Characteristics and Treatment Challenges of Non-Clear Cell Renal Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pathogenetic Mechanisms
2.1. Papillary
2.2. Chromophobe
2.3. Collecting Duct Carcinoma
2.4. Sarcomatoid
2.5. Other Histological Types
3. Therapies
3.1. Papillary
3.2. ChRCC
3.3. CDC
3.4. Sarcomatoid
3.5. Other Histological Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Lipworth, L.; Morgans, A.K.; Edwards, T.L.; Barocas, D.A.; Chang, S.S.; Herrell, S.D.; Penson, D.F.; Resnick, M.J.; Smith, J.A.; Clark, P.E. Renal Cell Cancer Histological Subtype Distribution Differs by Race and Sex. BJU Int. 2016, 117, 260–265. [Google Scholar] [CrossRef]
- Moch, H.; Cubilla, A.L.; Humphrey, P.A.; Reuter, V.E.; Ulbright, T.M. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 2016, 70, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Moch, H.; Gasser, T.; Amin, M.B.; Torhorst, J.; Sauter, G.; Mihatsch, M.J. Prognostic Utility of the Recently Recommended Histologic Classification and Revised TNM Staging System of Renal Cell Carcinoma: A Swiss Experience with 588 Tumors. Cancer 2000, 89, 604–614. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef]
- Chevrier, S.; Levine, J.H.; Zanotelli, V.R.T.; Silina, K.; Schulz, D.; Bacac, M.; Ries, C.H.; Ailles, L.; Jewett, M.A.S.; Moch, H.; et al. An Immune Atlas of Clear Cell Renal Cell Carcinoma. Cell 2017, 169, 736–749.e18. [Google Scholar] [CrossRef] [Green Version]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Rini, B.I.; McDermott, D.F.; Frontera, O.A.; Hammers, H.J.; Carducci, M.A.; Salman, P.; Escudier, B.; Beuselinck, B.; Amin, A.; et al. Nivolumab plus Ipilimumab versus Sunitinib in First-Line Treatment for Advanced Renal Cell Carcinoma: Extended Follow-up of Efficacy and Safety Results from a Randomised Phase 3 Trial. Lancet Oncol. 2019, 20, 1370–1385. [Google Scholar] [CrossRef]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef]
- Rini, B.I.; Powles, T.; Atkins, M.B.; Escudier, B.; McDermott, D.F.; Suarez, C.; Bracarda, S.; Stadler, W.M.; Donskov, F.; Lee, J.L.; et al. Atezolizumab plus Bevacizumab versus Sunitinib in Patients with Previously Untreated Metastatic Renal Cell Carcinoma (IMmotion151): A Multicentre, Open-Label, Phase 3, Randomised Controlled Trial. Lancet 2019, 393, 2404–2415. [Google Scholar] [CrossRef]
- Liu, K.; Ren, Y.; Pang, L.; Qi, Y.; Jia, W.; Tao, L.; Hu, Z.; Zhao, J.; Zhang, H.; Li, L.; et al. Papillary Renal Cell Carcinoma: A Clinicopathological and Whole-Genome Exon Sequencing Study. Int. J. Clin. Exp. Pathol. 2015, 8, 8311–8335. [Google Scholar] [PubMed]
- Yang, X.J.; Tan, M.-H.; Kim, H.L.; Ditlev, J.A.; Betten, M.W.; Png, C.E.; Kort, E.J.; Futami, K.; Furge, K.A.; Takahashi, M.; et al. A Molecular Classification of Papillary Renal Cell Carcinoma. Cancer Res. 2005, 65, 5628–5637. [Google Scholar] [CrossRef] [Green Version]
- Cancer Genome Atlas Research Network; Linehan, W.M.; Spellman, P.T.; Ricketts, C.J.; Creighton, C.J.; Fei, S.S.; Davis, C.; Wheeler, D.A.; Murray, B.A.; Schmidt, L.; et al. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N. Engl. J. Med. 2016, 374, 135–145. [Google Scholar] [CrossRef]
