Serum and Tissue Level of TLR9 in EBV-Associated Oropharyngeal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical Specimens
2.3. Serum Collection
2.4. Molecular Methods
2.4.1. DNA Extraction from Fresh Frozen Tumor Tissue
2.4.2. Detection of EBV DNA
2.4.3. Genotyping of LMP1
2.5. Serological Methods
2.5.1. Identification of EBV Antibodies
2.5.2. Measuring of Cytokines Level
2.6. TLR9 Assay
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fitzmaurice, C.; Allen, C.; Barber, R.M.; Barregard, L.; Bhutta, Z.A.; Brenner, H.; Dicker, D.J.; Chimed-Orchir, O.; Dandona, R.; Dandona, L.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2017, 3, 524–548. [Google Scholar]
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. A Review of Human Carcinogens. Biological Agents; International Agency for Research on Cancer: Lyon, France, 2012; pp. 49–92.
- Liu, S.; Zhao, Z.; Han, L.; Liu, S.; Luo, B. Epstein-Barr Virus Infection in Gastric Remnant Carcinoma and Recurrent Gastric Carcinoma in Qingdao of Northern China. PLoS ONE 2016, 11, e0148342. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.Z.; Che, H.; Castro, F.H.; Hu, J.; Brenner, H. Epstein-Barr virus infection and gastric cancer: A systematic review. Medicine 2015, 94, e792. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Hsu, W.L.; Yang, H.I.; Lee, M.H.; Chen, H.C.; Chien, Y.C.; You, S.L. Epidemiology of virus infection and human cancer. Recent Results Cancer Res. 2014, 193, 11–32. [Google Scholar]
- Young, L.S.; Dawson, C.W. Epstein-Barr virus and nasopharyngeal carcinoma. Chin. J. Cancer 2014, 33, 581–590. [Google Scholar] [CrossRef]
- Turunen, A.; Rautava, J.; Grenman, R.; Syrjanen, K.; Syrjanen, S. Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) associ-ated with poor prognosis of head and neck carcinomas. Oncotarget 2017, 8, 27328–27338. [Google Scholar] [CrossRef] [Green Version]
- Jalouli, J.; Jalouli, M.M.; Sapkota, D.; O. Ibrahim, S.; Larsson, P.-A.; Sand, L.P. Human papilloma virus, herpes simplex virus and epstein barr virus in oral squamous cell carcinoma from eight different countries. Anticancer Res. 2012, 32, 571–580. [Google Scholar]
- Drop, B.; Strycharz-Dudziak, M.; Kliszczewska, E.; Polz-Dacewicz, M. Coinfection with Epstein–Barr Virus (EBV), Human Papilloma Virus (HPV) and Polyoma BK Virus (BKPyV) in Laryngeal, Oropharyngeal and Oral Cavity Cancer. Int. J. Mol. Sci. 2017, 18, 2752. [Google Scholar] [CrossRef] [Green Version]
- Tsao, S.-W.; Tsang, C.M.; To, K.-F.; Lo, K.-W. The role of Epstein-Barr virus in epithelial malignancies. J. Pathol. 2014, 235, 323–333. [Google Scholar] [CrossRef]
- Jangra, S.; Yuen, K.S.; Botelho, M.G.; Jin, D.Y. Epstein-Barr Virus and Innate Immunity: Friends or Foes? Microorganisms 2019, 7, 183. [Google Scholar] [CrossRef] [Green Version]
- zur Hausen, H.; de Villiers, E.M. Cancer “causation” by infections—Individual contributions and synergistic networks. Semin. Oncol. 2014, 41, 860–875. [Google Scholar] [CrossRef] [PubMed]
