Biomarkers and Gene Signatures to Predict Durable Response to Pembrolizumab in Non-Small Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. PD-L1 and Gene Expression Tests
2.3. Data Analyses and Statistics
3. Results
3.1. Population
3.2. Immune Activation in Patients with DCB
3.3. Correlation of PD-L1 and RAS/RAF Mutation with Immune Cells and Durable Response
3.4. Cell Type Abundance and Markers to Predict Durable Benefit to Pembrolizumab
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nasser, N.J.; Gorenberg, M.; Agbarya, A. First Line Immunotherapy for Non-Small Cell Lung Cancer. Pharmaceuticals 2020, 13, 373. [Google Scholar] [CrossRef]
- Bodor, J.N.; Boumber, Y.; Borghaei, H. Biomarkers for Immune Checkpoint Inhibition in Non-Small Cell Lung Cancer (NSCLC). Cancer 2020, 126, 260–270. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater. J. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.-W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef] [PubMed]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef]
- Jassem, J.; Herbst, R.S.; de Marinis, F.; Cadranel, J.; Csőszi, T.; Isla, D.; Chen, G.; Syrigos, K.N.; Cortinovis, D.; Hida, T.; et al. IMpower110: Clinical Safety in a Phase III Study of Atezolizumab (Atezo) Monotherapy (Mono) vs. Platinum-Based Chemotherapy (Chemo) in First-Line Non-Small Cell Lung Cancer (NSCLC). JCO 2020, 38, e21623. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus Chemotherapy for Previously Untreated, PD-L1-Expressing, Locally Advanced or Metastatic Non-Small-Cell Lung Cancer (KEYNOTE-042): A Randomised, Open-Label, Controlled, Phase 3 Trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Zhou, J.; Gong, Z.; Jia, Q.; Wu, Y.; Yang, Z.-Z.; Zhu, B. Programmed Death Ligand 1 Expression and CD8+ Tumor-Infiltrating Lymphocyte Density Differences between Paired Primary and Brain Metastatic Lesions in Non-Small Cell Lung Cancer. Biochem. Biophys. Res. Commun. 2018, 498, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Camidge, D.R.; Doebele, R.C.; Kerr, K.M. Comparing and Contrasting Predictive Biomarkers for Immunotherapy and Targeted Therapy of NSCLC. Nat. Rev. Clin. Oncol. 2019, 16, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Antonia, S.J.; Vansteenkiste, J.F.; Moon, E. Immunotherapy: Beyond Anti-PD-1 and Anti-PD-L1 Therapies. Am. Soc. Clin. Oncol. Educ. Book 2016, 35, e450–e458. [Google Scholar] [CrossRef]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Cancer Immunology. Mutational Landscape Determines Sensitivity to PD-1 Blockade in Non-Small Cell Lung Cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Stenzinger, A.; Allen, J.D.; Maas, J.; Stewart, M.D.; Merino, D.M.; Wempe, M.M.; Dietel, M. Tumor Mutational Burden Standardization Initiatives: Recommendations for Consistent Tumor Mutational Burden Assessment in Clinical Samples to Guide Immunotherapy Treatment Decisions. Genes Chromosomes Cancer 2019, 58, 578–588. [Google Scholar] [CrossRef] [Green Version]
- FDA Grants Accelerated Approval to Pembrolizumab for First Tissue/Site Agnostic Indication. 2019. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-first-tissuesite-agnostic-indication (accessed on 30 June 2021).
