Future Screening Prospects for Ovarian Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Modern Means for Early Detection of OC
3.1. Uterine Cavity Lavage Biomarkers
3.2. Circulating Tumor Cells
3.3. Cell-Free DNA and Circulating Tumor DNA
3.4. Circulating Small Noncoding RNAs
3.4.1. sncRNAs Are a Large Group of RNA Molecules with Size below <200 nt That Have No Protein Coding Potency
3.4.2. PIWI-Interacting RNA
3.4.3. Transfer RNA-Derived Small RNAs
3.4.4. microRNA
3.5. Other Potential Biomarkers
3.5.1. Long Noncoding RNAs
3.5.2. Extracellular Vesicle-Associated Proteins
3.5.3. Tumor-Educated Platelets
4. Discussion
5. Conclusions and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Jessmon, P.; Boulanger, T.; Zhou, W.; Patwardhan. P. Epidemiology and treatment patterns of epithelial ovarian cancer. Expert Rev. Anticancer. Ther. 2017, 17, 5427–5437. [Google Scholar] [CrossRef]
- Testa, U.; Petrucci, E.; Pasquini, L.; Castelli, G.; Pelosi, E. Ovarian cancers: Genetic abnormalities, tumor heterogeneity and progression, clonal evolution and cancer stem cells. Medicine 2018, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics. CA Cancer J. Clin. 2018, 68, 284–296. [Google Scholar]
- Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pr. Res. Clin. Obstet. Cancer Biol. Med. 2017, 14, 9–32. [Google Scholar] [CrossRef] [Green Version]
- Weiderpass, E.; Tyczynski, J.E. Epidemiology of Patients with Ovarian Cancer with and without a BRCA1/2 Mutation. Mol. Diagn. Ther. 2015, 19, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf (accessed on 20 November 2020).
- Temkin, S.M.; Miller, E.A.; Samimi, G.; Berg, C.D.; Pinsky, P.; Minasian, L. Outcomes from ovarian cancer screening in the PLCO trial: Histologic heterogeneity impacts detection, overdiagnosis and survival. Eur. J. Cancer 2017, 87, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Moss, E.; Hollingworth, J.; Reynolds, T.M. The role of CA125 in clinical practice. J. Clin. Pathol. 2005, 58, 308–312. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Deng, J.; Cheng, X.; Cheng, Z.; Yan, L.Q.C.; Xing, Y.Y.; Fan, D.M.; Tina, X.Y. Diagnostic accuracy of urine HE4 in patients with ovarian cancer: A meta-analysis. Oncotarget 2017, 8, 9660–9671. [Google Scholar] [CrossRef] [Green Version]
- Romagnolo, C.; Leon, A.E.; Fabricio, A.S.; Taborelli, M.; Polesel, J.; Del Pup, L.; Steffan, A.; Cervo, S.; Ravaggi, A.; Zanotti, L.; et al. HE4, CA125 and risk of ovarian malignancy algorithm (ROMA) as diagnostic tools for ovarian cancer in patients with a pelvic mass: An Italian multicenter study. Gynecol. Oncol. 2016, 141, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Li, H.; Zhang, B. The diagnostic value of serum HE4 and CA-125 and ROMA index in ovarian cancer. Biomed. Rep. 2016, 5, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Yamada, Y.; Sado, T.; Sakata, M.; Yoshida, S.; Kawaguchi, R.; Kanayama, S.; Shigetomi, H.; Haruta, S.; Tsuji, Y.; et al. A randomized study of screening for ovarian cancer: A multicenter study in Japan. Int. J. Gynecol. Cancer 2008, 18, 414–420. [Google Scholar] [CrossRef]
- Campbell, S.; Gentry-Maharaj, A. The role of transvaginal ultrasound in screening for ovarian cancer. Climacteric 2018, 21, 221–226. [Google Scholar] [CrossRef]
- U.S.Preventive Services Task Force. Screening for Ovarian Cancer: Recommendation Statement. Am. Fam. Physician. 2005, 71, 759–762. Available online: https://www.aafp.org/afp/2005/0215/p759.html (accessed on 11 November 2019).