- Yiu, S.; Dorothea, M.; Hui, K.F.; Chiang, A. Lytic Induction Therapy against Epstein-Barr Virus-Associated Malignancies: Past, Present, and Future. Cancers 2020, 12, 2142. [Google Scholar] [CrossRef] [PubMed]
- Ruuskanen, M.; Leivo, I.; Minn, H.; Vahlberg, T.; Haglund, C.; Hagström, J.; Irjala, H. Expression of toll-like receptors in non-endemic nasopharyngeal carcinoma. BMC Cancer 2019, 19, 624. [Google Scholar] [CrossRef] [PubMed]
- Rich, A.M.; Hussaini, H.M.; Parachuru, V.P.; Seymour, G.J. Toll-like receptors and cancer, particularly oral squamous cell carcinoma. Front. Immunol. 2014, 5, 464. [Google Scholar] [CrossRef] [Green Version]
- Vijay, K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol. 2018, 59, 391–412. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.; Singhal, P.; Bandil, K.; Patle, R.; Kumar, A.; Neyaz, K.; Bose, S.; Kumar Dewan, A.; Mehrotra, R.; Sharma, V.; et al. Genetic variations of TLRs and their association with HPV/EBV, co-infection along with nicotine exposure in the development of premalignant/malignant lesions of the oral cavity in Indian population. Cancer Epidemiol. 2019, 61, 38–49. [Google Scholar] [CrossRef]
- Zheng, W.; Xu, Q.; Zhang, Y.; Xiaofei, E.; Gao, W.; Zhang, M.; Zhai, W.; Rajkumar, R.S.; Liu, Z. Toll-like receptor-mediated innate immunity against herpesviridae infection: A current perspective on viral infection signaling pathways. Virol. J. 2020, 17, 192. [Google Scholar] [CrossRef]
- Sobin, L.H.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 7th ed.; Wiley-Blackwell: Washington, DC, USA, 2009; pp. 22–45. [Google Scholar]
- Cardesa, A.; Gale, N.; Nadal, A.; Zidor, N. Squamous cell carcinoma. In World Health Organization Classifiation of Tumours. Pathology and Genetics of Head and Neck Tumours; Barnes, L., Eveson, J.W., Reichart, P., Sidransky, D., Eds.; IARC Press: Lyon, France, 2005; pp. 118–121. [Google Scholar]
- Fołtyn, S.; Strycharz-Dudziak, M.; Drop, B.; Boguszewska, A.; Polz-Dacewicz, M. Serum EBV antibodies and LMP-1 in Polish patients with oropharyngeal and laryngeal cancer. Infect. Agent Cancer 2017, 12, 31. [Google Scholar] [CrossRef]
- Hasimu, A.; Ge, L.; Li, Q.Z.; Zhang, R.P.; Guo, X. Expressions of Toll-like receptors 3, 4, 7, and 9 in cervical lesions and their correlation with HPV16 infection in Uighur women. Chin. J. Cancer 2011, 30, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Latz, E.; Schoenemeyer, A.; Visintin, A.; Fitzgerald, K.A.; Monks, B.G.; Knetter, C.F.; Lien, E.; Nilsen, N.J.; Espevik, T.; Golenbock, D.T. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 2004, 5, 190–198. [Google Scholar] [CrossRef]
- Bowie, A.G.; Haga, I.R. The role of Toll-like receptors in the host response to viruses. Mol. Immunol. 2005, 42, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.H.; Kireta, S.; Russ, G.R.; Coates, P.T. Human plasmacytoid dendritic cells regulate immune responses to Epstein-Barr virus (EBV) infection and delay EBV-related mortality in humanized NOD-SCID mice. Blood 2007, 109, 1043–1050. [Google Scholar] [CrossRef] [Green Version]