- Vocke, C.D.; Ricketts, C.J.; Merino, M.J.; Srinivasan, R.; Metwalli, A.R.; Middelton, L.A.; Peterson, J.; Yang, Y.; Linehan, W.M. Comprehensive Genomic and Phenotypic Characterization of Germline FH Deletion in Hereditary Leiomyomatosis and Renal Cell Carcinoma. Genes Chromosomes Cancer 2017, 56, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Ohe, C.; Smith, S.C.; Sirohi, D.; Divatia, M.; de Peralta-Venturina, M.; Paner, G.P.; Agaimy, A.; Amin, M.B.; Argani, P.; Chen, Y.-B.; et al. Reappraisal of Morphological Differences between Renal Medullary Carcinoma, Collecting Duct Carcinoma, and Fumarate Hydratase-Deficient Renal Cell Carcinoma. Am. J. Surg. Pathol. 2018, 42, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G.; Fuzesi, L.; Emanual, A.; Kung, H.F. Cytogenetics of Papillary Renal Cell Tumors. Genes Chromosomes Cancer 1991, 3, 249–255. [Google Scholar] [CrossRef]
- Furge, K.A.; Chen, J.; Koeman, J.; Swiatek, P.; Dykema, K.; Lucin, K.; Kahnoski, R.; Yang, X.J.; Teh, B.T. Detection of DNA Copy Number Changes and Oncogenic Signaling Abnormalities from Gene Expression Data Reveals MYC Activation in High-Grade Papillary Renal Cell Carcinoma. Cancer Res. 2007, 67, 3171–3176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dharmawardana, P.G.; Giubellino, A.; Bottaro, D.P. Hereditary Papillary Renal Carcinoma Type I. Curr. Mol. Med. 2004, 4, 855–868. [Google Scholar] [CrossRef]
- Schmidt, L.; Duh, F.M.; Chen, F.; Kishida, T.; Glenn, G.; Choyke, P.; Scherer, S.W.; Zhuang, Z.; Lubensky, I.; Dean, M.; et al. Germline and Somatic Mutations in the Tyrosine Kinase Domain of the MET Proto-Oncogene in Papillary Renal Carcinomas. Nat. Genet. 1997, 16, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Albiges, L.; Guegan, J.; Le Formal, A.; Verkarre, V.; Rioux-Leclercq, N.; Sibony, M.; Bernhard, J.-C.; Camparo, P.; Merabet, Z.; Molinie, V.; et al. MET Is a Potential Target across All Papillary Renal Cell Carcinomas: Result from a Large Molecular Study of PRCC with CGH Array and Matching Gene Expression Array. Clin. Cancer Res. 2014, 20, 3411–3421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giubellino, A.; Linehan, W.M.; Bottaro, D.P. Targeting the Met Signaling Pathway in Renal Cancer. Expert Rev. Anticancer Ther. 2009, 9, 785–793. [Google Scholar] [CrossRef] [Green Version]
- Choueiri, T.K.; Vaishampayan, U.; Rosenberg, J.E.; Logan, T.F.; Harzstark, A.L.; Bukowski, R.M.; Rini, B.I.; Srinivas, S.; Stein, M.N.; Adams, L.M.; et al. Phase II and Biomarker Study of the Dual MET/VEGFR2 Inhibitor Foretinib in Patients with Papillary Renal Cell Carcinoma. J. Clin. Oncol. 2013, 31, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Schöffski, P.; Wozniak, A.; Escudier, B.; Rutkowski, P.; Anthoney, A.; Bauer, S.; Sufliarsky, J.; van Herpen, C.; Lindner, L.H.; Grünwald, V.; et al. Crizotinib Achieves Long-Lasting Disease Control in Advanced Papillary Renal-Cell Carcinoma Type 1 Patients with MET Mutations or Amplification. EORTC 90101 CREATE Trial. Eur. J. Cancer 2017, 87, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Plimack, E.; Arkenau, H.-T.; Jonasch, E.; Heng, D.Y.C.; Powles, T.; Frigault, M.M.; Clark, E.A.; Handzel, A.A.; Gardner, H.; et al. Biomarker-Based Phase II Trial of Savolitinib in Patients with Advanced Papillary Renal Cell Cancer. J. Clin. Oncol. 2017, 35, 2993–3001. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Heng, D.Y.C.; Lee, J.L.; Cancel, M.; Verheijen, R.B.; Mellemgaard, A.; Ottesen, L.H.; Frigault, M.M.; L’Hernault, A.; Szijgyarto, Z.; et al. Efficacy of Savolitinib vs. Sunitinib in Patients with MET-Driven Papillary Renal Cell Carcinoma: The SAVOIR Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1247–1255. [Google Scholar] [CrossRef]
