carcinoma: 10 years follow-up. Eur. J. Nucl. Med. Mol. Imaging 2010, 38, 651–655. [Google Scholar] [CrossRef]
- Francis, G.L.; Waguespack, S.G.; Bauer, A.J.; Angelos, P.; Benvenga, S.; Cerutti, J.; Dinauer, C.A.; Hamilton, J.K.; Hay, I.D.; Luster, M.; et al. Management Guidelines for Children with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2015, 25, 716–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlumberger, M.; De Vathaire, F.; Travagli, J.P.; Vassal, G.; Lemerle, J.; Parmentier, C.; Tubiana, M. Differentiated Thyroid Carcinoma in Childhood: Long Term Follow-Up of 72 Patients. J. Clin. Endocrinol. Metab. 1987, 65, 1088–1094. [Google Scholar] [CrossRef]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. (Eds.) UICC TNM Classification of Malignant Tumours, 8th ed.; John Wiley and Sons Ltd: Oxford, UK, 2017. [Google Scholar]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, L.H.; Litière, S.; de Vries, E.; Ford, R.; Gwyther, S.; Mandrekar, S.; Shankar, L.; Bogaerts, J.; Chen, A.; Dancey, J.; et al. RECIST 1.1—Update and clarification: From the RECIST committee. Eur. J. Cancer 2016, 62, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Van Herle, A.J.; Uller, R.P.; Matthews, N.L.; Brown, J. Radioimmunoassay for measurement of thyroglobulin in human serum. J. Clin. Investig. 1973, 52, 1320–1327. [Google Scholar] [CrossRef]
- Schlumberger, M.; Hitzel, A.; Toubert, M.E.; Corone, C.; Troalen, F.; Schlageter, M.H.; Claustrat, F.; Koscielny, S.; Taieb, D.; Toubeau, M.; et al. Comparison of Seven Serum Thyroglobulin Assays in the Follow-Up of Papillary and Follicular Thyroid Cancer Patients. J. Clin. Endocrinol. Metab. 2007, 92, 2487–2495. [Google Scholar] [CrossRef] [PubMed]
- Cordioli, M.I.; Moraes, L.; Cury, A.N.; Cerutti, J.M. Are we really at the dawn of understanding sporadic pediatric thyroid carcinoma? Endocr. Relat. cancer 2015, 22, R311–R324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Jeong, J.S.; Ryu, H.R.; Lee, C.-R.; Park, J.H.; Kang, S.-W.; Jeong, J.J.; Nam, K.-H.; Chung, W.Y.; Park, C.S. Differentiated Thyroid Carcinoma of Children and Adolescents: 27-Year Experience in the Yonsei University Health System. J. Korean Med. Sci. 2013, 28, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Jarząb, B.; Handkiewicz-Junak, D.; Włoch, J. Juvenile differentiated thyroid carcinoma and the role of radioiodine in its treatment: A qualitative review. Endocr. Relat. Cancer 2005, 12, 773–803. [Google Scholar] [CrossRef]
- Al-Qurayshi, Z.; Hauch, A.; Srivastav, S.; Aslam, R.; Friedlander, P.; Kandil, E. A National Perspective of the Risk, Presentation, and Outcomes of Pediatric Thyroid Cancer. JAMA Otolaryngol. Neck Surg. 2016, 142, 472–478. [Google Scholar] [CrossRef]