- Lund, J.; Sato, A.; Akira, S.; Medzhitov, R.; Iwasaki, A. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 2003, 198, 513–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zauner, L.; Nadal, D. Understanding TLR9 action in Epstein-Barr virus infection. Front. Biosci. 2012, 17, 1219–1231. [Google Scholar] [CrossRef] [PubMed]
- Guggemoos, S.; Hangel, D.; Hamm, S.; Heit, A.; Bauer, S.; Adler, H. TLR9 contributes to antiviral immunity during gammaherpesvirus infection. J. Immunol. 2008, 180, 438–443. [Google Scholar] [CrossRef]
- Fathallah, I.; Parroche, P.; Gruffat, H.; Zannetti, C.; Johansson, H.; Yue, J.; Manet, E.; Tommasino, M.; Sylla, B.S.; Hasan, U.A. EBV latent membrane protein 1 is a negative regulator of TLR9. J. Immunol. 2010, 185, 6439–6447. [Google Scholar] [CrossRef] [Green Version]
- van Gent, M.; Griffin, B.D.; Berkhoff, E.G.; van Leeuwen, D.; Boer, I.G.; Buisson, M.; Hartgers, F.C.; Burmeister, W.P.; Wiertz, E.J.; Ressing, M.E. EBV lytic-phase protein BGLF5 contributes to TLR9 downregulation during productive infection. J. Immunol. 2011, 186, 1694–1702. [Google Scholar] [CrossRef]
- Younesi, V.; Nikzamir, H.; Yousefi, M.; Khoshnoodi, J.; Arjmand, M.; Rabbani, H.; Shokri, F. Epstein Barr virus inhibits the stimulatory effect of TLR7/8 and TLR9 agonists but not CD40 ligand in human B lymphocytes. Microbiol. Immunol. 2010, 54, 534–541. [Google Scholar] [CrossRef]
- Iwasaki, A.; Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 2004, 5, 987–995. [Google Scholar] [CrossRef]
- Martin, H.J.; Lee, J.M.; Walls, D.; Hayward, S.D. Manipulation of the Toll-like receptor 7 signaling pathway by Epstein-Barr virus. J. Virol. 2007, 81, 9748–9758. [Google Scholar] [CrossRef] [Green Version]
- Hasan, U.A.; Bates, E.; Takeshita, F.; Biliato, A.; Accardi, R.; Bouvard, V.; Mansour, M.; Vincent, I.; Gissmann, L.; Iftner, T.; et al. TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J. Immunol. 2007, 178, 3186–3197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middeldorp, J.M.; Pegtel, D.M. Multiple roles of LMP1 in Epstein-Barr virus induced immune escape. Semin. Cancer Biol. 2008, 18, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Huen, D.S.; Henderson, S.A.; Croom-Carter, D.; Rowe, M. The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxyterminal cytoplasmic domain. Oncogene 1995, 10, 549–560. [Google Scholar] [PubMed]
- Yang, Z.H.; Dai, Q.; Gu, Y.J.; Guo, Q.X.; Gong, L. Cytokine and chemokine modification by Toll-like receptor polymorphisms is associated with nasopharyngeal carcinoma. Cancer Sci. 2012, 103, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.W.; Karin, M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Investig. 2007, 117, 1175–1183. [Google Scholar] [PubMed]
- Lu, H.; Ouyang, W.; Huang, C. Inflammation, a key event in cancer development. Mol. Cancer Res. 2006, 4, 221–233. [Google Scholar]
- Moss, S.F.; Blaser, M.J. Mechanisms of disease: Inflammation and the origins of cancer. Nat. Clin. Pract. Oncol. 2005, 2, 90–97. [Google Scholar]
