Early-Phase Interventional Trials in Oral Cancer Prevention
Abstract
:Simple Summary
Abstract
1. Introduction
2. Management of Oral Epithelial Dysplasia: Current Standard of Care
3. Current Evidence in Oral Cancer Chemoprevention
Drug Repurposing
4. Methodological Challenges in Clinical Trials of Oral Cancer Chemoprevention
4.1. Recruitment: Defining the High-Risk Population
4.2. Choice of Endpoints
4.2.1. Pharmacodynamic and Pharmacokinetic
4.2.2. Safety
4.2.3. Surrogate Markers of Oral Cancer Development
Clinical
Histological
Molecular
4.2.4. Composite Endpoints
4.2.5. Oral Cancer Development as an Endpoint
4.3. Window of Opportunity Design
5. The Need for a Core Outcome Set in OED Trials
6. Initiatives in Oral Cancer Chemoprevention
7. Novel Strategies in Oral Cancer Chemoprevention
7.1. EGFR Inhibitors
7.2. MET-Targeted Therapy
7.3. Epigenetic Therapies
7.4. Photoactivated Therapy
7.5. Immune Modulation in Oral Epithelial Dysplasia
7.5.1. Tumour Vaccines
7.5.2. Immune Checkpoint Inhibitors
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IARC. Available online: https://gco.iarc.fr/today/home (accessed on 18 June 2021).
- Mithani, S.K.; Mydlarz, W.K.; Grumbine, F.L.; Smith, I.M.; Califano, J.A. Molecular genetics of premalignant oral lesions. Oral Dis. 2007, 13, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Jeng, J.H.; Chang, M.C.; Hahn, L.J. Role of areca nut in betel quid-associated chemical carcinogenesis: Current awareness and future perspectives. Oral Oncol. 2001, 37, 477–492. [Google Scholar] [CrossRef]
- Califano, J.; van der Riet, P.; Westra, W.; Nawroz, H.; Clayman, G.; Piantadosi, S.; Corio, R.; Lee, D.; Greenberg, B.; Koch, W.; et al. Genetic progression model for head and neck cancer: Implications for field cancerization. Cancer Res. 1996, 56, 2488–2492. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, Z.; Myers, J.N. TP53 mutations in head and neck squamous cell carcinoma and their impact on disease progression and treatment response. J. Cell Biochem. 2016, 117, 2682–2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castilho, R.M.; Squarize, C.H.; Almeida, L.O. Epigenetic modifications and head and neck cancer: Implications for tumor progression and resistance to therapy. Int. J. Mol. Sci. 2017, 18, 1506. [Google Scholar] [CrossRef]
- Fernández-Mateos, J.; Seijas-Tamayo, R.; Klain, J.C.; Borgoñón, M.; Pérez-Ruiz, E.; Mesía, R.; del Barco, E.; Coloma, C.S.; Dominguez, A.R.; Daroqui, J.C.; et al. Genetic susceptibility in head and neck squamous cell carcinoma in a Spanish population. Cancers 2019, 11, 493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehanna, H.M.; Rattay, T.; Smith, J.; McConkey, C.C. Treatment and follow-up of oral dysplasia—A systematic review and meta-analysis. Head Neck 2009, 31, 1600–1609. [Google Scholar] [CrossRef]
- Sathasivam, H.P.; Nayar, D.; Sloan, P.; Thomson, P.J.; Odell, E.W.; Robinson, M. Dysplasia and DNA ploidy to prognosticate clinical outcome in oral potentially malignant disorders. J. Oral Pathol. Med. 2021, 50, 200–209. [Google Scholar] [CrossRef]
- Shariff, J.A.; Zavras, A.I. Malignant transformation rate in patients presenting oral epithelial dysplasia: Systematic review and meta-analysis. J. Oral Dis. 2015, 2015, 854636. [Google Scholar] [CrossRef] [Green Version]
- Field, E.A.; McCarthy, C.E.; Ho, M.W.; Rajlawat, B.P.; Holt, D.; Rogers, S.N.; Triantafyllou, A.; Field, J.K.; Shaw, R.J. The manage-ment of oral epithelial dysplasia: The Liverpool algorithm. Oral Oncol. 2015, 51, 883–887. [Google Scholar] [CrossRef]
- Lee, J.J.; Hong, W.K.; Hittelman, W.N.; Mao, L.; Lotan, R.; Shin, D.M.; Benner, S.E.; Xu, X.C.; Lee, J.S.; Papadimitrakopoulou, V.M.; et al. Predicting cancer development in oral leukoplakia: Ten years of translational research. Clin. Cancer Res. 2000, 6, 1702–1710. [Google Scholar] [PubMed]