- Martínez Chanzá, N.; Xie, W.; Asim Bilen, M.; Dzimitrowicz, H.; Burkart, J.; Geynisman, D.M.; Balakrishnan, A.; Bowman, I.A.; Jain, R.; Stadler, W.; et al. Cabozantinib in Advanced Non-Clear-Cell Renal Cell Carcinoma: A Multicentre, Retrospective, Cohort Study. Lancet Oncol. 2019, 20, 581–590. [Google Scholar] [CrossRef]
- Pal, S.K.; Tangen, C.; Thompson, I.M.; Balzer-Haas, N.; George, D.J.; Heng, D.Y.C.; Shuch, B.; Stein, M.; Tretiakova, M.; Humphrey, P.; et al. A Comparison of Sunitinib with Cabozantinib, Crizotinib, and Savolitinib for Treatment of Advanced Papillary Renal Cell Carcinoma: A Randomised, Open-Label, Phase 2 Trial. Lancet 2021, 397, 695–703. [Google Scholar] [CrossRef]
- Campbell, M.T.; Bilen, M.A.; Shah, A.Y.; Lemke, E.; Jonasch, E.; Venkatesan, A.M.; Altinmakas, E.; Duran, C.; Msaouel, P.; Tannir, N.M. Cabozantinib for the Treatment of Patients with Metastatic Non-Clear Cell Renal Cell Carcinoma: A Retrospective Analysis. Eur. J. Cancer 2018, 104, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, M.L.; Warren, M.B.; Toro, J.R.; Matrosova, V.; Glenn, G.; Turner, M.L.; Duray, P.; Merino, M.; Choyke, P.; Pavlovich, C.P.; et al. Mutations in a Novel Gene Lead to Kidney Tumors, Lung Wall Defects, and Benign Tumors of the Hair Follicle in Patients with the Birt-Hogg-Dubé Syndrome. Cancer Cell 2002, 2, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Brunelli, M.; Eble, J.N.; Zhang, S.; Martignoni, G.; Delahunt, B.; Cheng, L. Eosinophilic and Classic Chromophobe Renal Cell Carcinomas Have Similar Frequent Losses of Multiple Chromosomes from among Chromosomes 1, 2, 6, 10, and 17, and This Pattern of Genetic Abnormality Is Not Present in Renal Oncocytoma. Mod. Pathol. 2005, 18, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.S.; Linehan, W.M. Genetic Predisposition to Kidney Cancer. Semin. Oncol. 2016, 43, 566–574. [Google Scholar] [CrossRef] [Green Version]
- Mennitto, A.; Verzoni, E.; Peverelli, G.; Alessi, A.; Procopio, G. Management of Metastatic Collecting Duct Carcinoma: An Encouraging Result in a Patient Treated with Cabozantinib. Clin. Genitourin. Cancer 2018, 16, e521–e523. [Google Scholar] [CrossRef]
- Pal, S.K.; Choueiri, T.K.; Wang, K.; Khaira, D.; Karam, J.A.; Van Allen, E.; Palma, N.A.; Stein, M.N.; Johnson, A.; Squillace, R.; et al. Characterization of Clinical Cases of Collecting Duct Carcinoma of the Kidney Assessed by Comprehensive Genomic Profiling. Eur. Urol. 2016, 70, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Papanicolau-Sengos, A.; Chintala, S.; Wei, L.; Liu, B.; Hu, Q.; Miles, K.M.; Conroy, J.M.; Glenn, S.T.; Costantini, M.; et al. Collecting Duct Carcinoma of the Kidney Is Associated with CDKN2A Deletion and SLC Family Gene Up-Regulation. Oncotarget 2016, 7, 29901–29915. [Google Scholar] [CrossRef] [Green Version]
