The Safety and Efficacy of Tranexamic Acid in Oncology Patients Undergoing Endoprosthetic Reconstruction and a ROTEM-Based Evaluation of Their Hemostatic Profile: A Pilot Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Efficacy and Safety
2.3. Hemostatic Profile
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haase, D.; Templeton, K.; Rosenthal, H.; Sweeney, K. Tranexamic acid in patients with cancer undergoing endoprosthetic reconstruction. J. Am. Acad. Orthop. Surg. 2020, 28, 248–255. [Google Scholar] [CrossRef]
- Sabatini, L.; Atzori, F.; Revello, S.; Scotti, L.; Debiasi, F.; Massè, A. Intravenous use oftranexamic acid reduces postoperative blood loss in total knee arthroplasty. Arch. Orthop. Trauma Surg. 2014, 134, 1609–1614. [Google Scholar] [CrossRef]
- Borisov, D.B.; Iudin, S.V.; Tiuriapin, A.A.; Kapinos, A.A.; Vyl’iurov, I.V.; Kazakevich, E.V. Prevention and treatment of anemia during endoprosthetic replacement of large joints. Anesteziol. Reanimatol. 2010, 2, 46–50. [Google Scholar]
- Vera-Llonch, M.; Hagiwara, M.; Oster, G. Clinical and economic consequences of bleeding following major orthopedic surgery. Thromb. Res. 2006, 117, 569–577. [Google Scholar] [CrossRef]
- Wei, W.; Wei, B. Comparison of topical and intravenous tranexamic acid on blood loss and transfusion rates in total hip arthroplasty. J. Arthroplast. 2014, 29, 2113–2116. [Google Scholar] [CrossRef]
- Aguilera, X.; Martinez-Zapata, M.J.; Bosch, A.; Urruita, G.; González, J.C.; Jordan, M.; Gich, I.; Maymó, R.M.; Martínez, N.; Monllau, J.C.; et al. Efficacy and safety of fibrin glue and tranexamic acid to prevent postoperative blood loss in total knee arthroplasty: A randomized controlled clinical trial. J. Bone Jt. Surg. Am. 2013, 95, 2001–2007. [Google Scholar] [CrossRef]
- Bidolegui, F.; Arce, G.; Lugones, A.; Pereira, S.; Vindver, G. Tranexamic acid reduces blood loss and transfusion in patients undergoing total knee arthroplasty without Tourniquet: A prospective randomized controlled trial. Open Orthop. J. 2014, 8, 250–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.H.; Chang, Y.; Chen, D.W.; Ueng, S.W.N.; Lee, M.S. Topical tranexamic acid reduces blood loss and transfusion rates associated with primary total hip arthroplasty. Clin. Orthop. Relat. Res. 2014, 472, 1552–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; Shen, B.; Yang, J.; Zhou, Z.; Kang, P.; Pei, F. Tranexamic acid administration in primary total hip arthroplasty: A randomized controlled trial of intravenous combined with topical versus single-dose intravenous administration. J. Bone Jt. Surg Am. 2016, 98, 983–991. [Google Scholar]
- Fraval, A.; Effeney, P.; Fiddelaers, L.; Smith, B.; Towell, B.; Tran, P. OBTAIN A: Outcome Benefits of Tranexamic Acid in Hip Arthroplasty. A Randomized Double-Blinded Controlled Trial. J. Arthroplast. 2017, 32, 1516–1519. [Google Scholar] [CrossRef]
