Targeted Mass Spectrometry Enables Quantification of Novel Pharmacodynamic Biomarkers of ATM Kinase Inhibition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Cells and Culture Conditions
2.3. Human Samples
2.4. Cell Lysate Generation
2.5. Phosphoproteomics Discovery Using SILAC and Immobilized Metal Affinity Chromatography
2.6. Liquid Chromatography—Tandem Mass Spectrometry for Shotgun Analysis
2.7. Tandem Mass Spectrometry Data Analysis
2.8. Targeted MRM Proteomics Sample Preparation
2.9. Liquid Chromatography Multiple Reaction Monitoring (MRM) Mass Spectrometry
2.10. Fit-for-Purpose Assay Validation
2.10.1. Response Curve
2.10.2. Repeatability
2.10.3. Peptide Stability
2.11. Sequential Enrichment of Multiple Assay Panels
2.12. Further Characterization of Novel Monoclonal Antibody Reagents Generated in This Study
2.12.1. Immunoblot
2.12.2. WES System
2.12.3. Immunofluroescence (IF) Staining
2.12.4. Single Cell Western Blot (SCWB)
2.12.5. Immunoprecipitation Mass Spectrometry (IP-MS)
2.12.6. Immunohistochemistry Pancreatic Cancer Tissue Micro-Array
2.12.7. Immunohistochemistry NCI-60 Protein Array
2.13. Public Availability of Data and Antibodies
3. Results
3.1. Identification of DNA Damage Response Phosphosites for Targeted Assay Development
3.2. DDR-2 Immuno-MRM Assay Development
3.3. Fit-for-Purpose Method Validation of the DDR-2 Immuno-MRM Assay
3.4. Quantitative Profiling of Cell Signaling Dynamics in Immortalized Cells Using the DDR-2 Assay
3.5. Pharmacodynamic Profiling of Kinase Inhibition in Primary Human Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciccia, A.; Elledge, S.J. The DNA Damage Response: Making It Safe to Play with Knives. Mol. Cell 2010, 40, 179–204. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Reinlib, L.; Friedberg, E.C. Report of the Working Group on Integrated Translational Research in DNA Repair. DNA Repair 2007, 6, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Shiloh, Y.; Ziv, Y. The ATM protein kinase: Regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 2013, 14, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Bakkenist, C.J.; Kastan, M.B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003, 421, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, S.V.; Graham, M.; Peng, C.; Chen, P.; Robinson, P.J.; Lavin, M. Involvement of novel autophosphorylation sites in ATM activation. EMBO J. 2006, 25, 3504–3514. [Google Scholar] [CrossRef] [PubMed]
- Whiteaker, J.R.; Zhao, L.; Saul, R.; Kaczmarczyk, J.A.; Schoenherr, R.M.; Moore, H.D.; Jones-Weinert, C.; Ivey, R.G.; Lin, C.; Hiltke, T.; et al. A Multiplexed Mass Spectrometry-Based Assay for Robust Quantification of Phosphosignaling in Response to DNA Damage. Radiat. Res. 2018, 189, 505–518. [Google Scholar] [CrossRef]
- Meyn, M.S. Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res. 1995, 55, 5991–6001. [Google Scholar]
- Hickson, I.; Zhao, Y.; Richardson, C.J.; Green, S.J.; Martin, N.M.B.; Orr, A.I.; Reaper, P.M.; Jackson, S.P.; Curtin, N.; Smith, G.C.M. Identification and Characterization of a Novel and Specific Inhibitor of the Ataxia-Telangiectasia Mutated Kinase ATM. Cancer Res. 2004, 64, 9152–9159. [Google Scholar] [CrossRef] [Green Version]