- Malouf, G.G.; Compérat, E.; Yao, H.; Mouawad, R.; Lindner, V.; Rioux-Leclercq, N.; Verkarre, V.; Leroy, X.; Dainese, L.; Classe, M.; et al. Unique Transcriptomic Profile of Collecting Duct Carcinomas Relative to Upper Tract Urothelial Carcinomas and Other Kidney Carcinomas. Sci. Rep. 2016, 6, 30988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargiuli, C.; Sepe, P.; Tessari, A.; Sheetz, T.; Colecchia, M.; de Braud, F.G.M.; Procopio, G.; Sensi, M.; Verzoni, E.; Dugo, M. Integrative Transcriptomic Analysis Reveals Distinctive Molecular Traits and Novel Subtypes of Collecting Duct Carcinoma. Cancers 2021, 13, 2903. [Google Scholar] [CrossRef]
- McDermott, D.F.; Choueiri, T.K.; Motzer, R.J.; Aren, O.R.; George, S.; Powles, T.; Donskov, F.; Harrison, M.R.; Rodriguez Cid, J.R.R.; Ishii, Y.; et al. CheckMate 214 Post-Hoc Analyses of Nivolumab plus Ipilimumab or Sunitinib in IMDC Intermediate/Poor-Risk Patients with Previously Untreated Advanced Renal Cell Carcinoma with Sarcomatoid Features. JCO 2019, 37, 4513. [Google Scholar] [CrossRef]
- Tannir, N.M.; McDermott, D.F.; Escudier, B.; Hammers, H.J.; Aren, O.R.; Plimack, E.R.; Barthelemy, P.; Neiman, V.; George, S.; Porta, C.; et al. Overall Survival and Independent Review of Response in CheckMate 214 with 42-Month Follow-up: First-Line Nivolumab + Ipilimumab (N+I) versus Sunitinib (S) in Patients (Pts) with Advanced Renal Cell Carcinoma (ARCC). JCO 2020, 38, 609. [Google Scholar] [CrossRef]
- Malouf, G.G.; Camparo, P.; Oudard, S.; Schleiermacher, G.; Theodore, C.; Rustine, A.; Dutcher, J.; Billemont, B.; Rixe, O.; Bompas, E.; et al. Targeted Agents in Metastatic Xp11 Translocation/TFE3 Gene Fusion Renal Cell Carcinoma (RCC): A Report from the Juvenile RCC Network. Ann. Oncol. 2010, 21, 1834–1838. [Google Scholar] [CrossRef]
- Tomlinson, I.P.M.; Alam, N.A.; Rowan, A.J.; Barclay, E.; Jaeger, E.E.M.; Kelsell, D.; Leigh, I.; Gorman, P.; Lamlum, H.; Rahman, S.; et al. Germline Mutations in FH Predispose to Dominantly Inherited Uterine Fibroids, Skin Leiomyomata and Papillary Renal Cell Cancer. Nat. Genet. 2002, 30, 406–410. [Google Scholar] [CrossRef]
- Mariño-Enríquez, A.; Ou, W.-B.; Weldon, C.B.; Fletcher, J.A.; Pérez-Atayde, A.R. ALK Rearrangement in Sickle Cell Trait-Associated Renal Medullary Carcinoma. Genes Chromosomes Cancer 2011, 50, 146–153. [Google Scholar] [CrossRef]
- Dutcher, J.P.; de Souza, P.; McDermott, D.; Figlin, R.A.; Berkenblit, A.; Thiele, A.; Krygowski, M.; Strahs, A.; Feingold, J.; Hudes, G. Effect of Temsirolimus versus Interferon-Alpha on Outcome of Patients with Advanced Renal Cell Carcinoma of Different Tumor Histologies. Med. Oncol. 2009, 26, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Plantade, A.; Elson, P.; Negrier, S.; Ravaud, A.; Oudard, S.; Zhou, M.; Rini, B.I.; Bukowski, R.M.; Escudier, B. Efficacy of Sunitinib and Sorafenib in Metastatic Papillary and Chromophobe Renal Cell Carcinoma. JCO 2008, 26, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Gore, M.E.; Szczylik, C.; Porta, C.; Bracarda, S.; Bjarnason, G.A.; Oudard, S.; Hariharan, S.; Lee, S.-H.; Haanen, J.; Castellano, D.; et al. Safety and Efficacy of Sunitinib for Metastatic Renal-Cell Carcinoma: An Expanded-Access Trial. Lancet Oncol. 2009, 10, 757–763. [Google Scholar] [CrossRef]