- Farah, C.S. Molecular, genomic and mutational landscape of oral leukoplakia. Oral Dis. 2020, 27, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Arduino, P.G.; Lodi, G.; Cabras, M.; Macciotta, A.; Gambino, A.; Conrotto, D.; Karimi, D.; El Haddad, G.; Carbone, M.; Broccoletti, R. A randomized controlled trial on efficacy of surgical excision of nondysplastic leukoplakia to prevent oral cancer. Cancer Prev. Res. 2020, 14, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Lodi, G.; Franchini, R.; Warnakulasuriya, S.; Varoni, E.M.; Sardella, A.; Kerr, A.R.; Carrassi, A.; MacDonald, L.C.I.; Worthington, H. Interventions for treating oral leukoplakia to prevent oral cancer. Cochrane Database Syst. Rev. 2016, 7, CD001829. [Google Scholar] [CrossRef]
- Shin, D.M.; Zhang, H.; Saba, N.F.; Chen, A.Y.; Nannapaneni, S.; Amin, A.R.; Muller, S.; Lewis, M.; Sica, G.; Kono, S.; et al. Chemo-prevention of head and neck cancer by simultaneous blocking of epidermal growth factor receptor and cyclooxygenase-2 signaling pathways: Preclinical and clinical studies. Clin. Cancer Res. 2013, 19, 1244–1256. [Google Scholar] [CrossRef] [Green Version]
- Jerjes, W.; Upile, T.; Hamdoon, Z.; Al-Khawalde, M.; Morcos, M.; Mosse, C.A.; Hopper, C. CO2 laser of oral dysplasia: Clini-copathological features of recurrence and malignant transformation. Lasers Med. Sci. 2012, 27, 169–179. [Google Scholar] [CrossRef]
- van der Hem, P.S.; Nauta, J.M.; van der Wal, J.E.; Roodenburg, J.L. The results of CO2 laser surgery in patients with oral leukoplakia: A 25 year follow up. Oral Oncol. 2005, 41, 31–37. [Google Scholar] [CrossRef]
- Sankaranarayanan, R. Systemic and topical treatment of oral leukoplakia. Br. J. Oral Maxillofac. Surg. 1989, 27, 260–261. [Google Scholar] [CrossRef]
- Liu, W.; Bao, Z.-X.; Shi, L.-J.; Tang, G.-Y.; Zhou, Z.-T. Malignant transformation of oral epithelial dysplasia: Clinicopathological risk factors and outcome analysis in a retrospective cohort of 138 cases. Histopathology 2011, 59, 733–740. [Google Scholar] [CrossRef]
- Epstein, J.B.; Wong, F.L.W.; Millner, A.; Le, N.D. Topical bleomycin treatment of oral leukoplakia: A randomized double-blind clinical trial. Head Neck 1994, 16, 539–544. [Google Scholar] [CrossRef]
- Jaber, M.A. Oral epithelial dysplasia in non-users of tobacco and alcohol: An analysis of clinicopathologic characteristics and treatment outcome. J. Oral Sci. 2010, 52, 13–21. [Google Scholar] [CrossRef]
- Holmstrup, P.; Vedtofte, P.; Reibel, J.; Stoltze, K. Long-term treatment outcome of oral premalignant lesions. Oral Oncol. 2006, 42, 461–474. [Google Scholar] [CrossRef] [PubMed]
- Kuribayashi, Y.; Tsushima, F.; Sato, M.; Morita, K.; Omura, K. Recurrence patterns of oral leukoplakia after curative surgical resection: Important factors that predict the risk of recurrence and malignancy. J. Oral Pathol. Med. 2012, 41, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Kunnambath, R.; Somanathan, T.; Mathew, B.; Pandey, M.; Rangaswamy, S. Long-term outcome of surgical excision of leukoplakia in a screening intervention trial, Kerala, India. J. Indian Acad. Oral Med. Radiol. 2012, 24, 126–129. [Google Scholar] [CrossRef]
- Ishii, J.; Fujita, K.; Komori, T. Laser surgery as a treatment for oral leukoplakia. Oral Oncol. 2003, 39, 759–769. [Google Scholar] [CrossRef]
- Chiesa, F.; Sala, L.; Costa, L.; Moglia, D.; Mauri, M.; Podrecca, S.; Andreola, S.; Marchesini, R.; Bandieramonte, G.; Bartoli, C.; et al. Excision of oral leukoplakias by CO2 laser on an out-patient basis: A useful procedure for prevention and early detection of oral carcinomas. Tumori J. 1986, 72, 307–312. [Google Scholar] [CrossRef]
- Ho, M.; Risk, J.; Woolgar, J.A.; Field, E.; Field, J.; Steele, J.; Rajlawat, B.; Triantafyllou, A.; Rogers, S.N.; Lowe, D.; et al. The clinical determinants of malignant transformation in oral epithelial dysplasia. Oral Oncol. 2012, 48, 969–976. [Google Scholar] [CrossRef]
- Ho, M.W.; Field, E.A.; Field, J.K.; Risk, J.M.; Rajlawat, B.P.; Rogers, S.N.; Steele, J.C.; Triantafyllou, A.; Woolgar, J.A.; Lowe, D.; et al. Outcomes of oral squamous cell carcinoma arising from oral epithelial dysplasia: Rationale for monitoring premalignant oral lesions in a multidisciplinary clinic. Br. J. Oral Maxillofac. Surg. 2013, 51, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Poh, C.F.; Williams, M.; Laronde, D.M.; Berean, K.; Gardner, P.J.; Jiang, H.; Wu, L.; Lee, J.J.; Rosin, M.P. Loss of hetero-zygosity (LOH) profiles—Validated risk predictors for progression to oral cancer. Cancer Prev. Res. 2012, 5, 1081–1089. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, C.; Sacco, J.; Fedele, S.; Ho, M.; Porter, S.; Liloglou, T.; Greenhalf, B.; Robinson, M.; Young, B.; Cicconi, S.; et al. SAVER: Sodium valproate for the epigenetic reprogramming of high-risk oral epithelial dysplasia—A phase II randomised control trial study protocol. Trials 2021, 22, 1–12. [Google Scholar] [CrossRef]