- Pike, K.G.; Barlaam, B.; Cadogan, E.; Campbell, A.; Chen, Y.; Colclough, N.; Davies, N.L.; De-Almeida, C.; Degorce, S.L.; Didelot, M.; et al. The Identification of Potent, Selective, and Orally Available Inhibitors of Ataxia Telangiectasia Mutated (ATM) Kinase: The Discovery of AZD0156 (8-{6-[3-(Dimethylamino)propoxy]pyridin-3-yl}-3-methyl-1-(tetrahydro-2H-pyran-4-yl)-1,3-dihydro-2H-imidazo[4,5-c]quinolin-2-one). J. Med. Chem. 2018, 61, 3823–3841. [Google Scholar] [CrossRef]
- Durant, S.T.; Zheng, L.; Wang, Y.; Chen, K.; Zhang, L.; Zhang, T.; Yang, Z.; Riches, L.; Trinidad, A.G.; Fok, J.H.L.; et al. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci. Adv. 2018, 4, eaat1719. [Google Scholar] [CrossRef] [Green Version]
- Morgan, P.; Brown, D.G.; Lennard, S.; Anderton, M.J.; Barrett, J.C.; Eriksson, U.; Fidock, M.; Hamrén, B.; Johnson, A.; March, R.E.; et al. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat. Rev. Drug Discov. 2018, 17, 167–181. [Google Scholar] [CrossRef]
- Cook, D.; Brown, D.; Alexander, R.; March, R.; Morgan, P.; Satterthwaite, G.; Pangalos, M.N. Lessons learned from the fate of AstraZeneca’s drug pipeline: A five-dimensional framework. Nat. Rev. Drug Discov. 2014, 13, 419–431. [Google Scholar] [CrossRef]
- Barabasi, A. Network Medicine—From Obesity to the “Diseasome”. N. Engl. J. Med. 2007, 357, 404–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, J.J.; Abbatiello, S.E.; Kim, K.; Yan, P.; Whiteaker, J.R.; Lin, C.; Kim, J.S.; Zhang, Y.; Wang, X.; Ivey, R.G.; et al. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat. Methods 2013, 11, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Whiteaker, J.R.; Zhao, L.; Yan, P.; Ivey, R.G.; Voytovich, U.J.; Moore, H.D.; Lin, C.; Paulovich, A.G. Peptide Immunoaffinity Enrichment and Targeted Mass Spectrometry Enables Multiplex, Quantitative Pharmacodynamic Studies of Phospho-Signaling. Mol. Cell. Proteom. 2015, 14, 2261–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzozie, A.C.; Aebersold, R. Advancing translational research and precision medicine with targeted proteomics. J. Proteom. 2018, 189, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lange, V.; Picotti, P.; Domon, B.; Aebersold, R. Selected reaction monitoring for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2008, 4, 222. [Google Scholar] [CrossRef]
- Addona, A.T.; Abbatiello, E.S.; Schilling, B.; Skates, S.J.; Mani, D.R.; Bunk, D.M.; Spiegelman, C.H.; Zimmerman, L.J.; Ham, A.-J.L.; Keshishian, H.; et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma. Nat. Biotechnol. 2009, 27, 633–641. [Google Scholar] [CrossRef] [Green Version]
- Prakash, A.; Rezai, T.; Krastins, B.; Sarracino, D.; Athanas, M.; Russo, P.; Zhang, H.; Tian, Y.; Li, Y.; Kulasingam, V.; et al. Interlaboratory Reproducibility of Selective Reaction Monitoring Assays Using Multiple Upfront Analyte Enrichment Strategies. J. Proteome Res. 2012, 11, 3986–3995. [Google Scholar] [CrossRef] [Green Version]
- Whiteaker, J.R.; Zhao, L.; Anderson, L.; Paulovich, A.G. An Automated and Multiplexed Method for High Throughput Peptide Immunoaffinity Enrichment and Multiple Reaction Monitoring Mass Spectrometry-based Quantification of Protein Biomarkers. Mol. Cell. Proteom. 2010, 9, 184–196. [Google Scholar] [CrossRef] [Green Version]