- Rollins, B.J. Inflammatory chemokines in cancer growth and progression. Eur. J. Cancer 2006, 42, 760–767. [Google Scholar]
- Bani, M.R.; Garofalo, A.; Scanziani, E.; Giavazzi, R. Effect of interleukin-1-beta on metastasis formation in different tumor systems. J. Natl. Cancer Inst. 1991, 83, 119–123. [Google Scholar]
- Ito, R.; Kitadai, Y.; Kyo, E.; Yokozaki, H.; Yasui, W.; Yamashita, U.; Nikai, H.; Tahara, E. Interleukin 1α acts as an autocrine growth stimulator for human gastric carcinoma cells. Cancer Res. 1993, 53, 4102–4106. [Google Scholar]
- Li, B.Y.; Mohanraj, D.; Olson, M.C.; Moradi, M.; Twiggs, L.; Carson, L.F.; Ramakrishnan, S. Human ovarian epithelial cancer cells cultured in vitro express both interleukin 1α and β genes. Cancer Res. 1992, 52, 2248–2252. [Google Scholar]
- Young, L.S.; Murray, P.G. Epstein-Barr virus and oncogenesis: From latent genes to tumours. Oncogene 2003, 22, 5108–5121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesri, E.A.; Feitelson, M.A.; Munger, K. Human Viral Oncogenesis: A Cancer Hallmarks Analysis. Cell Host Microbe 2014, 15, 266–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.T.; Sheen, T.S.; Chen, C.L.; Lu, J.; Chang, Y.; Chen, J.Y.; Tsai, C.H. Profile of cytokine expression in nasopharyngeal carcinomas: A distinct expression of interleukin 1 in tumor and CD4+ T cells. Cancer Res. 1999, 59, 1599–1605. [Google Scholar] [PubMed]
- Farhat, K.; Hassen, E.; Gabbouj, S.; Bouaouina, N.; Chouchane, L. Interleukin-10 and interferon-gamma gene polymorphisms in patients with nasopharyngeal carcinoma. Int. J. Immunogenet. 2008, 35, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Päzolt, D.; Grabenbauer, G.G.; Nicholls, J.M.; Herbst, H.; Young, L.S.; Niedobitek, G. Expression of cytokine and chemokine genes in Epstein-Barr virus-associated nasopharyngeal carcinoma: Comparison with Hodgkin’s disease. J. Pathol. 2001, 194, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.F.; Han, Z.G.; Guo, W.B.; Zhang, G.J.; Yang, J.K.; Wu, F.L.; Ou, Q.Y.; Li, Y.H.; Cai, X.Y.; Zhan, Z.N.; et al. Interleukin-10 polymorphisms and nasopharyngeal carcinoma risk: A meta-analysis. Genet. Mol. Res. 2015, 14, 18945–18957. [Google Scholar] [CrossRef]
EBV | p | |||||
---|---|---|---|---|---|---|
Positive | Negative | |||||
n | % | n | % | |||
Sex | Female | 3 | 7.14 | 5 | 13.89 | 0.2724 |
Male | 39 | 92.86 | 31 | 86.11 | ||
Age | <50 | 6 | 14.29 | 3 | 8.33 | 0.7065 |
50–69 | 19 | 45.24 | 18 | 50.0 | ||
70+ | 17 | 40.48 | 15 | 41.67 | ||
Place of residence | urban | 29 | 69.05 | 21 | 58.33 | 0.3254 |
rural | 13 | 30.95 | 15 | 41.67 | ||
Smoking | yes | 33 | 78.57 | 29 | 80.56 | 0.8287 |
no | 9 | 21.43 | 7 | 19.44 | ||
Alcohol abuse | yes | 18 | 42.86 | 16 | 44.44 | 0.8879 |
no | 24 | 57.14 | 20 | 55.56 | ||
G | G1 | 8 | 19.05 | 12 | 33.33 | 0.3323 |
G2 | 32 | 76.19 | 22 | 61.11 | ||
G3 | 2 | 4.76 | 2 | 5.56 | ||
T | T1-T2 | 24 | 57.14 | 20 | 96 | 0.1094 |
T3-T4 | 18 | 42.86 | 16 | 4 | ||