- Kelley, T.C.; Tucker, K.K.; Adams, M.J.; Dalury, D.F. Use of tranexamic acid results in decreased blood loss and decreased transfusions in patients undergoing staged bilateral total knee arthroplasty. Transfusion 2014, 54, 26–30. [Google Scholar] [CrossRef]
- Fillingham, Y.A.; Ramkumar, D.B.; Jevsevar, D.S.; Yates, J.A.; Shores, P.; Mullen, K.; Bini, S.A.; Clarke, H.D.; Schemitsch, E.; Johnson, R.L.; et al. The safety of tranexamic acid in total joint arthroplasty: A direct meta-analysis. J. Arthroplast. 2018, 33, 3070–3082. [Google Scholar] [CrossRef]
- Samujh, C.; Falls, T.D.; Wessel, R.; Smith, L.; Malkani, A.L. Decreased blood transfusion following revision total knee arthroplasty using tranexamic acid. J. Arthroplast. 2014, 29, 182–185. [Google Scholar] [CrossRef]
- Goyal, N.; Chen, D.B.; Harris, A.I.; Rowden, N.; Kirsh, G.; MacDessi, S.J. Clinical and financial benefits of intra-articular tranexamic acid in total knee arthroplasty. J. Orthop. Surg. 2016, 24, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Ma, J.; Shen, B.; Pei, F. Combination of intravenous and topical application of tranexamic acid in primary total knee arthroplasty: A prospective randomized controlled trial. J. Arthroplast. 2014, 29, 2342–2346. [Google Scholar] [CrossRef] [PubMed]
- Chimento, G.; Huff, T.; Ochsner, J.L.; Meyer, M.; Brandner, L.; Babin, S. An evaluation of the use of topical tranexamic acid in total knee arthroplasty. J. Arthroplast. 2013, 28, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Karam, J.A.; Bloomfield, M.R.; DiIorio, T.M.; Irizarry, A.M.; Sharkey, P.F. Evaluation of the efficacy and safety of tranexamic acid for reducing blood loss in bilateral total knee arthroplasty. J. Arthroplast. 2014, 29, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.B.; White, L.J.; Osagiede, O.; Robards, C.B.; Spaulding, A. Tranexamic acid administration is not associated with an increase in complications in high-risk patients undergoing primary total knee or total hip arthroplasty: A retrospective case-control study of 38,220 patients. J. Arthroplast. 2020, 35, 45–51.e3. [Google Scholar] [CrossRef] [Green Version]
- Whiting, D.R.; Gillette, B.P.; Duncan, C.; Smith, H.; Pagnano, M.W.; Sierra, R.J. Preliminary results suggest tranexamic acid is safe and effective in arthroplasty patients with severe comorbidities. Clin. Orthop. Relat. Res. 2014, 472, 66–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drakos, A.; Raoulis, V.; Karatzios, K.; Doxariotis, N.; Kontogeorgakos, V.; Malizos, K.; Varitimidis, S.E. Efficacy of local administration of tranexamic acid for blood salvage in patients undergoing intertrochanteric fracture surgery. J. Orthop. Trauma 2016, 30, 409–414. [Google Scholar] [CrossRef]