- Whiteaker, J.R.; Lin, C.; Kennedy, J.; Hou, L.; Trute, M.; Sokal, I.; Yan, P.; Schoenherr, R.M.; Zhao, L.; Voytovich, U.J.; et al. A targeted proteomics–based pipeline for verification of biomarkers in plasma. Nat. Biotechnol. 2011, 29, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Whiteaker, J.R.; Zhao, L.; Lin, C.; Yan, P.; Wang, P.; Paulovich, A.G. Sequential Multiplexed Analyte Quantification Using Peptide Immunoaffinity Enrichment Coupled to Mass Spectrometry. Mol. Cell. Proteom. 2012, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ippoliti, P.J.; Kuhn, E.; Mani, D.R.; Fagbami, L.; Keshishian, H.; Burgess, M.W.; Jaffe, J.D.; Carr, S.A. Automated Microchromatography Enables Multiplexing of Immunoaffinity Enrichment of Peptides to Greater than 150 for Targeted MS-Based Assays. Anal. Chem. 2016, 88, 7548–7555. [Google Scholar] [CrossRef]
- Kuhn, E.; Whiteaker, J.R.; Mani, D.R.; Jackson, A.M.; Zhao, L.; Pope, M.E.; Smith, D.; Rivera, K.; Anderson, N.L.; Skates, S.J.; et al. Interlaboratory Evaluation of Automated, Multiplexed Peptide Immunoaffinity Enrichment Coupled to Multiple Reaction Monitoring Mass Spectrometry for Quantifying Proteins in Plasma. Mol. Cell. Proteom. 2012, 11, M111.013854. [Google Scholar] [CrossRef] [Green Version]
- Whiteaker, J.R.; Zhao, L.; Ivey, R.G.; Sanchez-Bonilla, M.; Moore, H.D.; Schoenherr, R.M.; Yan, P.; Lin, C.; Shimamura, A.; Paulovich, A.G. Targeted mass spectrometry enables robust quantification of FANCD2 mono-ubiquitination in response to DNA damage. DNA Repair 2018, 65, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Whiteaker, J.R.; Zhao, L.; Schoenherr, R.M.; Kennedy, J.J.; Ivey, R.G.; Paulovich, A.G. Peptide Immunoaffinity Enrichment with Targeted Mass Spectrometry: Application to Quantification of ATM Kinase Phospho-Signaling. Breast Cancer 2017, 1599, 197–213. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.J.; Yan, P.; Zhao, L.; Ivey, R.G.; Voytovich, U.J.; Moore, H.D.; Lin, C.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; Reding, K.W.; et al. Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling. Mol. Cell. Proteom. 2016, 15, 726–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, G.N.; Rooney, C.; Griffin, N.; Roudier, M.; Young, L.A.; Garcia-Trinidad, A.; Hughes, G.D.; Whiteaker, J.R.; Wilson, Z.; Odedra, R.; et al. pRAD50: A novel and clinically applicable pharmacodynamic biomarker of both ATM and ATR inhibition identified using mass spectrometry and immunohistochemistry. Br. J. Cancer 2018, 119, 1233–1243. [Google Scholar] [CrossRef] [Green Version]
- Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007, 2, 1896–1906. [Google Scholar] [CrossRef] [PubMed]
- Tyanova, S.; Temu, T.; Cox, S.T.T.T.J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef]
- Whiteaker, J.R.; Paulovich, A.G. Peptide Immunoaffinity Enrichment Coupled with Mass Spectrometry for Peptide and Protein Quantification. Clin. Lab. Med. 2011, 31, 385–396. [Google Scholar] [CrossRef] [Green Version]
- MacLean, B.; Tomazela, D.M.; Shulman, N.; Chambers, M.; Finney, G.L.; Frewen, B.; Kern, R.; Tabb, D.; Liebler, D.; MacCoss, M.J. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutsch, E.W.; Bandeira, N.; Sharma, V.; Perez-Riverol, Y.; Carver, J.J.; Kundu, D.J.; Garcia-Seisdedos, D.; Jarnuczak, A.F.; Hewapathirana, S.; Pullman, B.S.; et al. The ProteomeXchange consortium in 2020: Enabling ‘big data’ approaches in proteomics. Nucleic Acids Res. 2019, 48, D1145–D1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Llinares, M.B.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2018, 47, D442–D450. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Eckels, J.; Schilling, B.; Ludwig, C.; Jaffe, J.D.; MacCoss, M.J.; MacLean, B. Panorama Public: A Public Repository for Quantitative Data Sets Processed in Skyline. Mol. Cell. Proteom. 2018, 17, 1239–1244. [Google Scholar] [CrossRef] [Green Version]
