Novel Prognostic Immunohistochemical Markers in Uveal Melanoma-Literature Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Tumor Size
3. Tumor Location
4. Extraocular Extension
5. Cell Type
6. Chromosomal Analysis
7. Mitotic Count
8. Extravascular Matrix Loops and Networks
9. Tumor-Infiltrating Macrophages and Lymphocytes
10. Other Prognostic Factors
11. Metastasis
12. Survival Times
13. Therapeutic Perspectives
14. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaliki, S.; Shields, C.L. Uveal melanoma: Relatively rare but deadly cancer. Eye 2017, 31, 241–257. [Google Scholar] [CrossRef] [Green Version]
- Nickla, D.L.; Wallman, J. The multifunctional choroid. Prog. Retin. Eye Res. 2010, 29, 144–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Manson, D.K.; Marr, B.P.; Carvajal, R.D. Treatment of uveal melanoma: Where are we now? Ther. Adv. Med. Oncol. 2018. [Google Scholar] [CrossRef]
- Wu, M.Y.; Lai, T.T.; Liao, W.T.; Li, C.J. Clinicopathological and prognostic significance and molecular mechanisms governing uveal melanoma. Ther. Adv. Med. Oncol. 2020, 12. [Google Scholar] [CrossRef]
- Krantz, B.A.; Dave, N.; Komatsubara, K.M.; Marr, B.P.; Carvajal, R.D. Uveal melanoma: Epidemiology, etiology, and treatment of primary disease. Clin. Ophthalmol. 2017, 11, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Collaborative Ocular Melanoma Study Group. Assessment of metastatic disease status at death in 435 patients with large choroidal melanoma in the Collaborative Ocular Melanoma Study (COMS): COMS report no. 15. Arch. Ophthalmol. 2001, 119, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Kivela, T.; Simpson, E.R.; Grossniklaus, H.E.; Jager, M.J.; Singh, A.D.; Caminal, J.M.; Pavlick, A.C.; Kujala, E.; Coupland, S.E.; Finger, P.T. Uveal Melanoma. In AJCC Cancer Staging Manual, 8th ed.; Amin, M.B., Edge, S., Greene, F., Byrd, D.R., Brookland, R.K., Washington, M.K., Gershenwald, J.E., Compton, C.C., Hess, K.R., Sullivan, D.C., et al., Eds.; Springer Publishing Company: New York, NY, USA, 2017; pp. 805–817. [Google Scholar]
- Carvajal, R.D.; Schwartz, G.K.; Tezel, T.; Marr, B.; Francis, J.H.; Nathan, P.D. Metastatic disease from uveal melanoma: Treatment options and future prospects. Br. J. Ophthalmol. 2017, 101, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Blum, E.S.; Yang, J.; Komatsubara, K.M.; Carvajal, R.D. Clinical Management of Uveal and Conjunctival Melanoma. Oncology 2016, 30, 29–32, 34–43. [Google Scholar] [PubMed]
- Mashayekhi, A.; Shields, C.L.; Rishi, P.; Atalay, H.; Pellegrini, M.; McLaughlin, J.P.; Patrick, K.A.; Morton, S.J.; Remmer, M.H.; Parendo, A.; et al. Primary transpupillary thermotherapy for choroidal melanoma in 391 cases: Importance of risk factors in tumor control. Ophthalmology 2015, 122, 600–609. [Google Scholar] [CrossRef]
- Kujala, E.; Mäkitie, T.; Kivelä, T. Very long-term prognosis of patients with malignant uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4651–4659. [Google Scholar] [CrossRef] [Green Version]
- Agarwala, S.S.; Eggermont, A.M.M.; O’Day, S.; Zager, J.S. Metastatic melanoma to the liver: A contemporary and comprehensive review of surgical, systemic, and regional therapeutic options. Cancer 2014, 120, 781–789. [Google Scholar] [CrossRef]
- Berus, T.; Halon, A.; Markiewicz, A.; Orlowska-Heitzman, J.; Romanowska-Dixon, B.; Donizy, P. Clinical, Histopathological and Cytogenetic Prognosticators in Uveal Melanoma—A Comprehensive Review. Anticancer Res. 2017, 37, 6541–6549. [Google Scholar] [CrossRef]