- Menon, U.; Gentry-Maharaj, A.; Burnell, M.; Singh, N.; Ryan, A.; Karpinskyj, C.; Carlino, G.; Taylor, J.; Massingham, S.K.; Raikou, M.; et al. Ovarian cancer population screening and mortality after long-term follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): A randomised controlled trial. Lancet 2021, 397, 2182–2193. [Google Scholar] [CrossRef]
- Zheng, W.; Rongting, H.; Liang, Y. Crosstalk of intracellular post-translational modifications in cancer. Arch. Biochem. Biophys. 2019, 676, 108138, ISSN 0003-9861. [Google Scholar] [CrossRef]
- Herrera, F.G.; Irving, M.; Kandalaft, L.; Coukos, G. Rational combinations of immunotherapy with radiotherapy in ovarian cancer. Lancet Oncol. 2019, 20, e417–e433. [Google Scholar] [CrossRef]
- Kurman, R. Origin and molecular pathogenesis of ovarian high-grade serous carcinoma. Ann. Oncol. 2013, 24, x16–x21. [Google Scholar] [CrossRef]
- Koshiyama, M.; Matsumura, N.; Konishi, I. Recent Concepts of Ovarian Carcinogenesis: Type I and Type II. BioMed Res. Int. 2014, 2014, 934261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Bairi, K.; Al Jarroudi, O.; Le Page, C.; Afqir, S. Does the “Devil” originate from the fallopian tubes? Semin. Cancer Biol. 2021, in press; ISSN 1044-579X. [Google Scholar] [CrossRef]
- Vang, R.; Shih, I.M.; Kurman, R.J. Ovarian low-grade and high-grade serous carcinoma: Pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv. Anat. Pathol. 2009, 16, 267–282. [Google Scholar] [CrossRef] [Green Version]
- Singer, G.; Kurman, R.J.; Chang, H.-W.; Cho, S.K.; Shih, I.-M. Diverse tumorigenic pathways in ovarian serous carcinoma. Am. J. Pathol. 2002, 160, 1223–1228. [Google Scholar] [CrossRef] [Green Version]
- Singer, G.; Oldt, R.; Cohen, Y.; Wang, B.; Sidransky, D.; Kurman, R.J.; Shih, I.-M. Mutations in BRAF and KRAS Characterize the Development of Low-Grade Ovarian Serous Carcinoma. J. Natl. Cancer Inst. 2003, 95, 484–486. [Google Scholar] [CrossRef] [Green Version]
- Sieben, N.L.G.; Macropoulos, P.; Roemen, G.M.J.M. In ovarian neoplasms, BRAF, but not KRAS mutations are restricted to low-grade serous tumours. J. Pathol. 2004, 202, 336–340. [Google Scholar] [CrossRef]
- Seidman, J.D.; Khedmati, F. Exploring the histogenesis of ovarian mucinous and transitional cell (Brenner) neoplasms and their relationship with walthard cell nests: A study of 120 tumors. Arch. Pathol. Lab. Med. 2008, 132, 1753–1760. [Google Scholar] [CrossRef]
- Ricci, F.; Affatato, R.; Carrassa, L.; Damia, G. Recent insights into mucinous ovarian carcinoma. Int. J. Mol. Sci. 2018, 19, 1569. [Google Scholar] [CrossRef] [Green Version]
- Brilhante, A.V.M.; Augusto, K.L.; Portela, M.C.; Sucupira, L.C.G.; Oliveira, L.A.F.; Magalhãe, A.J.; Pouchaim, V.; Nóbrega, L.R.M.; Magalhães, T.F.; Sobreira, L.R.P. Endometriosis and ovarian cancer: An integrative review (endometriosis and ovarian cancer). Asian Pac. J. Cancer Prev. 2017, 18, 11–16. [Google Scholar]
- Bell, D.; Berchuck, A. Birrer MIntegrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar]
- Kroeger, P.; Drapkin, R. Pathogenesis and heterogeneity of ovarian cancer. Curr. Opin. Obstet. Gynecol. 2017, 29, 26–34. [Google Scholar] [CrossRef]
- Cheasley, D.; Wakefield, M.J.; Ryland, G.L.; Allan, P.E.; Alsop, K.; Amarasinghe, K.C.; Ananda, S.; Anglesio, M.S.; Au-Yeung, G.; Böhm, M.; et al. The molecular origin and taxonomy of mucinous ovarian carcinoma. Nat. Commun. 2019, 10, 3935. [Google Scholar] [CrossRef] [Green Version]
- Lisio, M.-A.; Fu, L.; Goyeneche, A.; Gao, Z.-H.; Telleria, C. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int. J. Mol. Sci. 2019, 20, 952. [Google Scholar] [CrossRef] [Green Version]
- Labidi-Galy, S.; Papp, E.; Hallberg, D.; Niknafs, N.; Adleff, V.; Noe, M.; Bhattacharya, R.; Novak, M.; Jones Phallen, J. High grade serous ovarian carcinomas originate in the fallopian tube. Nat. Commun. 2017, 8, 1093. [Google Scholar] [CrossRef]