- Ong, S.-E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D.B.; Steen, H.; Pandey, A.; Mann, M. Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Mol. Cell. Proteom. 2002, 1, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Hoofnagle, A.N.; Whiteaker, J.R.; Carr, S.A.; Kuhn, E.; Liu, T.; Massoni, S.A.; Thomas, S.; Townsend, R.R.; Zimmerman, L.J.; Boja, E.S.; et al. Recommendations for the Generation, Quantification, Storage, and Handling of Peptides Used for Mass Spectrometry-Based Assays. Clin. Chem. 2016, 62, 48–69. [Google Scholar] [CrossRef] [Green Version]
- Schoenherr, R.M.; Zhao, L.; Whiteaker, J.R.; Feng, L.-C.; Li, L.; Liu, L.; Liu, X.; Paulovich, A.G. Automated screening of monoclonal antibodies for SISCAPA assays using a magnetic bead processor and liquid chromatography-selected reaction monitoring-mass spectrometry. J. Immunol. Methods 2010, 353, 49–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, S.A.; Abbatiello, S.E.; Ackermann, B.L.; Borchers, C.; Domon, B.; Deutsch, E.; Grant, R.P.; Hoofnagle, A.N.; Hüttenhain, R.; Koomen, J.M.; et al. Targeted Peptide Measurements in Biology and Medicine: Best Practices for Mass Spectrometry-based Assay Development Using a Fit-for-Purpose Approach. Mol. Cell. Proteom. 2014, 13, 907–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiteaker, J.R.; Halusa, G.N.; Hoofnagle, A.N.; Sharma, V.; MacLean, B.; Yan, P.; Wrobel, J.A.; Kennedy, J.J.; Mani, D.R.; Zimmerman, L.J.; et al. CPTAC Assay Portal: A repository of targeted proteomic assays. Nat. Methods 2014, 11, 703–704. [Google Scholar] [CrossRef] [Green Version]
- Bennetzen, M.V.; Larsen, D.H.; Bunkenborg, J.; Bartek, J.; Lukas, J.; Andersen, J.S. Site-specific Phosphorylation Dynamics of the Nuclear Proteome during the DNA Damage Response. Mol. Cell. Proteom. 2010, 9, 1314–1323. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, S.; Ballif, B.A.; Smogorzewska, A.; McDonald, E.R.; Hurov, K.E.; Luo, J.; Bakalarski, C.; Zhao, Z.; Solimini, N.; Lerenthal, Y.; et al. ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage. Science 2007, 316, 1160–1166. [Google Scholar] [CrossRef] [Green Version]
- Palazzo, L.; Della Monica, R.; Visconti, R.; Costanzo, V.; Grieco, D. ATM controls proper mitotic spindle structure. Cell Cycle 2014, 13, 1091–1100. [Google Scholar] [CrossRef] [Green Version]
- Marco-Casanova, P.; Lukashchuk, N.; Lombardi, B.; Munugalavadla, V.; Frigault, M.M.; Harrington, E.A.; Barrett, J.C.; Pierce, A.J. Preparation of Peripheral Blood Mononuclear Cell Pellets and Plasma from a Single Blood Draw at Clinical Trial Sites for Biomarker Analysis. J. Vis. Exp. 2021, e60776. [Google Scholar] [CrossRef]
- Vendetti, F.P.; Lau, A.; Schamus, S.; Conrads, T.P.; O’Connor, M.J.; Bakkenist, C.J. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget 2015, 6, 44289–44305. [Google Scholar] [CrossRef] [Green Version]