- Russo, M.; Malandrino, P.; Moleti, M.; Vermiglio, F.; D’Angelo, A.; La Rosa, G.; Sapuppo, G.; Calaciura, F.; Regalbuto, C.; Belfiore, A.; et al. Differentiated thyroid cancer in children: Heterogeneity of predictive risk factors. Pediatr. Blood Cancer 2018, 65, e27226. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.L. Prognostic analysis of recurrence in children and adolescents with differentiated thyroid cancer. Chin. Med. J. 2020, 133, 2281. [Google Scholar] [CrossRef] [PubMed]
- Chow, S.-M.; Law, S.C.K.; Mendenhall, W.M.; Au, S.-K.; Yau, S.; Mang, O.; Lau, W.-H. Differentiated thyroid carcinoma in childhood and adolescence-clinical course and role of radioiodine. Pediatr. Blood Cancer 2004, 42, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Nies, M.; Vassilopoulou-Sellin, R.; Bassett, R.L.; Yedururi, S.; Zafereo, M.E.; Cabanillas, M.E.; Sherman, S.I.; Links, T.P.; Waguespack, S.G. Distant Metastases From Childhood Differentiated Thyroid Carcinoma: Clinical Course and Mutational Landscape. J. Clin. Endocrinol. Metab. 2021, 106, e1683–e1697. [Google Scholar] [CrossRef]
- Sohn, S.Y.; Kim, Y.N.; Kim, H.I.; Kim, T.H.; Kim, S.W.; Chung, J.H. Validation of dynamic risk stratification in pediatric differentiated thyroid cancer. Endocrine 2017, 58, 167–175. [Google Scholar] [CrossRef]
- Lee, Y.A.; Jung, H.W.; Kim, H.Y.; Ho, S.C.; Kim, H.-Y.; Hah, J.H.; Park, D.J.; Chung, J.-K.; Yang, S.W.; Shin, C.H.; et al. Pediatric Patients With Multifocal Papillary Thyroid Cancer Have Higher Recurrence Rates Than Adult Patients: A Retrospective Analysis of a Large Pediatric Thyroid Cancer Cohort Over 33 Years. J. Clin. Endocrinol. Metab. 2015, 100, 1619–1629. [Google Scholar] [CrossRef] [Green Version]
- Alwithenani, R.; DeBrabandere, S.; Rachinsky, I.; MacNeil, S.D.; Badreddine, M.; Van Uum, S. Performance of the American Thyroid Association Risk Classification in a Single Center Cohort of Pediatric Patients with Differentiated Thyroid Cancer: A Retrospective Study. J. Thyroid. Res. 2019, 2019, 5390316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variation | n | (%) |
---|---|---|
Patients (n.) | 260 | |
Follow-up median (IQR) (y) * | 8.2 (2.5–17.8) | |
Median age (IQR) (y) | 14.2 (11.1–16.3) | |
Gender | ||
F/M (ratio) | 183/77 (2.4/1) | |
F/M <10 y/o | 27/21 (1.3/1) | |
F/M >10 y/o | 156/56 (2.8/1) | |
Histotype | ||
Papillary | 217 | 83.5 |
Follicular | 33 | 12.7 |
Not known | 5 | 1.9 |
Poorly differentiated | 4 | 1.6 |
Uncertain malignancy potential | 1 | 0.4 |
TNM (VIII ed.) | ||
T status (T) | ||
T1a | 31 | 11.9 |
T1b | 43 | 16.5 |
T2 | 74 | 28.5 |
T3a | 40 | 15.4 |
T3b | 10 | 3.8 |
T4 | 8 | 3.1 |
Tx | 54 | 20.8 |
N status (N) | ||
N0 | 37 | 14.2 |
N1a | 32 | 12.3 |
N1b | 143 | 55.0 |
Nx/N0b | 48 | 18.5 |
M1 | 82 | 31.5 |
Extra thyroidal invasion | ||
No | 176 | 67.7 |
minimal | 79 | 30.4 |
gross | 5 | 1.9 |
Multifocal tumor | 102 | 39.2 |
Thyroglossal cyst duct carcinoma | 4 | 1.6 |
Modified pediatric ATA risk of recurrence categories | ||
Low | 77 | 29.6 |
Intermediate | 41 | 15.8 |
High ** | 142 | 54.6 |