- Τsantes, A.G.; Trikoupis, G.; Papadopoulos, D.V.; Tsantes, K.A.; Mavrogenis, A.F.; Koulovaris, P.; Savvidou, O.D.; Kontogeorgakos, V.A.; Piovani, D.; Kriebardis, A.G.; et al. Higher coagulation activity in hip fracture patients: A case-control study using rotational thromboelastometry. Int. J. Lab. Hematol. 2021, 43, 477–484. [Google Scholar] [CrossRef]
- Foss, N.B.; Kehlet, H. Hidden blood loss after surgery for hip fracture. J. Bone Jt. Surg. Br. Vol. 2006, 88, 1053–1059. [Google Scholar] [CrossRef]
- Sokou, R.; Piovani, D.; Konstantinidi, A.; Tsantes, A.G.; Parastatidou, S.; Lampridou, M.; Ioakeimidis, G.; Gounaris, A.; Iacovidou, N.; Kriebardis, A.G.; et al. A risk score for predicting the incidence of hemorrhage in critically ill neonates: Development and validation study. Thromb. Haemost. 2020, 121, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Lampridou, M.; Sokou, R.; Tsantes, A.G.; Theodoraki, M.; Konstantinidi, A.; Ioakeimidis, G.; Bonovas, S.; Politou, M.; Valsami, S.; Iliodromiti, Z.; et al. ROTEM diagnostic capacity for measuring fibrinolysis in neonatal sepsis. Thromb. Res. 2020, 192, 103–108. [Google Scholar] [CrossRef]
- Stettler, G.R.; Moore, E.E.; Moore, H.B.; Nunns, G.R.; Silliman, C.C.; Banerjee, A.; Sauaia, A. Redefining postinjury fibrinolysis phenotypes using two viscoelastic assays. J. Trauma Acute Care Surg. 2019, 86, 679–685. [Google Scholar] [CrossRef]
- Tsantes, A.E.; Frantzeskaki, F.; Tsantes, A.G.; Rapti, E.; Rizos, M.; Kokoris, I.S.; Paramythiotou, E.; Katsadiotis, G.; Karali, V.; Flevari, A.; et al. The haemostatic profile in critically ill COVID-19 patients receiving therapeutic anticoagulant therapy. Medicine 2020, 99, e23365. [Google Scholar] [CrossRef] [PubMed]
- Tsantes, A.G.; Papadopoulos, D.V.; Trikoupis, I.G.; Goumenos, S.; Piovani, D.; Tsantes, K.A.; Mavrogenis, A.F.; Vaiopoulos, A.G.; Koulovaris, P.; Nikolopoulos, G.K.; et al. The procoagulant effect of COVID-19 disease on the thrombotic risk of patients with hip fractures due to enhanced clot strength and fibrinolysis shutdown. J. Clin. Med. 2021, 10, 3397. [Google Scholar] [CrossRef]
- Tsantes, A.E.; Tsantes, A.G.; Kokoris, S.I.; Bonovas, S.; Frantzeskaki, F.; Tsangaris, I.; Kopterides, P. COVID-19 Infection-Related Coagulopathy and Viscoelastic Methods: A Paradigm for Their Clinical Utility in Critical Illness. Diagnostics 2020, 10, 817. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.B.; Moore, E.E.; Gonzalez, E.; Chapman, M.P.; Chin, T.L.; Silliman, C.C.; Banerjee, A.; Sauaia, A. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: The spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J. Trauma Acute Care Surg. 2014, 77, 811–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.-D.; Chen, Y.; Tian, M.; He, Y.; Tao, Y.-Z.; Xu, W.; Cheng, Q.; Chen, C.; Liu, W.; Huang, W. Application of thrombelastography (TEG) for safety evaluation of tranexamic acid in primary total joint arthroplasty. J. Orthop. Surg. Res. 2019, 14, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Jiang, J.; Liu, W.; Li, X.; Lu, H. Application of thromboelastography to evaluate the effect of different routes administration of tranexamic acid on coagulation function in total hip arthroplasty. J. Orthop. Surg. Res. 2019, 14, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parametters | Total (n = 61) | TXA Group (n = 30) | Control Group (n = 31) | p-Value |