- Lin, K.K.; Harrell, M.I.; Oza, A.M.; Oaknin, A.; Coquard, I.R.; Tinker, A.V.; Helman, E.; Radke, M.R.; Say, C.; Vo, L.T.; et al. BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 2019, 9, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, L.; Douville, C.; Cohen, J.D.; Yen, T.T.; Kinde, I.; Sundfelt, K.; Kjær, K.S.; Hruban, R.H.; Shih, I.M.; et al. Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers. Sci. Transl. Med. 2018, 10, eaap8793. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.D.; Lu Li, Y.; Wang, C.; Thoburn, B.; Afsari Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A. Detection and localization of surgically respectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [Google Scholar] [CrossRef] [Green Version]
- Phallen, J.; Sausen, M.; Adleff, V.; Leal, A.; Hruban, C.; White, J.; Anagnostou, V.; Fiksel, J.; Cristiano, S.; Papp, E. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 2017, 9, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, E.; Camacho-Vanegas, O.; Anand, S.; Sebra, R.; Camacho, S.C.; Garnar-Wortzel, L.; Nair, N.; Moshier, E.; Wooten, M.; Uzilov, A.; et al. Personalized circulating tumor DNA biomarkers dynamically predict treatment response and survival in gynecologic cancers. PLoS ONE 2015, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Arend, R.C.; Londoño, A.I.; Montgomery, A.M.; Smith, H.J.; Dobbin, Z.C.; Katre, A.A.; Martinez, A.; Yang, E.S.; Alvarez, R.D.; Huh, W.K.; et al. Molecular Response to Neoadjuvant Chemotherapy in High-Grade Serous Ovarian Carcinoma. Mol. Cancer Res. 2018, 16, 813–824. [Google Scholar] [CrossRef] [Green Version]
- Cohen, P.A.; Flowers, N.; Tong, S.; Hannan, N.; Pertile, M.D.; Hui, L. Abnormal plasma DNA profiles in early ovarian cancer using a non-invasive prenatal testing platform: Implications for cancer screening. BMC Med. 2016, 14, 126. [Google Scholar] [CrossRef] [Green Version]
- Vanderstichele, A.; Busschaert, P.; Smeets, D.; Landolfo, C.; Nieuwenhuysen, E.V.; Leunen, K.; Neven, P.; Amant, F.; Mahner, S.; Braicu, E.I.; et al. Chromosomal instability in cell-free DNA as a highly specific biomarker for detection of ovarian cancer in women with adnexal masses Clin. Cancer Res. 2016, 23, 2223–2231. [Google Scholar] [CrossRef] [Green Version]
- Salk, J.K.; Loubent-Senear, K.; Maritschnegg, E.; Valentine, C.C.; Williams, L.N.; Higgins, J.E.; Horvat, R.; Vanderstichele, A.; Nachmanson, D.; Baker, K.T.; et al. Ultra-Sensitive TP53 Sequencing for Cancer Detection Reveals Progressive Clonal Selection in Normal Tissue over a Century of Human Lifespan. Cell Rep. 2019, 28, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Maritschnegg, E.; Heitz, F.; Pecha, N.; Bouda, J.; Trillsch, F.; Grimm, C.; Vanderstichele, A.; Agreiter, C.; Harter, P.; Obermayr, E.; et al. Uterine and Tubal Lavage for Earlier Cancer Detection Using an Innovative Catheter: A Feasibility and Safety Study. Int. J. Gynecol. Cancer 2018, 28, 1692–1698. [Google Scholar] [CrossRef]
- Maritschnegg, E.; Wang, Y.; Pecha, N.; Horvat, R.; Van Nieuwenhuysen, E.; Vergote, I.; Heitz, F.; Sehouli, J.; Kinde, I.; Diaz, L.A.; et al. Lavage of the Uterine Cavity for Molecular Detection of Müllerian Duct Carcinomas: A Proof-of-Concept Study. J. Clin. Oncol. 2015, 33, 4293–4300. [Google Scholar] [CrossRef]
- Erickson, B.K.; Kinde, I.; Dobbin, Z.C.; Wang, Y.; Martin, J.Y.; Alvarez, R.D.; Conner, M.G.; Huh, W.K.; Roden, R.B.S.; Kinzler, K.W.; et al. Detection of somatic TP53 mutations in tampons of patients with high-grade serous ovarian cancer. Obstet. Gynecol. 2014, 124, 881–885. [Google Scholar] [CrossRef] [Green Version]
- Kinde, I.; Bettegowda, C.; Wang, Y.; Wu, J.; Agrawal, N.; Shih, I.M.; Kurman, R.; Dao, F.; Levine, D.A.; Giuntoli, R.; et al. Evaluation of DNA from the papanicolaou test to detect ovarianand endometrial cancers. Sci. Transl Med. 2013, 5, 167ra4. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Cheng, Y.; Chen, L.; Zuo, H.; Weng, Y.; Zhou, J.; Yao, Y.; Xu, B.; Gong, H.; Weng, Y.; et al. 1428P—Circulating tumour cell detection in epithelial ovarian cancer using dual-component antibodies targeting EpCAM and FRα. Ann. Oncol. 2019, 30, 5. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Yu, X.; Li, S.; Lei, Z.; Li, C.; Zhang, Q.; Han, Q.; Li, Y.; Zhang, K.; et al. Analysis of Circulating Tumor Cells in Ovarian Cancer and Their Clinical Value as a Biomarker. Cell Physiol. Biochem. 2018, 48, 1983–1994. [Google Scholar] [CrossRef]