- Armstrong, W.B.; Taylor, T.H.; Kennedy, A.R.; Melrose, R.J.; Messadi, D.V.; Gu, M.; Le, A.D.; Perloff, M.; Civantos, F.; Goodwin, W.J.; et al. Bowman birk inhibitor concentrate and oral leukoplakia: A randomized phase IIb trial. Cancer Prev. Res. 2013, 6, 410–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, W.K.; Endicott, J.; Itri, L.M.; Doos, W.; Batsakis, J.G.; Bell, R.; Fofonoff, S.; Byers, R.; Atkinson, E.N.; Vaughan, C.; et al. 13-cis-retinoic acid in the treatment of oral leukoplakia. N. Engl. J. Med. 1986, 315, 1501–1505. [Google Scholar] [CrossRef]
- Mallery, S.R.; Tong, M.; Shumway, B.S.; Curran, A.E.; Larsen, P.E.; Ness, G.M.; Kennedy, K.S.; Blakey, G.H.; Kushner, G.M.; Vickers, A.M.; et al. Topical application of a mucoadhesive freeze-dried black raspberry gel induces clinical and histologic regression and reduces loss of heterozygosity events in premalignant oral intraepithelial lesions: Results from a multicentered, placebo-controlled clinical trial. Clin. Cancer Res. 2014, 20, 1910–1924. [Google Scholar] [PubMed] [Green Version]
- Mulshine, J.L.; Atkinson, J.C.; Greer, R.O.; Papadimitrakopoulou, V.A.; Van Waes, C.; Rudy, S.F.; Martin, J.W.; Steinberg, S.M.; Liewehr, D.J.; Avis, I.; et al. Randomized, double-blind, placebo-controlled phase IIB trial of the cyclooxygenase inhibitor ketorolac as an oral rinse in oropharyngeal leukoplakia. Clin. Cancer Res. 2004, 10, 1565–1573. [Google Scholar] [CrossRef] [Green Version]
- Papadimitrakopoulou, V.A.; William, W.N.; Dannenberg, A.J.; Lippman, S.M.; Lee, J.J.; Ondrey, F.G.; Peterson, D.E.; Feng, L.; Atwell, A.; El-Naggar, A.K.; et al. Pilot randomized phase II study of celecoxib in oral premalignant lesions. Clin. Cancer Res. 2008, 14, 2095–2101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, A.S.; Liu, D.; Martin, J.; Tang, X.-M.; Lee, J.J.; El-Naggar, A.K.; Wistuba, I.; Culotta, K.S.; Mao, L.; Gillenwater, A.; et al. Phase II randomized, placebo-controlled trial of green tea extract in patients with high-risk oral premalignant lesions. Cancer Prev. Res. 2009, 2, 931–941. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Krishanappa, R.; Bagewadi, A.; Keluskar, V. Efficacy of oral lycopene in the treatment of oral leukoplakia. Oral Oncol. 2004, 40, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Stich, H.F.; Hornby, A.P.; Mathew, B.; Sankaranarayanan, R.; Nair, M.K. Response of oral leukoplakias to the administration of vitamin A. Cancer Lett. 1988, 40, 93–101. [Google Scholar] [CrossRef]
- Piattelli, A.; Fioroni, M.; Santinelli, A.; Rubini, C. bcl-2 expression and apoptotic bodies in 13-cis-retinoic acid (isotretinoin)-topically treated oral leukoplakia: A pilot study. Oral Oncol. 1999, 35, 314–320. [Google Scholar] [CrossRef]
- Li, N.; Sun, Z.; Han, C.; Chen, J. The chemopreventive effects of tea on human oral precancerous mucosa lesions. Proc. Soc. Exp. Biol. Med. 1999, 220, 218–224. [Google Scholar]
- Sun, Z.; Guan, X.; Li, N.; Liu, X.; Chen, X. Chemoprevention of oral cancer in animal models, and effect on leukoplakias in human patients with ZengShengPing, a mixture of medicinal herbs. Oral Oncol. 2010, 46, 105–110. [Google Scholar] [CrossRef]
- Nagao, T.; Warnakulasuriya, S.; Nakamura, T.; Kato, S.; Yamamoto, K.; Fukano, H.; Suzuki, K.; Shimozato, K.; Hashimoto, S. Treatment of oral leukoplakia with a low-dose of beta-carotene and vitamin C supplements: A randomized controlled trial. Int. J. Cancer 2015, 136, 1708–1717. [Google Scholar] [CrossRef] [Green Version]