- Fok, J.H.L.; Ramos-Montoya, A.; Vazquez-Chantada, M.; Wijnhoven, P.W.G.; Follia, V.; James, N.; Farrington, P.M.; Karmokar, A.; Willis, S.E.; Cairns, J.; et al. AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy and olaparib activity. Nat. Commun. 2019, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, S.V.; Graham, M.; Jakob, B.; Tobias, F.; Kijas, A.W.; Tanuji, M.; Chen, P.; Robinson, P.J.; Taucher-Scholz, G.; Suzuki, K.; et al. Autophosphorylation and ATM Activation. J. Biol. Chem. 2011, 286, 9107–9119. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Shiotani, B.; Lahiri, M.; Maréchal, A.; Tse, A.; Leung, C.C.Y.; Glover, J.M.; Yang, X.H.; Zou, L. ATR Autophosphorylation as a Molecular Switch for Checkpoint Activation. Mol. Cell 2011, 43, 192–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, E.A.; Zhao, R.; Glick, G.G.; Bansbach, C.E.; Friedman, D.B.; Cortez, D. Thr-1989 Phosphorylation Is a Marker of Active Ataxia Telangiectasia-mutated and Rad3-related (ATR) Kinase. J. Biol. Chem. 2011, 286, 28707–28714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jazayeri, A.; Falck, J.; Lukas, C.; Bartek, J.; Smith, G.C.M.; Lukas, J.; Jackson, S.P. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nature 2005, 8, 37–45. [Google Scholar] [CrossRef]
- Smith, J.; Tho, L.M.; Xu, N.; Gillespie, D. The ATM-Chk2 and ATR-Chk1 Pathways in DNA Damage Signaling and Cancer. Adv. Cancer Res. 2010, 108, 73–112. [Google Scholar] [CrossRef] [PubMed]
- Whiteaker, J.R.; Halusa, G.N.; Hoofnagle, A.N.; Sharma, V.; MacLean, B.; Yan, P.; Wrobel, J.A.; Kennedy, J.; Mani, D.R.; Zimmerman, L.J.; et al. Using the CPTAC Assay Portal to Identify and Implement Highly Characterized Targeted Proteomics Assays. In Quantitative Proteomics by Mass Spectrometry; Humana Press: New York, NY, USA, 2016; pp. 223–236. [Google Scholar]
- CLSI. Quantitative Measurement of Proteins and Peptides by Mass Spectrometry. In CLSI Guideline C64 2021, 1st ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Brodin, P.; Duffy, D.; Quintana-Murci, L. A Call for Blood—In Human Immunology. Immunity 2019, 50, 1335–1336. [Google Scholar] [CrossRef] [PubMed]
- Mertins, P.; Yang, F.; Liu, T.; Mani, D.R.; Petyuk, V.; Gillette, M.A.; Clauser, K.; Qiao, J.W.; Gritsenko, M.A.; Moore, R.J.; et al. Ischemia in Tumors Induces Early and Sustained Phosphorylation Changes in Stress Kinase Pathways but Does Not Affect Global Protein Levels. Mol. Cell. Proteom. 2014, 13, 1690–1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushnir, M.M.; Rockwood, A.L.; Roberts, W.L.; Abraham, D.; Hoofnagle, A.N.; Meikle, A.W. Measurement of Thyroglobulin by Liquid Chromatography—Tandem Mass Spectrometry in Serum and Plasma in the Presence of Antithyroglobulin Autoantibodies. Clin. Chem. 2013, 59, 982–990. [Google Scholar] [CrossRef] [Green Version]
- Netzel, B.C.; Grant, R.P.; Hoofnagle, A.N.; Rockwood, A.L.; Shuford, C.M.; Grebe, S.K.G. First Steps toward Harmonization of LC-MS/MS Thyroglobulin Assays. Clin. Chem. 2016, 62, 297–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Protein Acc ID | Peptide Modified Sequence | Phosphorylation Site |
---|---|---|---|
CHEK1 | sp|O14757| | VTSGGVSES(ph)PSGFSK | pS286 |
LAT | sp|O43561| | EYVNVS(ph)QELHPGAAK | pS224 |
POLQ | sp|O75417| | NTELNEEQEVISNLETK | |
PAK4 | sp|O96013| | RPLS(ph)GPDVGTPQPAGLASGAK | S181 |
CHEK2 | sp|O96017| | ILGETS(ph)LMR | pS379 |
CHEK2 | sp|O96017| | TLCGT(ph)PTYLAPEVLVSVGTAGYNR | pT387 |
CHEK2 | sp|O96017| | TLCGTPTYLAPEVLVSVGTAGYNR | |
GAPDH | sp|P04406| | GALQNIIPASTGAAK | |
TP53 | sp|P04637| | ALPNNTSSS(ph)PQPK | pS315 |
TP53 | sp|P04637| | MEEPQSDPSVEPPLS(ph)QETFSDLWK | pS15 |
CDK1 | sp|P06493| | VYT(ph)HEVVTLWYR | pT161 |
CDK1 | sp|P06493| | VYTHEVVTLWYR | |