- Vanderwalde, A.; Spetzler, D.; Xiao, N.; Gatalica, Z.; Marshall, J. Microsatellite Instability Status Determined by Next-Generation Sequencing and Compared with PD-L1 and Tumor Mutational Burden in 11,348 Patients. Cancer Med. 2018, 7, 746–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendry, S.; Salgado, R.; Gevaert, T.; Russell, P.A.; John, T.; Thapa, B.; Christie, M.; van de Vijver, K.; Estrada, M.V.; Gonzalez-Ericsson, P.I.; et al. Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors. Adv. Anat. Pathol. 2017, 24, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Soria, J.-C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive Correlates of Response to the Anti-PD-L1 Antibody MPDL3280A in Cancer Patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef] [Green Version]
- Mignon, S.; Willard-Gallo, K.; Van den Eynden, G.; Salgado, R.; Decoster, L.; Marien, K.M.; Vansteenkiste, J.F.; Teugels, E.; De Grève, J. The Relationship between Tumor-Infiltrating Lymphocytes, PD-L1 Expression, Driver Mutations and Clinical Outcome Parameters in Non-Small Cell Lung Cancer Adenocarcinoma in Patients with a Limited to No Smoking History. Pathol. Oncol. Res. 2020, 26, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; et al. IFN-γ-Related MRNA Profile Predicts Clinical Response to PD-1 Blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef]
- Hwang, S.; Kwon, A.-Y.; Jeong, J.-Y.; Kim, S.; Kang, H.; Park, J.; Kim, J.-H.; Han, O.J.; Lim, S.M.; An, H.J. Immune Gene Signatures for Predicting Durable Clinical Benefit of Anti-PD-1 Immunotherapy in Patients with Non-Small Cell Lung Cancer. Sci. Rep. 2020, 10, 643. [Google Scholar] [CrossRef] [Green Version]
- Budczies, J.; Kirchner, M.; Kluck, K.; Kazdal, D.; Glade, J.; Allgäuer, M.; Kriegsmann, M.; Heußel, C.-P.; Herth, F.J.; Winter, H.; et al. A Gene Expression Signature Associated with B Cells Predicts Benefit from Immune Checkpoint Blockade in Lung Adenocarcinoma. Oncoimmunology 2021, 10, 1860586. [Google Scholar] [CrossRef]
- Frigola, J.; Navarro, A.; Carbonell, C.; Callejo, A.; Iranzo, P.; Cedrés, S.; Martinez-Marti, A.; Pardo, N.; Saoudi-Gonzalez, N.; Martinez, D.; et al. Molecular Profiling of Long-Term Responders to Immune Checkpoint Inhibitors in Advanced Non-Small Cell Lung Cancer. Mol. Oncol. 2021, 15, 887–900. [Google Scholar] [CrossRef]
- Kerr, K.M.; López-Ríos, F. Precision Medicine in NSCLC and Pathology: How Does ALK Fit in the Pathway? Ann. Oncol. 2016, 27 (Suppl. 3), iii16–iii24. [Google Scholar] [CrossRef]
- Canberk, S.; Engels, M. Cytology Samples and Molecular Biomarker Testing in Lung Cancer-Advantages and Challenges. Virchows Arch. 2021, 478, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Domagala-Kulawik, J. New Frontiers for Molecular Pathology. Front. Med. 2019, 6, 284. [Google Scholar] [CrossRef]
- Noor, Z.S.; Cummings, A.L.; Johnson, M.M.; Spiegel, M.L.; Goldman, J.W. Targeted Therapy for Non-Small Cell Lung Cancer. Semin Respir Crit. Care Med. 2020, 41, 409–434. [Google Scholar] [CrossRef]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the Treatment of Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- Cesano, A.; Warren, S. Bringing the next Generation of Immuno-Oncology Biomarkers to the Clinic. Biomedicines 2018, 6, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danaher, P.; Warren, S.; Dennis, L.; D’Amico, L.; White, A.; Disis, M.L.; Geller, M.A.; Odunsi, K.; Beechem, J.; Fling, S.P. Gene Expression Markers of Tumor Infiltrating Leukocytes. J. Immunother. Cancer 2017, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- FDA Expands Pembrolizumab Indication for First-Line Treatment of NSCLC (TPS ≥ 1%). 2019. Available online: https://www.fda.gov/drugs/fda-expands-pembrolizumab-indication-first-line-treatment-nsclc-tps-1 (accessed on 30 June 2021).