- Rao, Q.; Zhang, Q.; Zhen, C.; Dai, W.; Zhang, B.; Ionescu-Zanetti, C.; Lin, Z.; Zhang, L. Detection of circulating tumour cells in patients with epithelial ovarian cancer by a microfluidic system. Int. J. Clin. Exp. Pathol. 2017, 10, 9599–9606. [Google Scholar]
- Lee, M.; Kim, E.J.; Cho, Y.; Kim, S.; Chung, H.H.; Park, N.H.; Song, Y.S. Predictive value of circulating tumor cells (CTCs) captured by microfluidic device in patients with epithelial ovarian cancer. Gynecol. Oncol. 2017, 145, 2361–2365. [Google Scholar] [CrossRef] [Green Version]
- Dong Hoon, S.; Suh, D.H.; Kim, M.; Choi, J.Y.; Bu, J.; Kang, Y.T.; Lee, B.; Kim, K.; No, J.H.; Kim, Y.B.; et al. Circulating tumor cells in the differential diagnosis of adnexal masses. Oncotarget 2017, 8, 77195–77206. [Google Scholar]
- Issam CheboutiKasimir-Bauer, S.; Buderath, P.; Wimberger, P.; Hauch, S.; Kimmig, R.; Kuhlmann, D. EMT-like circulating tumor cells in ovarian cancer patients are enriched by platinum-based chemotherapy. Oncotarget 2017, 8, 48820. [Google Scholar]
- Kolostova, K.; Pinkas, M.; Jakabova, A.; Pospisilova, E.; Svobodova, P.; Spicka, J.; Cegan, M.; Matkowski, R.; Bobek, V. Molecular characterization of circulating tumor cells in ovarian cancer. Am. J. Canc. Res. 2016, 6, 973. [Google Scholar]
- Kolostova, K.; Pinkas, M.; Jakabova, A.; Pospisilova, E.; Svobodova, P.; Spicka, J.; Cegan, M.; Matkowski, R.; Bobek, V. The added value of circulating tumor cells examination in ovarian cancer staging. Am. J. Canc. Res. 2015, 5, 3363. [Google Scholar]
- Pearl, M.L.; Dong, H.; Tulley, S.; Zhao, Q.; Golightly, M.; Zucker, S.; Chen, W.-T. Treatment monitoring of patients with epithelial ovarian cancer using invasive circulating tumor cells (iCTCs). Gynecol. Oncol. 2015, 137, 229–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearl, M.; LlZhao, Q.; Yang, Y.; Dong, H.; Tulley, S.; Zhang, Q.; Golightly, M.; Zucker, S.; Chen, W.T. Prognostic analysis of invasive circulating tumor cells (iCTCs) in epithelial ovarian cancer. Gynecol. Oncol. 2014, 134, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.-C.; Wu, J. microRNA-200c and microRNA-141 as potential diagnostic and prognostic biomarkers for ovarian cancer. Tumor Biol. 2015, 36, 4843–4850. [Google Scholar] [CrossRef]
- Meng, X.; Müller, V.; Milde-Langosch, K.; Trillsch, F.; Pantel, K.; Schwarzenbach, H. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget 2016, 7, 16923–16935. [Google Scholar] [CrossRef] [Green Version]
- Yokoi, A.; Yoshioka, Y.; Hirakawa, A.; Yamamoto, Y.; Ishikawa, M.; Ikeda, S.-I.; Kato, T.; Niimi, K.; Kajiyama, H.; Kikkawa, F.; et al. A combination of circulating miRNAs for the early detection of ovarian cancer. Oncotarget 2017, 8, 89811–89823. [Google Scholar] [CrossRef] [Green Version]
- Yokoi, A.; Matsuzaki, J.; Yamamoto, Y.; Yoneoka, Y.; Takahashi, K.; Shimizu, H.; Uehara, T.; Ishikawa, M.; Ikeda, S.; Sonoda, T.; et al. Integrated extracellular microRNA profiling for ovarian cancer screening. Nat. Commun. 2018, 9, 4319. [Google Scholar] [CrossRef]
- Kim, S.; Choi, M.C.; Jeong, J.-Y.; Hwang, S.; Jung, S.G.; Joo, W.D.; Park, H.; Song, S.H.; Lee, C.; Kim, T.H.; et al. Serum exosomal miRNA-145 and miRNA-200c as promising biomarkers for preoperative diagnosis of ovarian carcinomas. J. Cancer 2019, 10, 1958–1967. [Google Scholar] [CrossRef] [Green Version]
- Kristjánsdóttir, B. Early Diagnosis of Epithelial Ovarian Cancer Analysis of Novel Biomarkers. Ph.D. Thesis, University of Gothenburg, Gothenburg, Sweden, 2013. [Google Scholar]
- Otsuka, I.; Kameda, S.; Hoshi, K. Early detection of ovarian and fallopian tube cancer by examination of cytological samples from the endometrial cavity. Br. J. Cancer 2013, 109, 603–609. [Google Scholar] [CrossRef]
- Available online: https://patents.justia.com/patent/10004484 (accessed on 30 May 2014).