---|---|---|---|---|
Primary diagnosis | ||||
Osteosarcoma | 24 (39.3) | 9 (30) | 15 (48.3) | 0.14 |
Metastatic carcinoma | 18 (29.5) | 10 (33.3) | 8 (25.8) | 0.57 |
Multiple myeloma | 4 (6.5) | 3 (10) | 1 (3.2) | 0.28 |
Chondrosarcoma | 13 (21.3) | 8 (26.7) | 5 (16.7) | 0.31 |
Type of resection | ||||
Proximal femur | 23 (37.7) | 12 (40.0) | 11 (35.4) | 0.71 |
Distal femur | 32 (52.4) | 15 (50.0) | 17 (54.8) | 0.7 |
Proximal tibia | 6 (9.8) | 3 (10.0) | 3 (9.6) | 0.96 |
Resection length (cm) | 16.5 (15.0–18.0) | 16.0 (15.0–18.0) | 17.0 (15.0–18.0) | 0.81 |
Variables | TXA Group (n = 30) | Control Group (n = 31) | p-Value |
---|---|---|---|
Total blood loss (mL) | 1324.5 (1104.0–1511.0) | 1873.0 (1711.0–2153.0) | <0.001 |
PFR | 1404.5 (1292.5–1565.5) | 2112.0 (1898.0–2523.0) | <0.001 |
DFR | 1242.0 (1036.0–1486.0) | 1834.0 (1703.0–1945.0) | <0.001 |
PTR | 1209.0 (1167.0–1321.0) | 1436.0 (718.0–1901.0) | 0.51 |
Average number of transfusions | 2.0 (1.0–2.0) | 3 (2.0–3.0) | <0.001 |
Transfusion incidence | 24 (80) | 31 (100) | 0.009 |
Hb drop (g/dL) | 2.4 (2.1–2.9) | 3.8 (2.7–4.5) | <0.001 |
Variables | Use of TXA | ||
---|---|---|---|
Coefficient | 95% CI | p-Value | |
Perioperative blood loss (mL) | −717.5 | −956.6–−478.5 | <0.001 |
RBC units transfused per patient | −1.03 | −1.64–−0.41 | 0.002 |
Hb drop (g/dL) | −1.01 | −1.78–−0.23 | 0.013 |
ROTEM Parameters | Preoperative | Postoperative | ||||
---|---|---|---|---|---|---|
Control Group (n = 31) | TXA Group (n = 30) | p-Value | Control Group (n = 31) | TXA Group (n = 30) | p-Value | |
INTEM CT (s) | 179 (177–180) | 177 (175.0–180.0) | 0.07 | 175 (173.0–177.0) | 173.5 (170.0–176.0) | 0.13 |
INTEM CFT (s) | 65.0 (63.0–70.0) | 65.5 (64.0–67.0) | 0.74 | 60 (57.0–63.0) | 62 (61.0–63.0) | 0.07 |
INTEM MCF (mm) | 72 (69.0–75.0) | 73 (72.0–75.0) | 0.09 | 75 (73.0–76.0) | 75 (73.0–77.0) | 0.70 |
INTEM A10 (mm) | 68.0 (66.0–70.0) | 68 (66.0–70.0) | 0.68 | 70.0 (69.0–72.0) | 69.0 (68.0–70.0) | 0.07 |
INTEM LI60 (%) | 94 (92.0–96.0) | 94 (93.0–96.0) | 0.61 | 93 (93.0–94.0) | 95 (95.0–97.0) | <0.001 |
EXTEM CT (s) | 64 (62.0–67.0) | 65 (62.0–68.0) | 0.19 | 63 (61.0–65.0) | 64 (63.0–65.0) | 0.62 |
EXTEM CFT (s) | 50.0 (47.0–53.0) | 51.0 (48.0–53.0) | 0.83 | 49.0 (47.0–51.0) | 50.0 (49.0–52.0) | 0.12 |
EXTEM MCF (mm) | 71.0 (67.0–74.0) | 70.5 (68.0–74.0) | 0.98 | 73.0 (71.0–74.0) | 72 (71.0–73.0) | 0.55 |
EXTEM A10 (mm) | 63.0 (61.0–65.0) | 65.0 (62.0–66.0) | 0.08 | 65.0 (63.0–67.0) | 68.0 (62.0–70.0) | 0.10 |