- Hudes, G.; Carducci, M.; Tomczak, P.; Dutcher, J.; Figlin, R.; Kapoor, A.; Staroslawska, E.; Sosman, J.; McDermott, D.; Bodrogi, I.; et al. Temsirolimus, Interferon Alfa, or Both for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2007, 356, 2271–2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tannir, N.M.; Jonasch, E.; Albiges, L.; Altinmakas, E.; Ng, C.S.; Matin, S.F.; Wang, X.; Qiao, W.; Dubauskas Lim, Z.; Tamboli, P.; et al. Everolimus Versus Sunitinib Prospective Evaluation in Metastatic Non-Clear Cell Renal Cell Carcinoma (ESPN): A Randomized Multicenter Phase 2 Trial. Eur. Urol. 2016, 69, 866–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, A.J.; Halabi, S.; Eisen, T.; Broderick, S.; Stadler, W.M.; Jones, R.J.; Garcia, J.A.; Vaishampayan, U.N.; Picus, J.; Hawkins, R.E.; et al. Everolimus versus Sunitinib for Patients with Metastatic Non-Clear Cell Renal Cell Carcinoma (ASPEN): A Multicentre, Open-Label, Randomised Phase 2 Trial. Lancet Oncol. 2016, 17, 378–388. [Google Scholar] [CrossRef]
- Tannir, N.M.; Plimack, E.; Ng, C.; Tamboli, P.; Bekele, N.B.; Xiao, L.; Smith, L.; Lim, Z.; Pagliaro, L.; Araujo, J.; et al. A Phase 2 Trial of Sunitinib in Patients with Advanced Non-Clear Cell Renal Cell Carcinoma. Eur. Urol. 2012, 62, 1013–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravaud, A.; Oudard, S.; De Fromont, M.; Chevreau, C.; Gravis, G.; Zanetta, S.; Theodore, C.; Jimenez, M.; Sevin, E.; Laguerre, B.; et al. First-Line Treatment with Sunitinib for Type 1 and Type 2 Locally Advanced or Metastatic Papillary Renal Cell Carcinoma: A Phase II Study (SUPAP) by the French Genitourinary Group (GETUG). Ann. Oncol. 2015, 26, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- McKay, R.R.; Bossé, D.; Xie, W.; Wankowicz, S.A.M.; Flaifel, A.; Brandao, R.; Lalani, A.-K.A.; Martini, D.J.; Wei, X.X.; Braun, D.A.; et al. The Clinical Activity of PD-1/PD-L1 Inhibitors in Metastatic Non-Clear Cell Renal Cell Carcinoma. Cancer Immunol. Res. 2018, 6, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Koshkin, V.S.; Barata, P.C.; Zhang, T.; George, D.J.; Atkins, M.B.; Kelly, W.J.; Vogelzang, N.J.; Pal, S.K.; Hsu, J.; Appleman, L.J.; et al. Clinical Activity of Nivolumab in Patients with Non-Clear Cell Renal Cell Carcinoma. J. Immunother. Cancer 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Ornstein, M.C.; Gul, A.; Allman, K.D.; Ball, J.; Wood, L.S.; Garcia, J.A.; VonMerveldt, D.; Hammers, H.J.; Rini, B.I. Clinical Activity of Ipilimumab plus Nivolumab (Ipi/Nivo) in Patients (Pts) with Metastatic Non-Clear Cell Renal Cell Carcinoma (NccRCC). J. Clin. Oncol. 2019, 37, 659. [Google Scholar] [CrossRef]
- McDermott, D.F.; Lee, J.-L.; Bjarnason, G.A.; Larkin, J.M.G.; Gafanov, R.A.; Kochenderfer, M.D.; Jensen, N.V.; Donskov, F.; Malik, J.; Poprach, A.; et al. Open-Label, Single-Arm Phase II Study of Pembrolizumab Monotherapy as First-Line Therapy in Patients with Advanced Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2021, 39, 1020–1028. [Google Scholar] [CrossRef]
- Powles, T.; Larkin, J.; Patel, P.; Pérez-Valderrama, B.; Rodriguez-Vida, A.; Glen, H.; Thistlethwaite, F.; Ralph, C.; Srinivasan, G.; Mendez-Vidal, M.J.; et al. A phase II study investigating the safety and efficacy of savolitinib and durvalumab in metastatic papillary renal cancer (CALYPSO). J. Clin. Oncol. 2019, 37, 545. [Google Scholar] [CrossRef]
- Procopio, G.; Verzoni, E.; Gevorgyan, A.; Mancin, M.; Pusceddu, S.; Catena, L.; Platania, M.; Guadalupi, V.; Martinetti, A.; Bajetta, E. Safety and Activity of Sorafenib in Different Histotypes of Advanced Renal Cell Carcinoma. OCL 2007, 73, 204–209. [Google Scholar] [CrossRef]