- Salk, J.; Loubet-Senear, K.; Maritschnegg, E.; Valentine, C.C.; Williams, L.N.; Jacob, E.; Horvat, E.; Vanderstichele, A.; Nachmanson, D.; Baker, K.T.; et al. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 2018, 19, 269–285. [Google Scholar] [CrossRef]
- Du-Bois Asante, L.; Calapre, M.; Ziman, T.M.; Meniawy, E.G. Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: Ready for prime time? Cancer Lett. 2020, 468, 59–71. [Google Scholar] [CrossRef]
- Mari, R.; Mamessier, E.; Lambaudie, E.; Provansal, M.; Birnbaum, D.; Bertucci, F.; Sabatier, R. Liquid Biopsies for Ovarian Carcinoma: How Blood Tests May Improve the Clinical Management of a Deadly Disease. Cancers 2019, 11, 774. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, A.; Peixoto, A.; Pinto, P.; Pinheiro, M.; Teixeira, M.R. Potential clinical applications of circulating cell-free DNA in ovarian cancer patients. Expert Rev. Mol. Med. 2018, 20, e6. [Google Scholar] [CrossRef]
- Li, B.; Pu, K.; Ge, L.; Wu, X. Diagnostic significance assessment of the circulating cell-free DNA in ovarian cancer: An updated meta-analysis. Gene 2019, 714, 143993. [Google Scholar] [CrossRef]
- Kamat, M.; Baldwin, D.; Urbauer, D.; Dang, L.Y.; Han, A. Godwin Karlan BY, Simpson JL, Gershenson DM, Coleman RL. Plasma cell-free DNA I ovarian cancer. Cancer 2010, 116, 1918–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.; Li, W.; Leng, B.; Zheng, W.; He, Z.; Zuo, M.; Chen, A. Circulating cell free DNA as the diagnostic marker for ovarian cancer: A systematic review and meta-analysis. PLoS ONE 2016, 11, e0155495. [Google Scholar] [CrossRef] [Green Version]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M. Detection of circulating tumor DNA in early-and late-stage human malignancies. Sci. Transl. Med. 2014, 6, 224. [Google Scholar] [CrossRef] [Green Version]
- Piskorz, A.; Lin, K.; Morris, J.A.; Mann, E.; Oza, A.M.; Coleman, R.L. Feasibility of Monitoring Response to the PARP Inhibitor Rucaparib with Targeted Deep Sequencing of Circulating Tumor DNA (ctDNA) in Women with High-Grade Serous Carcinoma on the ARIEL2 Trial. J. Clin. Oncol. 2016, 34, 15. [Google Scholar] [CrossRef]
- Dwivedi, S.; Rao, G.; Dey, A.; Mukherjee, P.; Wren, J.; Bhattacharya, R. Small Non-Coding-RNA in Gynecological Malignancies. Cancers 2021, 13, 1085. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, L.; Liao, M.; Zhang, C.; Hu, S.; Zou, M.; Gu, M.; Li, X. Emerging roles for PIWI proteins in cancer. Acta Biochim. Biophys. Sin. 2015, 47, 315–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: http://www.mirbase.org/ (accessed on 1 October 2018).