- Liebler, D.C.; Holzer, T.R.; Haragan, A.; Morrison, R.D.; O’Neill Reising, L.; Ackermann, B.L.; Fill, J.A.; Schade, A.E.; Gruver, A.M. Analysis of Immune Checkpoint Drug Targets and Tumor Proteotypes in Non-Small Cell Lung Cancer. Sci. Rep. 2020, 10, 9805. [Google Scholar] [CrossRef]
- Oshi, M.; Newman, S.; Tokumaru, Y.; Yan, L.; Matsuyama, R.; Endo, I.; Katz, M.H.G.; Takabe, K. High G2M Pathway Score Pancreatic Cancer Is Associated with Worse Survival, Particularly after Margin-Positive (R1 or R2) Resection. Cancers 2020, 12, 2871. [Google Scholar] [CrossRef]
- Oshi, M.; Takahashi, H.; Tokumaru, Y.; Yan, L.; Rashid, O.M.; Matsuyama, R.; Endo, I.; Takabe, K. G2M Cell Cycle Pathway Score as a Prognostic Biomarker of Metastasis in Estrogen Receptor (ER)-Positive Breast Cancer. Int. J. Mol. Sci. 2020, 21, 2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goel, S.; DeCristo, M.J.; Watt, A.C.; BrinJones, H.; Sceneay, J.; Li, B.B.; Khan, N.; Ubellacker, J.M.; Xie, S.; Metzger-Filho, O.; et al. CDK4/6 Inhibition Triggers Anti-Tumour Immunity. Nature 2017, 548, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Chaikovsky, A.C.; Sage, J. Beyond the Cell Cycle: Enhancing the Immune Surveillance of Tumors Via CDK4/6 Inhibition. Mol Cancer Res. 2018, 16, 1454–1457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mhanna, L.; Guibert, N.; Milia, J.; Mazieres, J. When to Consider Immune Checkpoint Inhibitors in Oncogene-Driven Non-Small Cell Lung Cancer? Curr. Treat Options Oncol. 2019, 20, 60. [Google Scholar] [CrossRef] [Green Version]
- Hurkmans, D.P.; Kuipers, M.E.; Smit, J.; van Marion, R.; Mathijssen, R.H.J.; Postmus, P.E.; Hiemstra, P.S.; Aerts, J.G.J.V.; von der Thüsen, J.H.; van der Burg, S.H. Tumor Mutational Load, CD8+ T Cells, Expression of PD-L1 and HLA Class I to Guide Immunotherapy Decisions in NSCLC Patients. Cancer Immunol. Immunother. 2020, 69, 771–777. [Google Scholar] [CrossRef] [Green Version]
- Böttcher, J.P.; Bonavita, E.; Chakravarty, P.; Blees, H.; Cabeza-Cabrerizo, M.; Sammicheli, S.; Rogers, N.C.; Sahai, E.; Zelenay, S.; Reis e Sousa, C. NK Cells Stimulate Recruitment of CDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell 2018, 172, 1022–1037.e14. [Google Scholar] [CrossRef] [Green Version]
- Broz, M.L.; Binnewies, M.; Boldajipour, B.; Nelson, A.E.; Pollack, J.L.; Erle, D.J.; Barczak, A.; Rosenblum, M.D.; Daud, A.; Barber, D.L.; et al. Dissecting the Tumor Myeloid Compartment Reveals Rare Activating Antigen-Presenting Cells Critical for T Cell Immunity. Cancer Cell 2014, 26, 638–652. [Google Scholar] [CrossRef] [Green Version]
- Salmon, H.; Idoyaga, J.; Rahman, A.; Leboeuf, M.; Remark, R.; Jordan, S.; Casanova-Acebes, M.; Khudoynazarova, M.; Agudo, J.; Tung, N.; et al. Expansion and Activation of CD103(+) Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition. Immunity 2016, 44, 924–938. [Google Scholar] [CrossRef] [Green Version]
- Fumet, J.-D.; Richard, C.; Ledys, F.; Klopfenstein, Q.; Joubert, P.; Routy, B.; Truntzer, C.; Gagné, A.; Hamel, M.-A.; Guimaraes, C.F.; et al. Prognostic and Predictive Role of CD8 and PD-L1 Determination in Lung Tumor Tissue of Patients under Anti-PD-1 Therapy. Br. J. Cancer 2018, 119, 950–960. [Google Scholar] [CrossRef]