- Oudard, S.; Banu, E.; Vieillefond, A.; Fournier, L.; Priou, F.; Medioni, J.; Banu, A.; Duclos, B.; Rolland, F.; Escudier, B.; et al. Prospective multicenter phase II study of gemcitabine plus platinum salt for metastatic collecting duct carcinoma: Results of a GETUG (Groupe d’Etudes des Tumeurs Uro-Génitales) study. J. Urol. 2007, 177, 1698–1702. [Google Scholar] [CrossRef] [PubMed]
- Procopio, G.; Testa, I.; Iacovelli, R.; Grassi, P.; Verzoni, E.; Garanzini, E.; Colecchia, M.; Torelli, T.; Braud, F.D. Treatment of Collecting Duct Carcinoma: Current Status and Future Perspectives. Anticancer Res. 2014, 34, 1027–1030. [Google Scholar]
- Miyake, H.; Haraguchi, T.; Takenaka, A.; Fujisawa, M. Metastatic Collecting Duct Carcinoma of the Kidney Responded to Sunitinib. Int. J. Clin. Oncol. 2011, 16, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Chua, M.E.; Olondriz, K.; Maniwa, M.; Mendoza, J.; Castillo, J. Collecting Duct of Bellini Renal Carcinoma with Psoas Muscle Recurrence: A Case Report and Review of Literature. Can. Urol. Assoc. J. 2014, 8, E167–E171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, X.; Cao, D.; Yuan, J.; Zhou, F.; Wei, Q.; Xie, X.; Cui, C.; Chi, Z.; Si, L.; Li, S.; et al. Sorafenib in Combination with Gemcitabine plus Cisplatin Chemotherapy in Metastatic Renal Collecting Duct Carcinoma: A Prospective, Multicentre, Single-Arm, Phase 2 Study. Eur. J. Cancer 2018, 100, 1–7. [Google Scholar] [CrossRef]
- Procopio, G.; Ratta, R.; Colecchia, M.; Sensi, M.; Sepe, P.; Claps, M.; Rivoltini, L.; De Braud, F.G.; Pagani, F.; Verzoni, E. A phase II study of cabozantinib as first-line treatment in metastatic collecting ducts carcinoma: The BONSAI trial. J. Clin. Oncol. 2019, 37, 578. [Google Scholar] [CrossRef]
- Bronchud, M.H.; Castillo, S.; Escriva de Romaní, S.; Mourelo, S.; Fernández, A.; Baena, C.; Murillo, J.; Julia, J.C.; Esquius, J.; Romero, R.; et al. HER2 Blockade in Metastatic Collecting Duct Carcinoma (CDC) of the Kidney: A Case Report. Onkologie 2012, 35, 776–779. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, K.; Horie, K.; Nagai, S.; Tsuchiya, T.; Saigo, C.; Kobayashi, K.; Miyazaki, T.; Deguchi, T. Response to Nivolumab in Metastatic Collecting Duct Carcinoma Expressing PD-L1: A Case Report. Mol. Clin. Oncol. 2017, 7, 988–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasuoka, S.; Hamasaki, T.; Kuribayashi, E.; Nagasawa, M.; Kawaguchi, T.; Nagashima, Y.; Kondo, Y. Nivolumab Therapy for Metastatic Collecting Duct Carcinoma after Nephrectomy: A Case Report. Medicine 2018, 97, e13173. [Google Scholar] [CrossRef] [PubMed]
- Rimar, K.J.; Meeks, J.J.; Kuzel, T.M. Anti-Programmed Death Receptor 1 Blockade Induces Clinical Response in a Patient with Metastatic Collecting Duct Carcinoma. Clin. Genitourin. Cancer 2016, 14, e431–e434. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, C.N.; Loriot, Y.; James, N.; Choy, E.; Castellano, D.; Lopez-Rios, F.; Banna, G.L.; De Giorgi, U.; Masini, C.; Bamias, A.; et al. Primary Results from SAUL, a Multinational Single-Arm Safety Study of Atezolizumab Therapy for Locally Advanced or Metastatic Urothelial or Nonurothelial Carcinoma of the Urinary Tract. Eur. Urol. 2019, 76, 73–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyriakopoulos, C.E.; Chittoria, N.; Choueiri, T.K.; Kroeger, N.; Lee, J.