- Robertson, A.G.; Shih, J.; Yau, C.; Gibb, E.A.; Oba, J.; Mungall, K.L.; Hess, J.M.; Uzunangelov, V.; Walter, V.; Danilova, L.; et al. Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell 2017, 32, 204–220.e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogrusöz, M.; Bagger, M.; van Duinen, S.G. The Prognostic Value of AJCC Staging in Uveal Melanoma Is Enhanced by Adding Chromosome 3 and 8q Status. Investig. Opthalmol. Vis. Sci. 2017, 58, 833–842. [Google Scholar] [CrossRef] [Green Version]
- Sukswai, N.; Khoury, J.D. Immunohistochemistry Innovations for Diagnosis and Tissue-Based Biomarker Detection. Curr. Hematol. Malig. Rep. 2019, 14, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Broggi, G.; Musumeci, G.; Puzzo, L.; Russo, A.; Reibaldi, M.; Ragusa, M.; Longo, A.; Caltabiano, R. Immunohistochemical Expression of ABCB5 as a Potential Prognostic Factor in Uveal Melanoma. Appl. Sci. 2019, 9, 1316. [Google Scholar] [CrossRef] [Green Version]
- Caltabiano, R.; Puzzo, L.; Barresi, V.; Ieni, A.; Loreto, C.; Musumeci, G.; Castrogiovanni, P.; Ragusa, M.; Foti, P.; Russo, A.; et al. ADAM 10 expression in primary uveal melanoma as prognostic factor for risk of metastasis. Pathol. Res. Pract. 2016, 212, 980–987. [Google Scholar] [CrossRef]
- Tura, A.; Thieme, C.; Brosig, A.; Merz, H.; Ranjbar, M.; Vardanyan, S.; Zuo, H.; Maassen, T.; Kakkassery, V.; Grisanti, S. Lower levels of adiponectin and its receptor adipor1 in the uveal melanomas with monosomy-3. Investig. Ophthalmol. Vis. Sci. 2020, 61. [Google Scholar] [CrossRef]
- Krasnik, V.; Furdova, A.; Svetlosakova, Z.; Kobzova, D.; Gergisakova, H.; Feketeova, L.; Svetlosak, M.; Barta, A.; Babal, P. Prognostic value of apoptosis inducing factor in uveal melanoma. Neoplasma 2017, 64, 262–268. [Google Scholar] [CrossRef]
- Jha, J.; Singh, M.K.; Singh, L.; Pushker, N.; Bajaj, N.; Sen, S.; Kashyap, S. Prognostic relevance of ATM protein in uveal melanoma and its association with clinicopathological factors. Int. J. Clin. Oncol. 2019, 24, 1526–1535. [Google Scholar] [CrossRef]
- Jha, J.; Singh, M.K.; Singh, L.; Pushker, N.; Bajaj, M.S.; Seema Sen, S.; Kashyap, S. Expression of BAP1 and ATM proteins: Association with AJCC tumor category in uveal melanoma. Ann. Diagn. Pathol. 2020, 44, 151432. [Google Scholar] [CrossRef]
- Broggi, G.; Ieni, A.; Russo, D.; Varricchio, S.; Puzzo, L.; Russo, A.; Reibaldi, M.; Longo, A.; Tuccari, G.; Staibano, S.; et al. The Macro-Autophagy-Related Protein Beclin-1 Immunohistochemical Expression Correlates with Tumor Cell Type and Clinical Behavior of Uveal Melanoma. Front. Oncol. 2020, 10, 2515. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Yu, F.; Li, M. Upregulation of BCL2 19 kD protein-interacting protein 3 (BNIP3) is predictive of unfavorable prognosis in uveal melanoma. Med. Sci. Monit. 2018, 24, 4711–4717. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, F. Butyrophilin-like 9 (BTNL9) suppresses invasion and correlates with favorable prognosis of uveal melanoma. Med. Sci. Monit. 2019, 25, 3190–3198. [Google Scholar] [CrossRef]
- van den Bosch, T.; Koopmans, A.E.; Vaarwater, J.; van den Berg, M.; de Klein, A.; Verdijk, R.M. Chemokine receptor CCR7 expression predicts poor outcome in uveal melanoma and relates to liver metastasis whereas expression of CXCR4 is not of clinical relevance. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7354–7361. [Google Scholar] [CrossRef] [Green Version]
- Dobner, B.C.; Riechardt, A.I.; Joussen, A.M.; Englert, S.; Bechrakis, N.E. Expression of haematogenous and lymphogenous chemokine receptors and their ligands on uveal melanoma in association with liver metastasis. Acta Ophthalmol. 2012, 90, e638–e644. [Google Scholar] [CrossRef] [PubMed]