Variable | M1/All Patients 82/260 | Univariate Analysis OR (95%CI) | p | Multivariate Analysis OR (95%CI) | p | |
---|---|---|---|---|---|---|
Age | 0.04 | 0.59 (0.29–1.22) | 0.16 | |||
<10 years | 21/48 (43.8%) | 1.93 (1.01–3.66) | ||||
≥10 years | 61/212 (28.8%) | 0.52 (0.27–0.99) | ||||
Gender | ||||||
Female | 59/183 | |||||
Male | 23/77 | 0.9 (0.50–1.60) | 0.70 | |||
Lymph node surgery at primary treatment | ||||||
Performed | 70/214 (32.7%) | |||||
Not performed | 12/46 (26.1%) | 0.73 (0.35–1.49) | 0.38 | |||
Aggressive histology | ||||||
No | 65/205 (31.7%) | |||||
Yes | 17/55 (30.9%) | 0.96 (0.51–1.83) | 0.90 | |||
Tumor size | ||||||
<1 cm | 2/29 (6.9%) | |||||
1-≤2 cm | 12/45 (26.7%) | 4.91 (1.01–23.86) | 0.03 | 3.72 (0.72–19.08) | 0.12 | |
2-≤4 cm | 26/82 (31.7%) | 6.27 (1.38–28.37) | 0.008 | 6.91 (1.41–33.85) | 0.02 | |
>4 cm | 13/38 (34.2%) | 7.02 (1.44–34.25) | 0.008 | 6.85 (1.26–37.05) | 0.03 | |
Unknown | 29/66 (43.9%) | 7.83 (1.73–35.35) | 0.002 | 14.28 (2.86–71.39) | 0.001 | |
Multifocal | ||||||
No | 38/158 (24.1%) | |||||
Yes | 44/102 (43.1%) | 2.4 (1.40–4.09) | 0.001 | 2.66 (1.39–5.11) | 0.003 | |
Extra thyroidal invasion | ||||||
No | 49/176 (27.8%) | |||||
minimal | 29/79 (36.7%) | 1.50 (0.86–2.64) | 0.16 | 1.01 (0.53–2.15) | 0.85 | |
massive | 4/5 (80%) | 10.37 (1.13–95.07) | 0.01 | 5.30 (0.50–55.95) | 0.16 | |
Lymph node metastases | ||||||
-Absent | 13/85 (15.3%) | |||||
-Present | 69/175 (39.4%) | 3.61 (1.86–7.00) | 0.0001 | Not included | ||
Number of N1 at primary surgery | ||||||
N0/Nx | 13/85 (15.3%) | |||||
≤5 N1 | 9/46 (19.6%) | 1.35 (0.53–3.44) | 0.53 | |||
>5 N1 | 36/97 (37.1%) | 3.27 (1.59–6.72) | 0.0009 | |||
not known | 24/32 (75%) | 16.62 (6.15–44.92) | 0.0000 | Not included | ||
Location of N1 at primary surgery | ||||||
N0/Nx | 13/85 (15.3%) | |||||
N1a | 6/32 (18.8%) | 1.28 (0.44–3.71) | 0.65 | 1.44 (0.45–4.55) | 0.54 | |
N1b | 63/143 (44.1%) | 4.36 (2.22–8.58) | 0.000 | 3.35 (1.61–6.96) | 0.0012 | |
Radioiodine treatment | ||||||
Not performed | 1/42 (2.4%) | |||||
Performed | 81/219 (37.0%) | 23.48 (3.17–174.04) | 0.0000 | Not included |
Patients | Age at Diagnosis | Age at Death | TNM | Histotype | Initial Response | Treatment Performed | Site of Distant Metastases |
---|---|---|---|---|---|---|---|
1 | 14 | 45 | Tx N1b | PTC * | Persistent disease | TT ° + bilateral LN°° dissection, RTE, 8 131I treatment (820 mCi) | Lung and brain |
2 | 6 | 34 | T4 Nx | FTC ** | Persistent disease | TT ° + unilateral LN°° dissection, RTE, 3 131I treatment, chemotherapy | Lung |
3 | 8 | 16 | Tx Nx | PTC * | Persistent disease | TT °, chemotherapy | Lung |
Variable | BIR + SIR/All Patients | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|
151/260 | OR [95%CI] | p | OR [95%CI] | p | |
Age | |||||
<10 years | 31/48 (64.6%) | ||||
≥10 years | 120/212 (56.6%) | 1.3 (0.73–2.68) | 0.311 | ||
Gender | |||||
Female | 101/183 (55.2%) | ||||
Male | 50/77 (64.9%) | 1.5 0.87–2.61) | 0.146 | ||