- William, W.N., Jr.; Papadimitrakopoulou, V.; Lee, J.J.; Mao, L.; Cohen, E.E.; Lin, H.Y.; Gillenwater, A.M.; Martin, J.W.; Lingen, M.W.; Boyle, J.O.; et al. Erlotinib and the risk of oral cancer: The erlotinib prevention of oral cancer (EPOC) randomized clin-ical trial. JAMA Oncol. 2016, 2, 209–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sankaranarayanan, R.; Mathew, B.; Varghese, C.; Sudhakaran, P.R.; Menon, V.P.; Jayadeep, A.; Nair, P.; Mathews, C.; Mahalingam, T.R.; Balaram, P. Chemoprevention of oral leukoplakia with vitamin A and beta carotene: An assessment. Oral Oncol. 1997, 33, 231–236. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Fowkes, F.G.R.; Belch, J.J.; Ogawa, H.; Warlow, C.P.; Meade, T.W. Effect of daily aspirin on long-term risk of death due to cancer: Analysis of individual patient data from randomised trials. Lancet 2011, 377, 31–41. [Google Scholar] [CrossRef]
- Saka Herran, C.; Jane-Salas, E.; Estrugo Devesa, A.; Lopez-Lopez, J. Protective effects of metformin, statins and anti-inflammatory drugs on head and neck cancer: A systematic review. Oral Oncol. 2018, 85, 68–81. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, J.; Prokop, L.J.; Murad, M.H. Pharmacologic therapy of diabetes and overall cancer risk and mortality: A meta-analysis of 265 studies. Sci. Rep. 2015, 5, 10147. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Gillespie, T.W.; Goodman, M.; Brodie, S.A.; Brandes, M.; Ribeiro, M.; Ramalingam, S.S.; Shin, D.M.; Khuri, F.R.; Brandes, J.C. Long-term use of valproic acid in US veterans is associated with a reduced risk of smoking-related cases of head and neck cancer. Cancer 2014, 120, 1394–1400. [Google Scholar] [CrossRef] [Green Version]
- Talevi, A.; Bellera, C.L. Challenges and opportunities with drug repurposing: Finding strategies to find alternative uses of therapeutics. Expert Opin. Drug Discov. 2019, 15, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Gangadharan, N.T.; Venkatachalam, A.B.; Sugathan, S. High-throughput and in silico screening in drug discovery. In Bioresources and Bioprocess in Biotechnology: Volume 1: Status and Strategies for Exploration; Abdulhameed, S., Pradeep, N.S., Sugathan, S., Eds.; Springer: Singapore, 2017; pp. 247–273. [Google Scholar]
- Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stransky, N.; Egloff, A.M.; Tward, A.D.; Kostic, A.; Cibulskis, K.; Sivachenko, A.; Kryukov, G.; Lawrence, M.S.; Sougnez, C.; McKenna, A.; et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011, 333, 1157–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, N.; Frederick, M.J.; Pickering, C.R.; Bettegowda, C.; Chang, K.; Li, R.J.; Fakhry, C.; Xie, T.X.; Zhang, J.; Wang, J.; et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 2011, 333, 1154–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veeramachaneni, R.; Walker, T.; Revil, T.; de Weck, A.; Badescu, D.; O’Sullivan, J.; Higgins, C.; Elliott, L.; Liloglou, T.; Risk, J.M.; et al. Analysis of head and neck carcinoma progression reveals novel and relevant stage-specific changes associated with immortalisation and malignancy. Sci. Rep. 2019, 9, 11992. [Google Scholar] [CrossRef] [Green Version]
- Rosin, M.P.; Cheng, X.; Poh, C.; Lam, W.L.; Huang, Y.; Lovas, J.; Berean, K.; Epstein, J.B.; Priddy, R.; Le, N.D.; et al. Use of allelic loss to predict malignant risk for low-grade oral epithelial dysplasia. Clin. Cancer Res. 2000, 6, 357–362. [Google Scholar]
- Rock, L.; Rosin, M.; Zhang, L.; Chan, B.; Shariati, B.; Laronde, D. Characterization of epithelial oral dysplasia in non-smokers: First steps towards precision medicine. Oral Oncol. 2018, 78, 119–125. [Google Scholar] [CrossRef]
- Silverman, S., Jr.; Gorsky, M.; Lozada, F. Oral leukoplakia and malignant transformation. A follow-up study of 257 patients. Cancer 1984, 53, 563–568. [Google Scholar]
- Lumerman, H.; Freedman, P.; Kerpel, S. Oral epithelial dysplasia and the development of invasive squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1995, 79, 321–329. [Google Scholar] [CrossRef]
- Müller, S. Update from the 4th Edition of the World Health Organization of Head and Neck Tumours: Tumours of the oral cavity and mobile tongue. Head Neck Pathol. 2017, 11, 33–40. [Google Scholar] [CrossRef]
- Ranganathan, K.; Kavitha, L.; Sharada, P.; Bavle, R.M.; Rao, R.S.; Pattanshetty, S.M.; Hazarey, V.K.; Madhura, M.G.; Nagaraj, T.; Lingappa, A.; et al. Intra-observer and inter-observer variability in two grading systems for oral epithelial dysplasia: A multi-centre study in India. J. Oral Pathol. Med. 2020, 49, 948–955. [Google Scholar] [CrossRef]