- Mateescu, B.; Batista, L.; Cardon, M.; Gruosso, T.; de Feraudy, Y.; Mariani, O.; Nicolas, A.; Meyniel, J.P.; Cottu, P.; Sastre-Garau, X.; et al. miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat. Med. 2011, 17, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Song, M.; Liu, J.; Qiu, G.; Li, T.; Hu, Y.; Liu, H. MiR-26a Promotes Ovarian Cancer Proliferation and Tumorigenesis. PLoS ONE 2014, 9, e86871. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yang, L.; Wang, H.; Yi, T.; Jia, X.; Chen, C.; Xu, P. MiR-130a and MiR-374a Function as Novel Regulators of Cisplatin Resistance in Human Ovarian Cancer A2780 Cells. PLoS ONE 2015, 10, e0128886. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, F.; Xiao, Z.; Yao, L. Exosomal microRNA-205 is involved in proliferation, migration, invasion, and apoptosis of ovarian cancer cells via regulating VEGFA. Cancer Cell Int. 2019, 19, 281. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.D.; Gercel-Taylor, C. microRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 2008, 110, 13–21. [Google Scholar] [CrossRef]
- Matsuzaki, J.; Ochiya, T. Circulating microRNAs and extracellular vesicles as potential cancer biomarkers: A systematic review. Int. J. Clin. Oncol. 2017, 22, 413–420. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Gao, S.; Jing, F.; Yang, Y.; Du, L.; Zheng, G.; Li, P.; Li, C.; Wang, C. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget 2016, 7, 85551–85563. [Google Scholar] [CrossRef]
- Tang, J.; Zhuo, H.; Zhang, X.; Jiang, R.; Ji, J.; Deng, L.; Qian, X.; Zhang, F.; Sun, B. A novel biomarker Linc00974 interacting with KRT19 promotes proliferation and metastasis in hepatocellular carcinoma. Cell Death Dis. 2014, 5, e1549. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Wang, J.; Li, J.; Zhao, M.; Huang, S.H.; Gu, Y.Y.; Li, Y.L.; Sun, X.J.; Yang, L.; Luo, Q. A circulating non-coding RNA panel as an early detection predictor of non-small cell lung cancer. Life Sci. 2016, 151, 235–242. [Google Scholar] [CrossRef]
- Chang, L.; Ni, J.; Zhu, Y.; Pang, B.; Graham, P.; Zhang, H.; Li, Y. Liquid biopsy in ovarian cancer: Recent advances in circulating extracellular vesicle detection for early diagnosis and monitoring progression. Theranostics 2019, 9, 4130–4140. [Google Scholar] [CrossRef] [PubMed]
- Best, M.G.; Sol, N.; Kooi, I.J.; Tannous, B.A.; Westerman, F.; Rustenburg, P.; Schellen, H.; Verschueren, E.; Post, E.; Koster, J.; et al. Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 2015, 28, 666–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://ijgc.bmj.com/content/29/Suppl_4/A291.3 (accessed on 1 November 2019).
- Available online: https://www.clinicaltrials.gov/ct2/show/NCT04022863 (accessed on 17 July 2017).
- Available online: https://clinicaltrials.gov/ct2/show/NCT02039388 (accessed on 17 January 2014).
- Available online: https://clinicaltrials.gov/ct2/show/NCT02518256 (accessed on 7 August 2015).
- Available online: https://clinicaltrials.gov/ct2/show/NCT03606486 (accessed on 30 July 2018).
Histology | Cells of Origin | Precursors | More Frequent Somatic Mutations |
---|---|---|---|
Low-Grade Serous Carcinoma | Fallopian tube progenitor cell or secretory cell | Serous cystadenoma, adenofibroma, atypical proliferative serous tumor, noninvasive micropapillary serous borderline tumor | KRAS (30%), BRAF (30%), NRAS, EIF1AX, USP9X, ERBB2, FRAR1, NF1, HRAS |