- Gide, T.N.; Quek, C.; Menzies, A.M.; Tasker, A.T.; Shang, P.; Holst, J.; Madore, J.; Lim, S.Y.; Velickovic, R.; Wongchenko, M.; et al. Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer Cell 2019, 35, 238–255.e6. [Google Scholar] [CrossRef] [Green Version]
- Buller, C.W.; Mathew, P.A.; Mathew, S.O. Roles of NK Cell Receptors 2B4 (CD244), CS1 (CD319), and LLT1 (CLEC2D) in Cancer. Cancers 2020, 12, 1755. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Ohashi, P.S. Clinical Blockade of PD1 and LAG3—Potential Mechanisms of Action. Nat. Rev. Immunol. 2015, 15, 45–56. [Google Scholar] [CrossRef]
- Glas, J.; Seiderer, J.; Czamara, D.; Pasciuto, G.; Diegelmann, J.; Wetzke, M.; Olszak, T.; Wolf, C.; Müller-Myhsok, B.; Balschun, T.; et al. PTGER4 Expression-Modulating Polymorphisms in the 5p13.1 Region Predispose to Crohn’s Disease and Affect NF-ΚB and XBP1 Binding Sites. PLoS ONE 2012, 7, e52873. [Google Scholar] [CrossRef] [PubMed]
- Patankar, J.V.; Müller, T.M.; Kantham, S.; Acera, M.G.; Mascia, F.; Scheibe, K.; Mahapatro, M.; Heichler, C.; Yu, Y.; Li, W.; et al. E-Type Prostanoid Receptor 4 Drives Resolution of Intestinal Inflammation by Blocking Epithelial Necroptosis. Nat. Cell Biol. 2021, 23, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, T.A.; Lang, P.A.; Lang, K.S. The Diverse Functions of the Ubiquitous Fcγ Receptors and Their Unique Constituent, FcRγ Subunit. Pathogens 2020, 9, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duhan, V.; Hamdan, T.A.; Xu, H.C.; Shinde, P.; Bhat, H.; Li, F.; Al-Matary, Y.; Häussinger, D.; Bezgovsek, J.; Friedrich, S.-K.; et al. NK Cell-Intrinsic FcεRIγ Limits CD8+ T-Cell Expansion and Thereby Turns an Acute into a Chronic Viral Infection. PLoS Pathog. 2019, 15, e1007797. [Google Scholar] [CrossRef] [Green Version]
Clinical Features | DCB, n (%) (Total 25, 54.3%) | NCB, n (%) (Total 21, 45.7%) | p-Value |
---|---|---|---|
Age (years) | 0.29 | ||
mean ± SD | 69.2 ± 7.7 | 66.6 ± 8.5 | |
Gender | 1 | ||
Male | 19 (76.0) | 16 (76.2) | |
Histology | 0.79 | ||
ADC | 14 (56.0) | 11 (52.4) | |
SCC | 7 (28.0) | 5 (23.8) | |
NOS | 4 (16.0) | 5 (23.8) | |
Stage | 0.57 | ||
III | 9 (36.0) | 5 (23.8) | |
IV | 16 (64.0) | 16 (76.2) | |
Smoking status | 0.73 | ||
smoker | 6 (24.0) | 3 (14.3) | |
former | 18 (72.0) | 17 (80.9) | |
never | 1 (4.0) | 1 (4.8) | |
ECOG PS | 0.12 | ||
0 | 6 (24.0) | 3 (14.3) | |
1 | 17 (68.0) | 11 (52.4) | |
2 | 2 (8.0) | 7 (33.3) | |
Toxicity | 0.04 | ||
yes | 14 (56.0) | 5 (23.8) | |
no | 11 (44.0) | 16 (76.2) | |
RAS or BRAF(non-V600E) mutation | 0.83 | ||
yes | 10 (40.0) | 10 (47.6) | |
no | 15 (60.0) | 11 (52.4) | |
PFS (months) | <0.0001 | ||
median (CI) | 30.6 (22.4–NR) | 2.8 (2.0–4.2) | |
OS (months) | <0.0001 | ||
median (CI) | NR (27.5–NR) | 5.6 (3.6–13.5) |
Cell Type | AUC (95% CI) | p-Value * | HR (95% CI) | p-Value * |
---|---|---|---|---|
Cytotoxic cell | 0.74 (0.59–0.87) | 0.003 | 0.59 (0.42–0.82) | 0.002 |
Macrophage | 0.63 (0.46–0.79) | 0.18 | 0.78 (0.54–1.27) | 0.2 |
Dendritic cell | 0.67 (0.51–0.83) | 0.06 | 0.69 (0.50–0.94) | 0.02 |
Exhausted CD8 | 0.80 (0.67–0.92) | 0.0002 | 0.46 (0.30–0.70) | 0.0004 |