- Parchment, R.E.; Doroshow, J.H. Pharmacodynamic endpoints as clinical trial objectives to answer important questions in oncology drug development. Semin. Oncol. 2016, 43, 514–525. [Google Scholar] [CrossRef] [Green Version]
- William, W.N.; Lee, J.J.; Lippman, S.M.; Martin, J.W.; Chakravarti, N.; Tran, H.T.; Sabichi, A.L.; Kim, E.S.; Feng, L.; Lotan, R.; et al. High-dose fenretinide in oral leukoplakia. Cancer Prev. Res. 2009, 2, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Saba, N.F.; Hurwitz, S.J.; Kono, S.A.; Yang, C.S.; Zhao, Y.; Chen, Z.; Sica, G.; Müller, S.; Moreno-Williams, R.; Lewis, M.; et al. Chemoprevention of head and neck cancer with celecoxib and erlotinib: Results of a phase Ib and pharmacokinetic study. Cancer Prev. Res. 2014, 7, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Fanaroff, A.; Haque, G.; Thomas, B.; Stone, A.E.; Perkins, L.M.; Wilson, M.; Jones, W.S.; Melloni, C.; Mahaffey, K.W.; Alexander, K.P.; et al. Methods for safety and endpoint ascertainment: Identification of adverse events through scrutiny of negatively adjudicated events. Trials 2020, 21, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, A.R.; Graham, D.M.; Pond, G.R.; Siu, L.L. Phase 1 trial design: Is 3 + 3 the best? Cancer Control 2014, 21, 200–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, G.M.; Mander, A.P.; Bedding, A.; Brock, K.; Cornelius, V.; Grieve, A.P.; Jaki, T.; Love, S.B.; Odondi, L.; Weir, C.J.; et al. How to design a dose-finding study using the continual reassessment method. BMC Med. Res. Methodol. 2019, 19, 18. [Google Scholar] [CrossRef]
- Coates, S.; Täubel, J.; Lorch, U. Practical risk management in early phase clinical trials. Eur. J. Clin. Pharmacol. 2019, 75, 483–496. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.J.; Campbell, B.; Massey, B.; Lynch, D.P.; Cohen, E.; Blair, E.; Selle, R.; Shklovskaya, J.; Jovanovic, B.D.; Skripkauskas, S.; et al. A phase I trial of aminolevulinic acid-photodynamic therapy for treatment of oral leukoplakia. Oral Oncol. 2013, 49, 970–976. [Google Scholar] [CrossRef] [Green Version]
- Wirth, L.J.; Krane, J.F.; Li, Y.; Othus, M.; Moran, A.E.; Dorfman, D.M.; Norris, C.M.; Goguen, L.; Posner, M.R.; Haddad, R.I.; et al. A pilot surrogate endpoint biomarker study of celecoxib in oral premalignant lesions. Cancer Prev. Res. 2008, 1, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Armstrong., P.W.; Westerhout, C.M. Composite end points in clinical research: A time for reappraisal. Circulation 2017, 135, 2299–2307. [Google Scholar] [CrossRef]
- Iocca, O.; Sollecito, T.P.; Alawi, F.; Weinstein, G.S.; Newman, J.G.; De Virgilio, A.; Di Maio, P.; Spriano, G.; López, S.P.; Shanti, R.M. Potentially malignant disorders of the oral cavity and oral dysplasia: A systematic review and meta-analysis of malignant transformation rate by subtype. Head Neck 2020, 42, 539–555. [Google Scholar] [CrossRef]
- William, W.N.; Papadimitrakopoulou, V.A. Optimizing biomarkers and endpoints in oral cancer chemoprevention trials. Cancer Prev. Res. 2013, 6, 375–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aroldi, F.; Lord, S.R. Window of opportunity clinical trial designs to study cancer metabolism. Br. J. Cancer 2020, 122, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Williamson, P.; Clarke, M. The COMET (Core Outcome Measures in Effectiveness Trials) Initiative: Its role in improving cochrane reviews. Cochrane Database Syst. Rev. 2012, 13, ED000041. [Google Scholar] [CrossRef]
- Blagden, S.P.; Maignen, F.M.; Billingham, L.; Brown, L.C.; Buckland, S.W.; Cooper, A.M.; Ellis, S.; Fisher, W.; Hughes, H.; Keatley, D.A.; et al. Effective delivery of Complex Innovative Design (CID) cancer trials—A consensus statement. Br. J. Cancer 2020, 122, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Petersen, P.E. Oral cancer prevention and control—The approach of the World Health Organization. Oral Oncol. 2009, 45, 454–460. [Google Scholar] [CrossRef] [PubMed]
- IARC. IARC Handbooks Meetings—Volume 19: Oral Cancer Prevention. Available online: https://www.iarc.who.int/news-events/iarc-handbooks-meetings-volume-19-oral-cancer-prevention/ (accessed on 24 July 2021).