-L.; Srinivas, S.; Knox, J.J.; Bjarnason, G.A.; Ernst, S.D.; Wood, L.A.; et al. Outcome of Patients with Metastatic Sarcomatoid Renal Cell Carcinoma: Results from the International Metastatic Renal Cell Carcinoma Database Consortium. Clin. Genitourin. Cancer 2015, 13, e79–e85. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Soulieres, D.; Melichar, B.; Vynnychenko, I.; et al. Pembrolizumab (pembro) plus axitinib (axi) versus sunitinib as first-line therapy for metastatic renal cell carcinoma (mRCC): Outcomes in the combined IMDC intermediate/poor risk and sarcomatoid subgroups of the phase 3 KEYNOTE-426 study. J. Clin. Oncol. 2019, 37, 4500. [Google Scholar] [CrossRef]
- Srinivasan, R.; Gurram, S.; Al Harthy, M.; Singer, E.A.; Sidana, A.; Shuch, B.M.; Ball, M.W.; Friend, J.C.; Mac, L.; Purcell, E.; et al. Results from a phase II study of bevacizumab and erlotinib in subjects with advanced hereditary leiomyomatosis and renal cell cancer (HLRCC) or sporadic papillary renal cell cancer. J. Clin. Oncol. 2020, 38, 5004. [Google Scholar] [CrossRef]
- Tsuda, M.; Davis, I.J.; Argani, P.; Shukla, N.; McGill, G.G.; Nagai, M.; Saito, T.; Laé, M.; Fisher, D.E.; Ladanyi, M. TFE3 Fusions Activate MET Signaling by Transcriptional Up-Regulation, Defining Another Class of Tumors as Candidates for Therapeutic MET Inhibition. Cancer Res. 2007, 67, 919–929. [Google Scholar] [CrossRef] [Green Version]
- Baig, M.A.; Lin, Y.-S.; Rasheed, J.; Mittman, N. Renal Medullary Carcinoma. J. Natl. Med. Assoc. 2006, 98, 1171–1174. [Google Scholar] [PubMed]
- Kondagunta, G.V.; Drucker, B.; Schwartz, L.; Bacik, J.; Marion, S.; Russo, P.; Mazumdar, M.; Motzer, R.J. Phase II Trial of Bortezomib for Patients with Advanced Renal Cell Carcinoma. J. Clin. Oncol. 2004, 22, 3720–3725. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology. Kidney Cancer, Version 1.2021. Available online: https://www.nccn.org/patients/guidelines/content/PDF/kidney-patient.pdf (accessed on 1 June 2021).
Histological Type | Marker | Genetic Alteration | Clinical Significance |
---|---|---|---|
PRCC | 3q,7,8,12,16,17,20 Y 8q 1p,9p | Trisomy Loss Gain Loss | |
Type 1 PRCC | MET | Proto-oncogene germline alterations Somatic mutations | Hallmark of familiar forms Possible pharmacological target |
Type 2 PRCC | CDKN2A SETD2 TFE3 NRF2 | Silencing Somatic mutation Fusion Over-expression | |
Chromophobe | 7 TP53 PTEN | Somatic mutation | Possible target of mTOR inhibitors |
CDC | NF2 SET2 SMARCB1 CDKN2A MLL SCL7A11 | Somatic mutation Somatic mutation Somatic mutation Homozygous deletion Recurrent mutation Over-expression | Possible target of mTOR inhibitors Cisplatin-resistance marker |
Sarcomatoid RCC | PDL-1 | Over-expression | Increased susceptibility to ICIs |
Xp11 translocation | |||
HLRCC | HIF-1 | Up-regulation | Possible pharmacological target |
Trial | Treatment | Population (n) | ORR (%) | PFS (mo) | mOS (mo) |
---|---|---|---|---|---|
ASPEN | Sunitinib or Everolimus | Pap (65) Chr (20) Uncl (16) Trasl (12) S (11) | 18 vs. 9 | 8.3 vs. 5.6 (95% CI 1.03–1.92) | 32 (95% CI 15–NR) vs. 13 mo (95% CI: 10–38) HR 1.12 p = 0.60 |
SUPAP | Sunitinib | Pap 1 (15) Pap 2 (46) | 13 (Pap 1) vs. (Pap 2) | 6.6 [(95% CI 2.8–14.8) in Pap 1] vs. 5.5 [(95% CI 3.8–7.1) in Pap 2] | 17.8 [(95% CI 5.7–26.1) in Pap1] vs. 12.4 [(95% CI 8.2–14.3) in Pap 2] |