B-cell | 0.71 (0.56–0.86) | 0.01 | 0.72 (0.54–0.94) | 0.02 |
CD45 | 0.71 (0.55–0.85) | 0.008 | 0.65 (0.47–0.89) | 0.007 |
Neutrophil | 0.58 (0.42–0.74) | 0.38 | 0.90 (0.61–1.34) | 0.6 |
T-cell | 0.76 (0.62–0.89) | 0.004 | 0.60 (0.44–0.83) | 0.002 |
Mast cell | 0.63 (0.46–0.79) | 0.07 | 0.77 (0.61–0.96) | 0.02 |
CD8 T-cell | 0.82 (0.68–0.93) | 0.0003 | 0.56 (0.41–0.76) | 0.0003 |
NK cell | 0.82 (0.70–0.93) | 0.0003 | 0.48 (0.33–0.71) | 0.0003 |
PD-L1 ** | 0.61 (0.44–0.78) | 0.20 | 0.99 (0.96–1.01) | 0.32 |
Marker | Cell Type | AUC (95% CI) | Sensitivity § (95% CI) * | Specificity § (95% CI) * | Accuracy (95% CI) * | Correlation with PD-L1 **, R *** (p-Value) | HR (95% CI), p-Value |
---|---|---|---|---|---|---|---|
CD244 | exhausted CD8 | 0.68 (0.52–0.84) | 0.84 (0.44–1) | 0.57 (0.29–0.95) | 0.72 (0.61–0.83) | 0.06 (0.71) | 0.65 (0.48–0.89), 0.007 |
LAG3 | exhausted CD8 | 0.75 (0.61–0.89) | 0.68 (0.44–0.92) | 0.86 (0.57–1) | 0.76 (0.65–0.87) | 0.24 (0.11) | 0.66 (0.48–0.90), 0.009 |
EOMES | exhausted CD8 | 0.82 (0.69–0.92) | 0.68 (0.44–1) | 0.95 (0.48–1) | 0.78 (0.67–0.89) | 0.25 (0.09) | 0.48 (0.34–0.67), 0.00002 |
PTGER4 | exhausted CD8 | 0.75 (0.61–0.87) | 0.64 (0.40–1) | 0.90 (0.43–1) | 0.74 (0.63–0.85) | 0.03 (0.82) | 0.47 (0.27–0.81), 0.007 |
CD8A | CD8 T-cell | 0.79 (0.66–0.91) | 0.68 (0.48–0.92) | 0.95 (0.71–1) | 0.78 (0.70–0.89) | 0.10 (0.51) | 0.61 (0.46–0.82), 0.001 |
CD8B | CD8 T-cell | 0.82 (0.69–0.93) | 0.76 (0.56–0.96) | 0.86 (0.62–1) | 0.80 (0.70–0.91) | 0.13 (0.38) | 0.52 (0.38–0.73), 0.0001 |
XCL1/2 | NK cell | 0.85 (0.74–0.95) | 0.88 (0.56–1) | 0.81 (0.57–1) | 0.83 (0.74–0.93) | −0.08 (0.62) | 0.48 (0.34–0.66), 0.000007 |
NCR1 | NK cell | 0.67 (0.51–0.82) | 0.88 (0.28–1) | 0.57 (0.38–1) | 0.72 (0.59–0.85) | 0.17 (0.26) | 0.75 (0.53–1.07), 0.12 |
PD-L1 ** | NA | 0.61 (0.44–0.78) | 0.88 (0.20–1) | 0.43 (0.19–1) | 0.67 (0.54–0.78) | NA | 0.99 (0.96–1.01), 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poma, A.M.; Bruno, R.; Pietrini, I.; Alì, G.; Pasquini, G.; Proietti, A.; Vasile, E.; Cappelli, S.; Chella, A.; Fontanini, G. Biomarkers and Gene Signatures to Predict Durable Response to Pembrolizumab in Non-Small Cell Lung Cancer. Cancers 2021, 13, 3828. https://doi.org/10.3390/cancers13153828
Poma AM, Bruno R, Pietrini I, Alì G, Pasquini G, Proietti A, Vasile E, Cappelli S, Chella A, Fontanini G. Biomarkers and Gene Signatures to Predict Durable Response to Pembrolizumab in Non-Small Cell Lung Cancer. Cancers. 2021; 13(15):3828. https://doi.org/10.3390/cancers13153828
Chicago/Turabian StylePoma, Anello Marcello, Rossella Bruno, Iacopo Pietrini, Greta Alì, Giulia Pasquini, Agnese Proietti, Enrico Vasile, Sabrina Cappelli, Antonio Chella, and Gabriella Fontanini. 2021. "Biomarkers and Gene Signatures to Predict Durable Response to Pembrolizumab in Non-Small Cell Lung Cancer" Cancers 13, no. 15: 3828. https://doi.org/10.3390/cancers13153828
APA StylePoma, A. M., Bruno, R., Pietrini, I., Alì, G., Pasquini, G., Proietti, A., Vasile, E., Cappelli, S., Chella, A., & Fontanini, G. (2021). Biomarkers and Gene Signatures to Predict Durable Response to Pembrolizumab in Non-Small Cell Lung Cancer. Cancers, 13(15), 3828. https://doi.org/10.3390/cancers13153828