- Mallery, S.R. Assessment of Chemopreventive Effects of a Mucoadhesive Fenretinide Patch on Premalignant Oral Epithelial Lesions; National Institute of Health: Bethesda, MD, USA, 2021. [Google Scholar]
- Saintigny, P.; Zhang, L.; Fan, Y.-H.; El-Naggar, A.K.; Papadimitrakopoulou, V.A.; Feng, L.; Lee, J.J.; Kim, E.S.; Hong, W.K.; Mao, L. Gene expression profiling predicts the development of oral cancer. Cancer Prev. Res. 2011, 4, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Saintigny, P.; William, W.N.; Foy, J.-P.; Papadimitrakopoulou, V.; Lang, W.; Zhang, L.; Fan, Y.H.; Feng, L.; Kim, E.S.; El-Naggar, A.K.; et al. Met receptor tyrosine kinase and chemoprevention of oral cancer. J. Natl. Cancer Inst. 2018, 110, 250–257. [Google Scholar] [CrossRef]
- Cui, J.J.; Tran-Dube, M.; Shen, H.; Nambu, M.; Kung, P.P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem. 2011, 54, 6342–6363. [Google Scholar] [CrossRef]
- Cheng, Y.; He, C.; Wang, M.; Ma, X.; Mo, F.; Yang, S.; Han, J.; Wei, X. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal. Transduct. Target. Ther. 2019, 4, 62. [Google Scholar] [CrossRef] [Green Version]
- Worsham, M.J.; Stephen, J.K.; Chen, K.M.; Havard, S.; Shah, V.; Gardner, G.; Schweitzer, V.G. Delineating an epigenetic con-tinuum in head and neck cancer. Cancer Lett. 2014, 342, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Fraga, M.; Ballestar, E.; Garea, A.V.; Boix-Chornet, M.; Espada, J.; Schotta, G.; Bonaldi, T.; Haydon, C.; Ropero, S.; Petrie, K.; et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 2005, 37, 391–400. [Google Scholar] [CrossRef]
- Kumar, B.; Yadav, A.; Lang, J.C.; Teknos, T.N.; Kumar, P. Suberoylanilide hydroxamic acid (SAHA) reverses chemo-resistance in head and neck cancer cells by targeting cancer stem cells via the downregulation of nanog. Genes Cancer 2015, 6, 169–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saini, R.; Poh, C.F. Photodynamic therapy: A review and its prospective role in the management of oral potentially malignant disorders. Oral Dis. 2013, 19, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.F.; Hopper, C.; Speight, P.M.; Buonaccorsi, G.A.; Bown, S.G. Photodynamic therapy using mTHPC for malignant disease in the oral cavity. Int. J. Cancer 1997, 73, 25–32. [Google Scholar] [CrossRef]
- Copper, M.P.; Tan, I.B.; Oppelaar, H.; Ruevekamp, M.C.; Stewart, F.A. Meta-tetra(hydroxyphenyl)chlorin photodynamic therapy in early-stage squamous cell carcinoma of the head and neck. Arch. Otolaryngol. Head Neck Surg. 2003, 129, 709–711. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.H.; Lin, H.P.; Chen, H.M.; Yang, H.; Wang, Y.P.; Chiang, C.P. Comparison of clinical outcomes of oral erythroleu-koplakia treated with photodynamic therapy using either light-emitting diode or laser light. Lasers Surg. Med. 2009, 41, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-P.; Chen, H.-M.; Yu, C.-H.; Yang, H.; Wang, Y.-P.; Chiang, C.-P. Topical photodynamic therapy is very effective for oral verrucous hyperplasia and oral erythroleukoplakia. J. Oral Pathol. Med. 2010, 39, 624–630. [Google Scholar] [CrossRef]
- Romano, A.; Di Stasio, D.; Gentile, E.; Petruzzi, M.; Serpico, R.; Lucchese, A. The potential role of Photodynamic therapy in oral premalignant and malignant lesions: A systematic review. J. Oral Pathol. Med. 2021, 50, 333–344. [Google Scholar] [CrossRef]
- LightOx. Available online: https://lightox.co.uk/oral-cancer/ (accessed on 16 February 2021).
- Spira, A.; Disis, M.L.; Schiller, J.T.; Vilar, E.; Rebbeck, T.R.; Bejar, R.; Ideker, T.; Arts, J.; Yurgelun, M.B.; Mesirov, J.P.; et al. Leveraging premalignant biology for immune-based cancer prevention. Proc. Natl. Acad. Sci. USA 2016, 113, 10750–10758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Witzleben, A.; Wang, C.; Laban, S.; Savelyeva, N.; Ottensmeier, C.H. HNSCC: Tumour antigens and their targeting by immunotherapy. Cells 2020, 9, 2103. [Google Scholar] [CrossRef] [PubMed]
- Almokadem, S. Progress in immunotherapy of head and neck squamous cell carcinoma. Curr. Mol. Pharmacol. 2016, 9, 226–230. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Novaes, J.A.M.; Hirz, T.; Guijarro, I.; Nilsson, M.; Pisegna, M.A.; Poteete, A.; Barsoumian, H.B.; Fradette, J.J.; Chen, L.N.; Gibbons, D.L.; et al. Targeting of CD40 and PD-L1 pathways inhibits progression of oral premalignant lesions in a carcinogen-induced model of oral squamous cell carcinoma. Cancer Prev. Res. 2020, 14, 313–324. [Google Scholar] [CrossRef] [PubMed]
Author (Ref) | Year | Intervention | Participants (n) | Trial Design | Inclusion | Primary Outcome Measure | Results |
---|---|---|---|---|---|---|---|
Armstrong [32] | 2013 | Bowman–Birk inhibitor concentrate (BBIC) 3 g BD | 132 recruited 89 completed | Phase IIb, 2-arm, PC, DB, block randomisation, RCT. | Histologically confirmed oral leukoplakia and/or erythroleukoplakia. | Change in lesion area at 6 months | No significant difference in response rate (p > 0.94) |