Mucinous Carcinoma | Unknown | Mucinous adenoma, mucinous borderline tumor | CDKN2A (76%), KRAS and TP53 (both 64%), ERBB2 (26%), RNF43, BRAF, PIK3CA, ARID1A (8–12%) |
Endometrioid Carcinoma | Endometrial epithelial cells | Endometriosis and endometrial cell-like hyperplasia, endometrioid borderline tumor | ARID1A (30%), PIK3CA (30%), TERT, CTNNB1, TP53 |
Clear-Cell Carcinoma | Endometrial epithelial cells | Endometriosis, endometrioid borderline tumors | PIK3CA (50%), ARID1A (50%), KRAS, MET, PTEN, CTNNB1, RPL22, TP53 |
High-Grade Serous Carcinoma | Fallopian tube progenitor cell or secretory cell | SCOUT, P53 signature, STIC | TP53 (96–98%) BRCA1/BRCA2 (10%, 25% somatic + germline); CNAs of CCNE1 amplification, PTEN deletion, RB1 and NF1 loss |
Carcinosarcomas | Unknown | Carcinomatous component | TP53, CTNNB1 |
Author (Year), References | Number of OC Patients | Specimen | Method | Genetic Marker/Antigen | Detection Rate (%) | Detection Rate (%) (I-II Stage) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|---|---|
K.K Lin et al. (2019) [33] | 112 germline or somatic BRCA-mutant HGOC | Plasma (ctDNA) | Targeted-NGS | BRCA1, BRCA2, TP53 | 96 for TP53 | NR | NR | NR |
Y. Wang et al. (2018) [34] | 83 OC | Plasma (ctDNA) | Pap SEEK-PCR-based error-reduction technology Safe-SeqS | 18 genes + assay for aneuploidy | 43 | 35 | NR | 100 |
Y. Wang et al. (2018) [34] | 83 OC | Plasma (ctDNA) + Pap Brush samples | Pap SEEK-PCR-based error-reduction technology Safe-SeqS | 18 genes + assay for aneuploidy | 63 | 54 | NR | 100 |
P.A. Cohen et al. (2018) [35] | 54 OC | Plasma (ctDNA) + proteins | CancerSEEK Targeted NGS | 16 gene panel + 41 protein biomarkers | 98 | 38 | NR | >99 AUC = 0.91 |
J. Phallen et al. (2017) [36] | 42 OC | Plasma (ctDNA) | Targeted NGS (TEC-Seq) and ddPCR | 55 gene panel | 71 | 68 | NR | 100 |
E. Pereira et al. (2015) [37] | 22 HGSOC | Serum (ctDNA) | ddPCR, NGS, WES | TP53, PTEN, PIK3CA, MET, KRAS, FBXW7, BRAF | 93.8 | NR | 81-91 | 60-99 |
A. Piskorz et al. (2016) [37] | 18 OC | Plasma (ctDNA) | Targeted NGS | TP53 | 100 | NR | NR | NR |
R.C. Arend et al. (2018) [38] | 14 OC | Plasma (cfDNA) | Targeted NGS | 50 gene | 100 | NR | NR | NR |
J.D. Cohen et al. (2016) [39] | 32 HGSOC | Plasma cfDNA (instability) | WEG (WISECONDOR) | CNV | 38 | 40.6 | NR | 93.8 |
A. Vanderst-ichele et al. [40] | 57 OC and bordline tumors | Plasma cfDNA | WGS | CNV | 67 | NR | NR | 99.6 AUC = 0.89 |
Y. Wang et al. (2018) [34] | 245 OC | Cervix Pap brush samples (DNA) | Pap SEEK-PCR-based error-reduction technology Safe-SeqS, | 18 genes + assay for aneuploidy | NR | 33 | 34 | 99 |
Tao Brush (DNA) | Pap SEEK-PCR-based error-reduction technology Safe-SeqS | 18 genes + assay for aneuploidy | NR | 45 | 47 | 100 | ||
Salk et al. (2019) [41] | 10 OC | Uterine lavage (DNA) | Duplex Sequencing | TP53 | 80 | NR | 70 | 100 |
E.Maritschnegg (2018) [42] | 33 OC | Uterine lavage (DNA) | Deep-sequencing | AKT1, APC, BRAF, CDKN2A, CTNNB1, EGFR, FBXW7, FGFR2, KRAS, NRAS, PIK3CA, PIK3R1, POLE, PPP2R1A, PTEN, TP53 | 80 for TP53 | NR | NR | NR |
E.Maritschnegg (2015) [43] | 30 OC | Uterine lavage (DNA) | Massively parallel sequencing | AKT1, APC, BRAF, CDKN2A, CTNNB1, EGFR, FBXW7, FGFR2, | 60 for TP53 | 100 for TP53 | NR | NR |
With ddPCR and SafeSeqS | KRAS, NRAS, PIK3CA, PIK3R1, POLE, PPP2R1A, PTEN, TP53 | 80 for TP53 | ||||||
B.K Erickson et al. (2014) [44] | 5 OC | Vaginal tampon (DNA) | Massively parallel sequencing | NR | 60 | NR | 60 | NR |
Kinde et al. (2013) [45] | 22 OC | Liquid Pap smear tests (DNA) | Massively parallel sequencing | NR | 41 | NR | NR | NR |