SAVOIR | Savolitinib or Sunitinib | Pap (180) | 27 vs. 7 | 7.0 (95% CI, 2.8-NC]) vs. 5.6 (95% CI, 4.1–6.9) | NR (95% CI 11.9-NC) vs. 13.2 (95% CI, 7.6–NC) |
PAPMET | Sunitinib or Cabozantinib or Savolitinib or Crizotinib | Pap (147) | 23 (cabozantinib) vs. 4 (sunitinib) | 9.0 [(95% CI 6–12) for cabozantinib] vs. 5.6 [(95% CI 3–7) sunitinib] | - |
KEYNOTE 427 (COHORT B) | pembrolizumab | Pap (118) Chr (21) Uncl (26) | 28 (Pap), 9.5 (Chr), 30.8 (Uncl) | - | - |
CALYPSO | Savolitinib plus durvalumab | Pap 42 | 32 | 5.3 (95% CI 1.5–12.0) | NR |
Trial | Phase | Treatment | Population | Line | Estimated Patients (n) | Primary Endpoint |
---|---|---|---|---|---|---|
NCT02363751 | II | bevacizumab plus gemcitabine and platinum salts | CDC | I | 41 | ORR, 6-months PFS |
NCT04071223 | II | Radium Ra 223 dichloride plus Cabozantinib or Cabozantinib | Cc, Pap, Chr, Trasl, CDC, Med, Uncl, S, Rhab | I or further | 210 | SSE-FS |
NCT03012581 | II | Nivolumab | Pap, Uncl, Chr, Med, CDC, Uncl, S | II or further | 300 | ORR |
NCT03635892 | II | Cabozantinib plus Nivolumab | Uncl, Pap, FHD, SDD, CDC, Chr | I or further | 57 | ORR |
NCT04413123 | II | Cabozantinib plus Nivolumab and Ipilimumab | Uncl, Pap, Trasl, CDC, Med, Chr | I or further | 40 | ORR |
NCT04267120 | II | Pembrolizumab plus Lenvatinib | Pap, Chr, Trasl, SDD, S, Uncl | I | 34 | ORR |
Authors | Phase | Treatment | Line | Patients (n) | Primary Endpoint | Results |
---|---|---|---|---|---|---|
CHEMOTHERAPY | ||||||
Oudard et al. (2007) [56] | II | gemcitabine plus cisplatin or carboplatin | I | 23 | ORR | 26% |
Tannir et al. (2012) [48] | II | sunitinib | Further | 57 * | ORR | 0 |
Sheng et al. (2018) [60] | II | sorafenib plus gemcitabine and cisplatin | I | 26 | PFS | 8.8 months |
TARGETED AGENTS: | ||||||
Armstrong AJ (2016) [47] | II | Everolimus or sunitinib | II | 108 | PFS | 8.3 vs. 5.6 months, Hazard ratio 1·41 [80% CI 1·03–1·92]; p = 0·16 |
IMMUNE-CHECKPOINT INHIBITORS: | ||||||
Sternberg et al. (2019) [66] | IIIb | atezolizumab | II or further | 1004 § (8 CDC) | Safety | 13% Grade ≥ 3 DR AEs |
Procopio et al. (2021) [61] | II | cabozantinib | I | 23 | ORR | 35% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepe, P.; Ottini, A.; Pircher, C.C.; Franza, A.; Claps, M.; Guadalupi, V.; Verzoni, E.; Procopio, G. Characteristics and Treatment Challenges of Non-Clear Cell Renal Cell Carcinoma. Cancers 2021, 13, 3807. https://doi.org/10.3390/cancers13153807
Sepe P, Ottini A, Pircher CC, Franza A, Claps M, Guadalupi V, Verzoni E, Procopio G. Characteristics and Treatment Challenges of Non-Clear Cell Renal Cell Carcinoma. Cancers. 2021; 13(15):3807. https://doi.org/10.3390/cancers13153807
Chicago/Turabian StyleSepe, Pierangela, Arianna Ottini, Chiara Carlotta Pircher, Andrea Franza, Melanie Claps, Valentina Guadalupi, Elena Verzoni, and Giuseppe Procopio. 2021. "Characteristics and Treatment Challenges of Non-Clear Cell Renal Cell Carcinoma" Cancers 13, no. 15: 3807. https://doi.org/10.3390/cancers13153807
APA StyleSepe, P., Ottini, A., Pircher, C. C., Franza, A., Claps, M., Guadalupi, V., Verzoni, E., & Procopio, G. (2021). Characteristics and Treatment Challenges of Non-Clear Cell Renal Cell Carcinoma. Cancers, 13(15), 3807. https://doi.org/10.3390/cancers13153807