Hong [33] | 1986 | 13-cis-retinoic acid (1 to 2 mg/kg/d) for 3 months + 6 months FU | 44 randomised 40 completed | 2-arm, PC, RCT | Histologically confirmed oral leukoplakia (27% dysplasia) | Clinical and histological response | Clinical: CR or PR in 16/24 retinoic acid vs. 2/20 placebo (p < 0.001); histological response in 13/24 vs. 2/10 placebo (p = 0.01). Recurrence within 2-3 months of cessation |
Mallery [34] | 2014 | Freeze-dried black raspberries (topically applied gel) 0.5g QDS for 3 months | N = 40 | 2-arm, PC, DB, RCT | Microscopically confirmed premalignant oral epithelial lesions (72.5% were dysplasias) | Composite surrogate (clinical, histological and LOH markers) | 9/22 BRB group high or intermediate response vs. 0/18 placebo (p = 0.004). Recurrence in 6/22 BRB and 7/17 placebo at 3 months |
Mulshine [35] | 2004 | Ketorolac 0.1% mouthwash 10mL 30 seconds BD for 90 days vs. placebo | N = 57 | 2-arm, RCT, PC; DB, randomised 2:1. | Measurable oral leukoplakia | Clinical response | Complete or partial response: 11/37 ketorolac vs. 6/19 placebo (p = 0.89) |
Papadimitrakopolou [36] | 2008 | Oral celecoxib 100 mg (arm a) or 200 mg (arm b) or placebo (arm c) BD for 12 weeks | N = 46 | 3-arm, RCT, PC; DB; randomised 1:1:1. | Histologically confirmed early or advanced oral pre-malignant lesion | Clinical response | No statistically significant differences between the arms were observed in any of the response categories (p > 0.05) |
Tsao [37] | 2009 | Green tea 500, 750 or 1000 mg/m2 or placebo TDS 12 weeks | N = 39 | Phase II, PC, DB dose-finding. | ≥1 OPML with at least one high-risk feature (size/dysplsaia/site/pain) | Clinical and histological response | Clinical response: treatment arms 50% vs. 18.2% placebo (p = 0.09); histological response 21.4% treatment arms vs. 9.1% placebo (p = 0.65). No difference in cancer-free survival between groups at median 27.5 months follow up |
Sankaranaryan [45] | 1997 | Retinoids (vit A 300,000 IU/week) vs. β-carotene (360 mg/week) vs. placebo | N = 131 | 3-arm, DB, PC RCT | Oral leukoplakia | Cancer incidence Clinical response | Complete resolution: 22/42 vit A, 15/46 β-carotene, 3/46 placebo; p < 0.05. Recurrence in 64% vit A and 53% β-carotene after 1 year of cessation |
Singh [38] | 2004 | β-carotene: Group A 4mg BD; Group B 2md BD; Group C placebo; all 3 months | N = 58 | 3-arm; PC; SB (pathologists) | Not reported (59% had confirmed OED) | Clinical and histological response | Clinical: complete response in 11/20 Arm A; 5/20 Arm B, 0/20 Placebo. (p < 0.001); Group A and B showed positive histological response cf placebo (p < 0.05). No follow up data |
Stich [39] | 1988 | Retinoids: Group A Placebo; Group B: 200,000 IU/week vitamin A. 6 months. | N = 54 | 2-arm, PC; unblinded | Oral leukoplakia | Clinical (remission of lesion and development of new lesions) and histological | Remission in 1/33 placebo and 12/21 vitamin A at 6 months Histological changes only assessed in vitamin A group. No FU data on recurrence |
Piattelli [40] | 1999 | Isotretinoin 0.1% gel TDS vs. placebo; 4 months. | N = 9 | Cross-over, DB, PC. | Biopsy-proven oral leukoplakia | Clinical response | 9/9 had ≥ 50% improvement in size of lesion with active treatment at 4 months. No further FU data |
Li [41] | 1999 | Mixed Tea capsules (0.38 g tea); 2 capsules QDS AND mixed tea in glycerin (10%) applied topically TDS 6/12 | N = 59 (age range 23–28 y) | DB, PC, RCT | Clinical diagnosis of oral leukoplakia (20% were dysplasias) | Clinical response (number and size of lesions) | Partial regression in 11/29 (38%) of active treatment arm vs. 3/30 (10%) in placebo at 6 months; p < 0.05. No further FU data |
Sun [42] | 2010 | Chinese herbal medicine (ZengShengPing 1.2g TDS) vs. placebo 8-12 months | N = 112 | 2-arm, SB, PC, RCT | Clinical diagnosis of oral leukoplakia | Clinical response | Clinical improvement in 40/59 treatment gp vs. 9/53 placebo p < 0.01, assessed at 3 months following cessation of treatment |
Epstein [21] | 1994 | Bleomycin 1% applied topically for 5 mins vs. placebo for 2/52 | N = 22 | DB, PC, RCT | Histologically confirmed oral leukoplakia (22% were dysplastic) | Clinical and histological Response | Mean reduction in size: bleomycin group 81% vs. placebo 21% (p = 0.001); no significant difference in change in OED grade between groups. Mean FU 15 months bleomycin and 22 months placebo |
Nagao [43] | 2015 | Intervention: 10mg β-carotene + 500 mg vitamin C vs. active placebo (500 mg vitamin C for 12 months) | N = 46 | DB, PC, RCT | Histologically confirmed oral leukoplakia (28% dysplasias) | Clinical response Oral cancer development | Response rate: 17.4% intervention vs. 4.3% placebo. p = 0.346. No difference in cancer endpoints |