TUBB | sp|P07437| | ISVYYNEATGGK | |
PARP1 | sp|P09874| | MAIMVQS(ph)PMFDGK | pS41 |
LMNB1 | sp|P20700| | AGGPTT(ph)PLSPTR | pT20 |
LMNB1 | sp|P20700| | AGGPTTPLS(ph)PTR | pS23 |
LMNB1 | sp|P20700| | AGGPTT(ph)PLS(ph)PTR | pT20pS23 |
CDC25B | sp|P30305| | LLGHS(ph)PVLR | pS160 |
CDC25B | sp|P30305| | SPS(ph)MPCSVIRPILK | pS323 |
CDC25B | sp|P30305| | SPSMPCSVIRPILK | |
CDC25C | sp|P30307| | SPSMPENLNRPR | |
CASP3 | sp|P42574| | IIHGSES(ph)MDSGISLDNSYK | pS26 |
MKI67 | sp|P46013| | DINTFLGT(ph)PVQK | pT1801 |
MKI67 | sp|P46013| | DINTFLGTPVQK | |
MKI67 | sp|P46013| | NINTFVET(ph)PVQK | pT2406 |
MRE11 | sp|P49959| | IMSQSQVSK | |
CDK7 | sp|P50613| | AYT(ph)HQVVTR | pT170 |
ACT | sp|P68133| | AVFPSIVGRPR | |
MDM2 | sp|Q00987| | AIS(ph)ETEENSDELSGER | pS166 |
TNFRSF17 | sp|Q02223| | SLPAALS(ph)ATEIEK | pS173 |
TNFRSF17 | sp|Q02223| | SLPAALSATEIEK | |
TP53BP1 | sp|Q12888| | IDEDGENT(ph)QIEDTEPMS(ph)PVLNSK | pT543pS552 |
TP53BP1 | sp|Q12888| | IDEDGENT(ph)QIEDTEPMSPVLNSK | pT543 |
TP53BP1 | sp|Q12888| | IDEDGENTQIEDTEPMS(ph)PVLNSK | pS552 |
TP53BP1 | sp|Q12888| | IDEDGENTQIEDTEPMSPVLNSK | |
MCM6 | sp|Q14566| | EIESEIDS(ph)EEELINK | pS762 |
MCM6 | sp|Q14566| | EIESEIDSEEELINK | |
NUMA1 | sp|Q14980| | LSQLEEHLS(ph)QLQDNPPQEK | pS395 |
CDCA8 | sp|Q53HL2| | LTAEAIQT(ph)PLK | pT106 |
NCAPH2 | sp|Q6IBW4| | FVQETELS(ph)QR | pS492 |
KNL1 | sp|Q8NG31| | SLS(ph)NPTPDYCHDK | pS767 |
KNL1 | sp|Q8NG31| | SLSNPTPDYCHDK | |
RTF1 | sp|Q92541| | SASDLS(ph)EDLFK | pS655 |
RTF1 | sp|Q92541| | SASDLSEDLFK | |
RAD50 | sp|Q92878| | YELQQLEGS(ph)SDR | pS470 |
SAAL1 | sp|Q96ER3| | NGAAQPLDQPQEES(ph)EEQPVFR | pS237 |
SAAL1 | sp|Q96ER3| | NGAAQPLDQPQEESEEQPVFR | |
RAD9A | sp|Q99638| | SPQGPSPVLAEDS(ph)EGEG | pS387 |
RAD9A | sp|Q99638| | SPQGPSPVLAEDSEGEG | |
UTP14A | sp|Q9BVJ6| | DSGS(ph)QEVLSELR | pS453 |
UTP14A | sp|Q9BVJ6| | DSGSQEVLSELR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whiteaker, J.R.; Wang, T.; Zhao, L.; Schoenherr, R.M.; Kennedy, J.J.; Voytovich, U.; Ivey, R.G.; Huang, D.; Lin, C.; Colantonio, S.; et al. Targeted Mass Spectrometry Enables Quantification of Novel Pharmacodynamic Biomarkers of ATM Kinase Inhibition. Cancers 2021, 13, 3843. https://doi.org/10.3390/cancers13153843
Whiteaker JR, Wang T, Zhao L, Schoenherr RM, Kennedy JJ, Voytovich U, Ivey RG, Huang D, Lin C, Colantonio S, et al. Targeted Mass Spectrometry Enables Quantification of Novel Pharmacodynamic Biomarkers of ATM Kinase Inhibition. Cancers. 2021; 13(15):3843. https://doi.org/10.3390/cancers13153843
Chicago/Turabian StyleWhiteaker, Jeffrey R., Tao Wang, Lei Zhao, Regine M. Schoenherr, Jacob J. Kennedy, Ulianna Voytovich, Richard G. Ivey, Dongqing Huang, Chenwei Lin, Simona Colantonio, and et al. 2021. "Targeted Mass Spectrometry Enables Quantification of Novel Pharmacodynamic Biomarkers of ATM Kinase Inhibition" Cancers 13, no. 15: 3843. https://doi.org/10.3390/cancers13153843
APA StyleWhiteaker, J. R., Wang, T., Zhao, L., Schoenherr, R. M., Kennedy, J. J., Voytovich, U., Ivey, R. G., Huang, D., Lin, C., Colantonio, S., Caceres, T. W., Roberts, R. R., Knotts, J. G., Kaczmarczyk, J. A., Blonder, J., Reading, J. J., Richardson, C. W., Hewitt, S. M., Garcia-Buntley, S. S., ... Paulovich, A. G. (2021). Targeted Mass Spectrometry Enables Quantification of Novel Pharmacodynamic Biomarkers of ATM Kinase Inhibition. Cancers, 13(15), 3843. https://doi.org/10.3390/cancers13153843