N | N1-N2 | 30 | 71.43 | 28 | 77.77 | 0.8900 |
N3-N4 | 12 | 28.57 | 8 | 22.23 | ||
M | M0 | 30 | 100.0 | 25 | 100.0 | - |
LMP-1 | wt-LMP-1 | 34 | 81.0 | - | - | - |
Del-LMP-1 | 8 | 19.0 | - | - |
Parameter | EBV(+) | EBV(−) | p | |
---|---|---|---|---|
± SD | ± SD | |||
TLR9 serum | 165.80 ± 79.87 | 328.21 ± 108.43 | 0.0001 * | |
TLR9 tissue | 346.68 ± 159.95 | 696.58 ± 235.74 | 0.0001 * | |
EBVCA | 71.26 ± 4.55 | 62.38 ± 1.62 | 10−6 * | |
EBNA | 85.50 ± 8.61 | 61.90 ± 4.13 | 10−6 * | |
TGFβ | 13.35 ± 12.12 | 16.55 ± 16.45 | 0.7370 | |
IL-10 | 2.43 ± 0.70 | 2.32 ± 0.59 | 0. 6848 | |
VEGF | 656.57 ± 295.35 | 485.56 ± 392.01 | 0.0111 * | |
TNFα | 17.64 ± 7.50 | 16.51 ± 10.09 | 0.3090 | |
EA | N | % | - | - |
High | 33 | 78.6 | - | - |
Low | 9 | 21.4 | - | - |
Parameter | EBV(+) | |
---|---|---|
TLR9 in Tissue ± SD | TLR9 in Serum ± SD | |
wt-LMP-1 | 323.72 ± 158.88 | 154.56 ± 78.58 |
del-LMP-1 | 444.25 ± 131.94 | 213.60 ± 70.91 |
p | 0.019374 * | 0.031867 * |
Parameter | EBV(+) | EBV(−) | ||
---|---|---|---|---|
TLR9 in Tissue ± SD | TLR9 in Serum ± SD | TLR9 in Tissue ± SD | TLR9 in Serum ± SD | |
G1 | 365.38 ± 174.48 | 176.56 ± 93.75 | 721.54 ± 208.81 | 349.65 ± 86.11 |
G2–G3 | 424.0 ± 101.78 | 190.54 ± 54.76 | 787.74 ± 184.17 | 303.24 ± 104.12 |
P | 0.3585 | 0.4043 | 0.7372 | 0.3983 |
T1–T2 | 345.8 9 ± 144.81 | 155.61 ± 71.96 | 676.52 ± 257.52 | 308.18 ± 112.52 |
T3–T4 | 390.63 ± 130.04 | 171.09 ± 70.97 | 675.55 ± 256.02 | 324.51 ± 115.82 |
P | 0.8545 | 0.8692 | 0.9087 | 0.5806 |
N1–N2 | 342.30 ± 133.02 | 152.61 ± 73.08 | 721.01 ± 181.60 | 343.71 ± 92.88 |
N3–N4 | 398.85 ± 165.56 | 189.97 ± 80.97 | 557.28 ± 295.10 | 271.83 ± 136.85 |
p | 0.4750 | 0.4735 | 0.2571 | 0.5413 |
Parameter | Spearman’s Rank Test; Statistically Significant p < 0.05 | |||
---|---|---|---|---|
N | R Spearman | t (N-2) | p | |
TLR9 s & IL-10 | 42 | 0.226094 | 1.46795 | 0.149937 |
TLR9 s & TNFα | 42 | −0.235122 | −1.52994 | 0.133904 |
TLR9 s & VEGF | 42 | −0.038944 | −0.24649 | 0.806565 |
TLR9 s & TGF | 42 | −0.169080 | −1.08498 | 0.284427 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stępień, E.; Strycharz-Dudziak, M.; Malm, M.; Drop, B.; Polz-Dacewicz, M. Serum and Tissue Level of TLR9 in EBV-Associated Oropharyngeal Cancer. Cancers 2021, 13, 3981. https://doi.org/10.3390/cancers13163981
Stępień E, Strycharz-Dudziak M, Malm M, Drop B, Polz-Dacewicz M. Serum and Tissue Level of TLR9 in EBV-Associated Oropharyngeal Cancer. Cancers. 2021; 13(16):3981. https://doi.org/10.3390/cancers13163981
Chicago/Turabian StyleStępień, Ewa, Małgorzata Strycharz-Dudziak, Maria Malm, Bartłomiej Drop, and Małgorzata Polz-Dacewicz. 2021. "Serum and Tissue Level of TLR9 in EBV-Associated Oropharyngeal Cancer" Cancers 13, no. 16: 3981. https://doi.org/10.3390/cancers13163981
APA StyleStępień, E., Strycharz-Dudziak, M., Malm, M., Drop, B., & Polz-Dacewicz, M. (2021). Serum and Tissue Level of TLR9 in EBV-Associated Oropharyngeal Cancer. Cancers, 13(16), 3981. https://doi.org/10.3390/cancers13163981