Primary surgery | |||||
Total thyroidectomy | 145/241 (60.2%) | Not included | |||
Less than total thyroidectomy | 6/19 (31.6%) | 3.27 (1.20–8.9110.82) | 0.015 | ||
Lymph node surgery at primary treatment | |||||
Performed | 130/214 (60.7%) | ||||
Not performed | 21/46 (45.7%) | 1.84 (0.97–3.5) | 0.058 | ||
Intention of initial LN surgery | |||||
Not performed | 18/46 (39.1%) | ||||
Prophylactic | 27/72 (37.5%) | 0.93 (0.44–2.00) | 0.85 | Not included | |
Therapeutic | 42/48 (87.5%) | 10.89 (3.85–30.82) | 0 | ||
Unknown | 64/94 (68.1%) | 3.32 (1.59–6.91) | 0.001 | ||
Aggressive histology | |||||
No | 113/205 (55.1%) | ||||
Yes | 38/55 (69.1%) | 1.82 (0.96–3.43) | 0.06 | ||
Tumor size | |||||
<1 cm | 12/29 (41.4%) | ||||
1-≤2 cm | 27/45 (60.0%) | 2.13 (0.82–5.49) | 0.11 | 1.33 (0.37–4.70) | 0.66 |
2-≤4 cm | 38/82 (46.3%) | 1.22 (0.52–2.88) | 0.64 | 0.88 (0.28–2.74) | 0.82 |
>4 cm | 27/38 (71.1%) | 3.48 (1.26–9.63) | 0.01 | 3.06 (0.80–11.66) | 0.1 |
Unknown | 47/66 (71.2%) | 3.50 (1.41–8.72) | 0.005 | 2.27 (0.65–7.94) | 0.2 |
Multifocality | |||||
No | 75/158 (47.5%) | ||||
Yes | 76/102 (74.5%) | 3.23 (1.88–5.57) | 0 | 2.78 (1.355.73) | 0.006 |
Extra thyroidal extension | |||||
No | 96/176 (54.5%) | Not included | |||
minimal | 50/79 (63.3%) | 1.44 (0.83–2.48) | 0.19 | ||
gross | 5/5 (100%) | - | 0.07 | ||
Lymph node metastases | |||||
Absent | 24/85 (28.2%) | 6.72 (3.78–11.98) | 0 | ||
Present | 127/175 (72.6%) | ||||
Number of N1 at primary surgery | |||||
N0/Nx | 24/85 (28.2%) | ||||
≤5 N1 | 20/46 (43.5%) | 1.96 (0.92–4.14) | 0.13 | Not included | |
>5 N1 | 78/97 (80.4%) | 10.43 (5.24–20.78) | 0 | ||
not known | 29/32 (90.6%) | 24.57 (6.84–88.29) | 0 | ||
Location of N1 at primary surgery | |||||
N0/Nx | 24/85 (28.2%) | ||||
N1a | 11/32 (34.4%) | 1.33 (0.56–3.17) | 0.51 | 0.14 (0.13–1.47) | 0.1 |
N1b | 116/143 (81.11%) | 10.92 (5.81–20.53) | 0 | 0.36 (0.04–2.96) | 0.34 |
Distant metastases at primary surgery | Not included | ||||
No | 69/178 (38.8%) | ||||
Yes | 82/82 (100%) | – | 0.001 | ||
Modified pediatric ATA risk stratification | |||||
Low | 11/77 (14.3%) | ||||
Intermediate | 21/41 (51.2%) | 6.30 (2.60–15.26) | 0 | 25.09 (2.39–263.66) | 0.007 |
High | 119/142 (83.8%) | 31.04 (14.25–67.65) | 0 | 66.71 (7.68–579.89) | <0.001 |
Radioiodine treatment | |||||
Not performed | 5/42 (12.2%) | Not included | |||
Performed | 146/219 (66.7%) | 14.40 (5.42–38.24) | 0 |
Variable | BIR + SIR/All Patients 66/260 | Univariate Analysis OR [95%CI] | p | Multivariate Analysis OR [95%CI] | p |
---|---|---|---|---|---|
Age | |||||
<10 years | 10/48 (20.8%) | ||||
≥10 years | 56/212 (26.4%) | 1.36 (0.64–2.92) | 0.422 | ||
Gender | |||||
Female | 44/183 (24.0%) | ||||
Male | 22/77 (28.6%) | 1.26 (0.69–2.30) | 0.443 | ||
Lymph node surgery at primary treatment | |||||
Performed | 55/214 (25.7%) | ||||
Not performed | 11/46 (23.9%) | 1.10 (0.52–2.32) | 0.8 | ||
Intention of initial lymph node surgery | |||||