Title | Intervention | Trial Design | Primary Outcome Measure | Location | Number of Participants; OED Inclusion Criteria | Other Info/Status |
---|---|---|---|---|---|---|
This Study is to Evaluate the Safety and Pharmacokinetics of SBS-101 in Patients With Oral Premalignant Lesions (NCT03939364) | Isotretinoin oral adhesive film 0.1% vs. 0.2% vs. 0.3% vs. placebo | Phase I, double-blind, placebo-controlled, dose escalation study | Overall response (complete or partial response: clinical or histological) Treatment of emergent adverse events | USA | 24; any grade of histologically confirmed dysplasia | Not yet recruiting |
A Randomized Study of Sulindac in Oral Premalignant Lesions (NCT00299195) | Suldinac 150 mg PO BD 24 weeks vs. placebo | Randomised, double-blind, placebo-controlled trial | Clinical and histological response | USA/ India | 63; dysplasia, any grade | Completed (awaiting results) |
Metformin Hydrochloride in Preventing Oral Cancer in Patients With an Oral Premalignant Lesion (NCT02581137) | Metformin extended-release QDS for 2 weeks then BD for 10-12 weeks | Phase IIa; single-group, open-label clinical trial | Clinical response (lesion size) | USA | 26; any grade of dysplasia (includes hyperplasia not associated with trauma) | Not yet recruiting |
Rosiglitazone Maleate in Treating Patients with Oral Leukoplakia (NCT00369174) | Rosiglitazone maleate 8 mg OD 12 weeks | Phase II, single arm, open label | Clinical or histological response | USA | 25; any grade of dysplasia or hyperplasia at a high-risk site | Completed (awaiting results) |
Pioglitazone Hydrochloride in Preventing Head and Neck Cancer in Patients with Oral Leukoplakia (NCT00099021) | Pioglitazone Hydrochloride once daily for 12 weeks | Phase II, single arm, open label | Patient’s overall (clinical and histological) response | USA | 21; includes hyperplasia at high-risk oral sites or dysplasia at any oral site | Completed (awaiting results). Terminated early due to good results |
Safety and Efficacy of Nivolumab in Treating Oral Proliferative Verrucous Leukoplakia (NCT03692325) | Nivolumab IV infusion day 1 of 28 day cycle; up to 4 cycles | Phase II, single group/open-label clinical trial | Best overall response rate (time frame: 2 years) | USA | 33; histologically confirmed PVL with any grade of dysplasia | Recruiting |
Pembrolizumab in Treating Participants with Leukoplakia (NCT03603223) | Pembrolizumab IV infusion every 3 weeks for 6 months | Phase II, single-arm, open-label clinical trial | Clinical response at 6 months (% patients with complete or partial response) | USA | 26; moderate or severe OED | Recruiting |
Immune Checkpoint Inhibitor In High Risk Oral Premalignant Lesions: IMPEDE (NCT04504552) | Avelumab 800 mg IV; 4 cycles over 8 weeks | Phase II, single arm, open label | Recurrence free survival/malignant transformation free survival up to 30 months and change in LOH status at 6 months | Italy | 240; high risk oral premalignant lesions (with LOH) | Recruiting |
Sintilimab to Prevent High-risk Oral Premalignant Lesion Cancerization: STOP (NCT04065737) | Sintilimab 8 cycles over 6 months | Phase II, open label, single arm | Oral Cancer incidence rate at 2 years/clinical response of OPM lesions | China | 29; high-risk OED | Not yet recruiting |
Vandetanib in Preventing Head and Neck Cancer in Patients with Precancerous Head and Neck Lesions (NCT01414426) | Vandetanib QDS 6 months | Phase II, randomised, double-blind, placebo-controlled trial | Change in microvessel density (MVD) score following treatment | USA | 20; any grade of dyplasia plus one “high risk” feature, e.g, LOH at 3p or 9p | Completed (awaiting results) |
Sodium valproate for epigenetic reprogramming in the management of high risk oral epithelial dysplasia (SAVER) | Sodium valproate 500 mg BD 4 months vs. observation only | Phase II; open-label, randomised clinical trial | Composite surrogate endpoint: change in clinical, histological and LOH score at 4 months | UK | 110; any grade of dysplasia, if mild must have 1+ high risk feature | Recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCarthy, C.; Fedele, S.; Ottensmeier, C.; Shaw, R.J. Early-Phase Interventional Trials in Oral Cancer Prevention. Cancers 2021, 13, 3845. https://doi.org/10.3390/cancers13153845
McCarthy C, Fedele S, Ottensmeier C, Shaw RJ. Early-Phase Interventional Trials in Oral Cancer Prevention. Cancers. 2021; 13(15):3845. https://doi.org/10.3390/cancers13153845
Chicago/Turabian StyleMcCarthy, Caroline, Stefano Fedele, Christian Ottensmeier, and Richard J. Shaw. 2021. "Early-Phase Interventional Trials in Oral Cancer Prevention" Cancers 13, no. 15: 3845. https://doi.org/10.3390/cancers13153845
APA StyleMcCarthy, C., Fedele, S., Ottensmeier, C., & Shaw, R. J. (2021). Early-Phase Interventional Trials in Oral Cancer Prevention. Cancers, 13(15), 3845. https://doi.org/10.3390/cancers13153845