N. Li et al (2019) [46] | 30 EOC | Plasma (CTC) | Magnetic nanospheres (MNs) + IHC | EpCAM, FRα | 92 | NR | 75 | 90 AUC = 0.8 |
Zhang et al. (2018) [47] | 109 EOC | Plasma (CTC) | Imunomagnetic beads (EpCAM, HER2 and MUC1) + multiplex RT-PCR | EpCAM, HER2, MUC1, WT1, P16, PAX8 | 90 | 93 | NR | NR |
Q Rao et al. (2017) [48] | 23 EOC | Plasma (CTC) | Microfluidic system with immunomagnetic beads (EpCAM) + IHC | EpCAM, CK3-6H5, panCK | 87 | NR | NR | NR |
M. Lee et al. (2017) [49] | 54 EOC | Plasma (CTC) | Incorporating a nanoroughened microfluidic platform + IHC | EpCAM, TROP-2, EGFR, Vimentin, N-cadherin | 98.1 | NR | NR | NR |
Dong Hoon Suh et al. (2017) [50] | 87 EOC, bordline, benigh | Plasma (CTC) | Tapered-slit membrane filters + IHC | EpCAM, CK9 | 56.3 | NR | 77.4 | 55.8 AUC = 0.61–0.75 |
I. Chebouti et al. (2017) [51] | 95 EOC | Plasma (CTC) | Adna Test Ovarian Cancer and EMT-1 Select/Detect + Multiplex RT-PCR | EpCAM, ERCC1, MUC1, MUC16, PI3Ka, Akt-2, Twist | 82 | NR | >90 | >90 |
K. Kolostova et al. (2016) [52] | 40 OC | Plasma (CTC) | MetaCell + IHC/qPCR | ICC: NucBlueTM, CelltrackerTM. EpCAM, MUC1, MUC16, KRT18, KRT19, ERCC1, WT1 | 58 | NR | NR | NR |
K. Kolostova et al (2015) [53] | 118 OC | Plasma (CTC) | MetaCell + IHC/qPCR | ICC: NucBlueTM, CelltrackerTM. EpCAM, MUC1, MUC16, KRT18, KRT19, | 65.2 | NR | NR | NR |
M. Pearl et al. (2015) [54] | 31 EOC | Plasma (CTC) | CAM uptake-cell enrichment + IHC/RT-qPCR | EpCAM, Ca 125, CD44, seprase EpCAM, CD44, MUC16, FAP | 100 | NR | 83 | 97 |
Pearl et al. (2014) [55] | 129 EOC | Plasma (CTCs) | CAM uptake – cell enrichment + IHC | EpCAM, Ca 125, CD44, seprase | 88. 6 | 41.2 | 83 | 95.1 |
Gao et al. (2015) [56] | 143 all 74 EOC | Serum microRNA | qRT-PCR | miR-200c | NR | NR | 72 | 70, AUC = 0.79 |
miR-141 | 69 | 72, AUC = 0.75 | ||||||
Meng et al. (2016) [57] | 163 EOC | Serum microRNA | TaqMan microRNA assays and ELISA | miR-200a | NR | NR | 83 | 90, AUC = 0.91 |
miR-200b | 52 | 100, AUC = 0.81 | ||||||
miR-200C | 31 | 100, AUC = 0.65 | ||||||
3miRNAs set | 88 | 90, AUC = 0.92 | ||||||
Yokoi et al. in (2017) [58] | 269 all 155EOC | Serum microRNA | qRT-PCR + statistical cross-validation methods | 8 miRNA combination | NR | 86 | 92 | 91, AUC = 0.96 |
Yokoi et al. in (2018) et al. [59] | EOC 333 | Serum microRNA | Microarrays | 10 miRNAs set miRNA-320a, -665, -1275, -3184-5p, -3185, -3195, -4459, 4640-5p, -6076, and -6717-5p. EOS vs. non cancer | NR | NR | 99 | 100, AUC = 0.72–1.0 |
Kim S. (2019) [60] | 68 all 39HGOC | Serum microRNA | qRT-PCR | miRNA-145 | NR | NR | 91.7 | 86.8, AUC = 86.8 |
miRNA-200C | 72.9 | 90.0, AUC = 77.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žilovič, D.; Čiurlienė, R.; Sabaliauskaitė, R.; Jarmalaitė, S. Future Screening Prospects for Ovarian Cancer. Cancers 2021, 13, 3840. https://doi.org/10.3390/cancers13153840
Žilovič D, Čiurlienė R, Sabaliauskaitė R, Jarmalaitė S. Future Screening Prospects for Ovarian Cancer. Cancers. 2021; 13(15):3840. https://doi.org/10.3390/cancers13153840
Chicago/Turabian StyleŽilovič, Diana, Rūta Čiurlienė, Rasa Sabaliauskaitė, and Sonata Jarmalaitė. 2021. "Future Screening Prospects for Ovarian Cancer" Cancers 13, no. 15: 3840. https://doi.org/10.3390/cancers13153840
APA StyleŽilovič, D., Čiurlienė, R., Sabaliauskaitė, R., & Jarmalaitė, S. (2021). Future Screening Prospects for Ovarian Cancer. Cancers, 13(15), 3840. https://doi.org/10.3390/cancers13153840