not performed | 8/46 (17.4%) | ||||
Prophylactic | 10/72 (13.9%) | 0.77 (0.28–2.11) | 0.61 | ||
Therapeutic | 15/48 (31.3%) | 2.16 (0.81–5.73) | 0.12 | ||
Unknown | 33/94 (35.1%) | 2.57 (1.07–6.15) | 0.03 | ||
Aggressive histology | |||||
No | 49/205 (23.9%) | ||||
Yes | 17/55 (30.9%) | 1.42 (0.74–2.74) | 0.28 | ||
Tumor size | |||||
<1 cm | 7/29 (24.1%) | ||||
1–≤2 cm | 6/45 (13.3%) | 0.48 (0.14–1.62) | 0.12 | ||
2–≤4 cm | 17/82 (20.7%) | 082 (0.30–2.24) | 0.7 | ||
>4 cm | 15/38 (39.5%) | 2.05 (0.70–5.98) | 0.18 | ||
Unknown | 21/66 (31.8%) | 1.47 (0.54–3.97) | 0.44 | ||
Multifocality | |||||
No | 30/158 (60.8%) | ||||
Yes | 36/102 (35.3%) | 2.33 (1.32–4.11) | 0.003 | 1.73 (0.95–3.15) | 0.07 |
Extra thyroidal extension | |||||
No | 38/176 (21.6%) | ||||
minimal | 24/79 (30.4%) | 1.58 (0.87–2.88) | 0.13 | Not included | |
gross | 4/5 (80%) | 14.53 (1.58–133.82) | 0.002 | ||
Lymph node metastases | |||||
Absent | 11/85 (12.9%) | Not included | |||
Present | 55/175 (31.4%) | 3.08 (1.52–6.27) | 0.001 | ||
Number of N1 at primary surgery | |||||
N0/Nx | 11/85 (12.9%) | ||||
≤5 N1 | 10/46 (21.7%) | 1.87 (0.73.4.81) | 0.19 | ||
>5 N1 | 32/97 (32.9%) | 3.31 (1.55–7.09) | 0.002 | ||
not known | 13/32 (32.9%) | 4.60 (1.78–11.88) | 0.001 | ||
Location of N1 at primary surgery | |||||
N0/Nx | 11/85 (12.9%) | ||||
N1a | 11/32 (34.4%) | 3.52 (1.34–9.26) | 0.008 | ||
N1b | 44/143 (30.8%) | 2.99 (1.45–6.18) | 0.002 | ||
Distant metastases at primary surgery | |||||
No | 27/178 (15.2%) | Not included | |||
Yes | 39/82 (47.6%) | 5.07 (2.79–9.21) | 0 | ||
Modified pediatric ATA risk stratification | |||||
Low | 4/77 (5.2%) | ||||
Intermediate | 13/41 (31.7%) | 8.47 (2.55–28.20) | 0 | 7.75 (2.31–25.97) | <0.001 |
High | 49/142 (34.5%) | 9.62 (3.32–27.87) | 0 | 8.32 (2.84–24.42) | <0.001 |
Radioiodine treatment | |||||
Not performed | 1/42 (2.4%) | ||||
Performed | 65/219 (29.7%) | 16.88 (2.27–125.43) | 0 | Not included |
Variable | SIR/All Patients 50/260 | Univariate Analysis OR [95%CI] | p | Multivariate Analysis OR [95%CI] | p |
---|---|---|---|---|---|
Age | |||||
<10 years | 8/48 (16.7%) | ||||
≥10 years | 42/212 (19.8%) | 0.93 (0.40–2.17) | 0.86 | ||
Gender | |||||
Female | 35/183 (19.1%) | ||||
Male | 15/77 (19.5%) | 1.02 (0.52–2.01) | 0.95 | ||
Lymph node surgery at primary treatment | |||||
Performed | 40/214 (18.7%) | ||||
Not performed | 10/46 (21.7%) | 1.21 (0.55–2.64) | 0.63 | ||
Intention of initial lymph node surgery | |||||
not performed | 10/46 (21.7%) | ||||
Prophylactic | 7/72 (9.7%) | 0.39 (0.14–1.11) | 0.07 | ||
Therapeutic | 11/48 (22.9%) | 1.07 (0.41–2.82) | 0.89 | ||
Unknown | 22/94 (23.4%) | 1.10 (0.47–2.57) | 0.83 | ||
Aggressive histology | |||||
No | 39/205 (19.0%) | ||||
Yes | 11/55 (20.0%) | 1.06 (0.50–2.25) | 0.87 | ||
Tumor size | |||||
<1 cm | 4/29 (13.8%) | ||||
1≤2 cm | 3/45 (6.7%) | 0.45 (0.09–2.16) | 0.31 | Not included | |