EXTEM LI60 (%) | 92.0 (92.0–94.0) | 93 (92.0–95.0) | 0.08 | 94.0 (93.0–95.0) | 96.0 (95.0–97.0) | <0.001 |
FIBTEM CT (s) | 59.5 (57.5–62.5) | 58.0 (55.5–60.5) | 0.29 | 58.0 (57.0–59.0) | 57.0 (56.0–58.0) | 0.27 |
FIBTEM MCF (mm) | 19 (17.0–21.0) | 20 (18.0–21.0) | 0.53 | 17.0 (16.0–19.0) | 18 (16.0–20.0) | 0.53 |
FIBTEM A10 (mm) | 13.0 (10.0–15.0) | 14.0 (13.0–15.0) | 0.38 | 10.0 (8.0–11.0) | 11.5 (10.0–12.0) | 0.057 |
FIBTEM LI60 (%) | 95.0 (91.5–96.5) | 94.0 (94.0–95.0) | 0.33 | 96.0 (95.0–97.0) | 97.0 (96.0–97.0) | 0.005 |
ROTEM Parameters | Control Group (n = 31) | TXA Group (n = 30) | p-Value |
---|---|---|---|
Postoperative INTEM LI60 (%) | 93 (93.0–94.0) | 95 (95.0–97.0) | <0.001 |
Postoperative EXTEM LI60 (%) | 94.0 (93.0–95.0) | 96.0 (95.0–97.0) | <0.001 |
Postoperative FIBTEM LI60 (%) | 96.0 (95.0–97.0) | 97.0 (96.0–97.0) | 0.005 |
Variables | Use of TXA | ||
---|---|---|---|
Coefficient | 95% CI | p-Value | |
INTEM LI60 (%) | 2.26 | 0.98–3.55 | 0.001 |
FIBTEM LI60 (%) | 0.90 | 0.22–1.58 | 0.010 |
EXTEM LI60 (%) | 1.99 | 1.06–2.91 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsantes, A.G.; Trikoupis, I.G.; Papadopoulos, D.V.; Goumenos, S.; Piovani, D.; Nikolopoulos, G.K.; Gialeraki, A.; Bonovas, S.; Papagelopoulos, P.J.; Kontogeorgakos, V.A.; et al. The Safety and Efficacy of Tranexamic Acid in Oncology Patients Undergoing Endoprosthetic Reconstruction and a ROTEM-Based Evaluation of Their Hemostatic Profile: A Pilot Study. Cancers 2021, 13, 3951. https://doi.org/10.3390/cancers13163951
Tsantes AG, Trikoupis IG, Papadopoulos DV, Goumenos S, Piovani D, Nikolopoulos GK, Gialeraki A, Bonovas S, Papagelopoulos PJ, Kontogeorgakos VA, et al. The Safety and Efficacy of Tranexamic Acid in Oncology Patients Undergoing Endoprosthetic Reconstruction and a ROTEM-Based Evaluation of Their Hemostatic Profile: A Pilot Study. Cancers. 2021; 13(16):3951. https://doi.org/10.3390/cancers13163951
Chicago/Turabian StyleTsantes, Andreas G., Ioannis G. Trikoupis, Dimitrios V. Papadopoulos, Stavros Goumenos, Daniele Piovani, Georgios K. Nikolopoulos, Argyri Gialeraki, Stefanos Bonovas, Panayiotis J. Papagelopoulos, Vasilios A. Kontogeorgakos, and et al. 2021. "The Safety and Efficacy of Tranexamic Acid in Oncology Patients Undergoing Endoprosthetic Reconstruction and a ROTEM-Based Evaluation of Their Hemostatic Profile: A Pilot Study" Cancers 13, no. 16: 3951. https://doi.org/10.3390/cancers13163951
APA StyleTsantes, A. G., Trikoupis, I. G., Papadopoulos, D. V., Goumenos, S., Piovani, D., Nikolopoulos, G. K., Gialeraki, A., Bonovas, S., Papagelopoulos, P. J., Kontogeorgakos, V. A., & Tsantes, A. E. (2021). The Safety and Efficacy of Tranexamic Acid in Oncology Patients Undergoing Endoprosthetic Reconstruction and a ROTEM-Based Evaluation of Their Hemostatic Profile: A Pilot Study. Cancers, 13(16), 3951. https://doi.org/10.3390/cancers13163951