2≤4 cm | 13/82 (15.9%) | 1.18 (0.35–3.95) | 0.79 | ||
>4 cm | 12/38 (5.3%) | 2.88 (0.82–10.15) | 0.09 | ||
Unknown | 18/66 (27.3%) | 2.34 (0.72–7.68) | 0.15 | ||
Multifocality | |||||
No | 23/158 (14.6%) | ||||
Yes | 27/102 (26.5%) | 2.11 (1.13–3.94) | 0.017 | 1.56 (0.81–2.98) | 0.18 |
Extra thyroidal extension | |||||
No | 28/176 (15.9%) | ||||
minimal | 18/79 (22.8%) | 1.56 (0.80–3.03) | 0.19 | Not included | |
ross | 4/5 (80%) | 21.14 (2.28–196.28) | 0.0002 | ||
Lymph node metastases | |||||
Absent | 10/85 (13.3%) | Not included | |||
Present | 40/175 (22.9%) | 2.22 (1.05–4.70) | 0.03 | ||
Number of N1 at primary surgery | |||||
N0/Nx | 10/85 (13.3%) | ||||
≤5 N1 | 6/46 (20.9%) | 0.60 (0.21–1.73) | 0.34 | ||
>5 N1 | 24/97 (32.9%) | 2.47 (1.10–5.52) | 0.025 | ||
not known | 10/32 (40.6%) | 3.41 (1.26–9.24) | 0.01 | ||
Location of N1 at primary surgery | |||||
N0/Nx | 10/85 (13.3%) | ||||
N1a | 7/32 (21.9%) | 2.10 (0.72–6.10) | 0.17 | ||
N1b | 33/143 (23.1%) | 2.25 (1.05–4.84) | 0.03 | ||
Distant metastases at primary surgery | |||||
No | 15/178 (8.4%) | Not included | |||
Yes | 35/82 (42.7%) | 8.09 (4.07–16.08) | 0 | ||
Modified pediatric ATA risk stratification | |||||
Low | 3/77 (3.9%) | ||||
Intermediate | 8/41 (19.5%) | 5.98 (1.49–23.98) | 0.006 | 5.53 (1.37–22.32) | 0.016 |
High | 39/142 (23.9%) | 9.34 (2.78–31.37) | 0 | 8.28 (2.43–28.17) | <0.001 |
Radioiodine treatment | |||||
Not performed | 1/42 (2.4%) | Not included | |||
Performed | 49/219 (29.7%) | 11.53 (1.55–86.02) | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapuppo, G.; Hartl, D.; Fresneau, B.; Hadoux, J.; Breuskin, I.; Baudin, E.; Rigaud, C.; Guerlain, J.; Al Ghuzlan, A.; Leboulleux, S.; et al. Differentiated Thyroid Cancer in Children and Adolescents: Long Term Outcome and Risk Factors for Persistent Disease. Cancers 2021, 13, 3732. https://doi.org/10.3390/cancers13153732
Sapuppo G, Hartl D, Fresneau B, Hadoux J, Breuskin I, Baudin E, Rigaud C, Guerlain J, Al Ghuzlan A, Leboulleux S, et al. Differentiated Thyroid Cancer in Children and Adolescents: Long Term Outcome and Risk Factors for Persistent Disease. Cancers. 2021; 13(15):3732. https://doi.org/10.3390/cancers13153732
Chicago/Turabian StyleSapuppo, Giulia, Dana Hartl, Brice Fresneau, Julien Hadoux, Ingrid Breuskin, Eric Baudin, Charlotte Rigaud, Joanne Guerlain, Abir Al Ghuzlan, Sophie Leboulleux, and et al. 2021. "Differentiated Thyroid Cancer in Children and Adolescents: Long Term Outcome and Risk Factors for Persistent Disease" Cancers 13, no. 15: 3732. https://doi.org/10.3390/cancers13153732
APA StyleSapuppo, G., Hartl, D., Fresneau, B., Hadoux, J., Breuskin, I., Baudin, E., Rigaud, C., Guerlain, J., Al Ghuzlan, A., Leboulleux, S., Schlumberger, M., & Lamartina, L. (2021). Differentiated Thyroid Cancer in Children and Adolescents: Long Term Outcome and Risk Factors for Persistent Disease. Cancers, 13(15), 3732. https://doi.org/10.3390/cancers13153732