- Lüke, J.; Vukoja, V.; Brandenbusch, T.; Nassar, K.; Rohrbach, J.M.; Grisanti, S.; Lüke, M.; Tura, A. CD147 and matrix-metalloproteinase-2 expression in metastatic and non-metastatic uveal melanomas. BMC Ophthalmol. 2016, 16, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatib, N.; Pe’er, J.; Ortenberg, R.; Schachter, J.; Frenkel, S.; Markel, G.; Amer, R. Carcinoembryonic antigen cell adhesion molecule-1 (CEACAM1) in posterior uveal melanoma: Correlation with clinical and histological survival markers. Investig. Ophthalmol. Vis. Sci. 2011, 52, 9368–9372. [Google Scholar] [CrossRef] [PubMed]
- Mallikarjuna, K.; Pushparaj, V.; Biswas, J.; Krishnakumar, S. Expression of epidermal growth factor receptor, ezrin, hepatocyte growth factor, and c-Met in uveal melanoma: An immunohistochemical study. Curr. Eye Res. 2007, 32, 281–290. [Google Scholar] [CrossRef]
- Economou, M.A.; All-Ericsson, C.; Bykov, V.; Girnita, L.; Bartolazzi, A.; Larsson, O.; Seregard, S. Receptors for the liver synthesized growth factors IGF-1 and HGF/SF in uveal melanoma: Intercorrelation and prognostic implications. Acta Ophthalmol. 2008, 86, 20–25. [Google Scholar] [CrossRef]
- Singh, M.K.; Singh, L.; Pushker, N.; Saini, N.; Meel, R.; Chosdol, K.; Bakhshi, S.; Sen, S.; Venkatesh, P.; Chawla, B.; et al. Identification of canonical NFκB (C-NFκB) pathway in uveal melanoma and their relation with patient outcome. Clin. Exp. Metastasis 2019, 36, 271–290. [Google Scholar] [CrossRef]
- Cryan, L.M.; Paraoan, L.; Hiscott, P.; Damato, B.E.; Grierson, I.; Gray, D.; Farrell, M.; Doherty, G.A.; Fitzgerald, D.J.; O’Brien, C. Expression of COX-2 and prognostic outcome in uveal melanoma. Curr. Eye Res. 2008, 33, 177–184. [Google Scholar] [CrossRef]
- Suesskind, D.; Paulsen, F.; Buchgeister, M.; Spitzer, B.; Rohrbach, J.M.; Bartz-Schmidt, K.U.; Spitzer, M.S. Cyclo-oxygenase-2 expression in photon-radiated and non-radiated uveal melanomas. Acta Ophthalmol. 2010, 88, 582–587. [Google Scholar] [CrossRef]
- Singh, M.K.; Singh, L.; Pushker, N.; Chosdol, K.; Bakhshi, S.; Meel, R.; Sen, S.; Kashyap, S. Constitutive expression of c-REL in uveal melanoma patients: Correlation with clinicopathological parameters and patient outcome. Clin. Transl. Oncol. 2020, 22, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Mallikarjuna, K.; Vaijayanthi, P.; Krishnakumar, S. Cripto-1 expression in uveal melanoma: An immunohistochemical study. Exp. Eye Res. 2007, 84, 1060–1066. [Google Scholar] [CrossRef]
- Scala, S.; Ieranò, C.; Ottaiano, A.; Franco, R.; La Mura, A.; Liguori, G.; Mascolo, M.; Staibano, S.; Ascierto, P.A.; Botti, G.; et al. CXC chemokine receptor 4 is expressed in uveal malignant melanoma and correlates with the epithelioid-mixed cell type. Cancer Immunol. Immunother. 2007, 56, 1589–1595. [Google Scholar] [CrossRef] [PubMed]
- Coupland, S.E.; Bechrakis, N.; Schüler, A.; Anagnostopoulos, I.; Hummel, M.; Bornfeld, N.; Stein, H. Expression patterns of cyclin D1 and related proteins regulating G1-S phase transition in uveal melanoma and retinoblastoma. Br. J. Ophthalmol. 1998, 82, 961–970. [Google Scholar] [CrossRef]
- Coupland, S.E.; Anastassiou, G.; Stang, A.; Anagnostopoulos, I.; Schilling, H.; Bornfeld, N.; Stein, H. The prognostic value of cyclin D1, p53, and MDM2 protein expression in uveal melanoma. J. Pathol. 2000, 191, 120–126. [Google Scholar] [CrossRef]
- Topcu-Yilmaz, P.; Kiratli, H.; Saglam, A.; Söylemezoglu, F.; Hascelik, G. Correlation of clinicopathological parameters with HGF, c-Met, EGFR, and IGF-1R expression in uveal melanoma. Melanoma Res. 2010, 20, 126–132. [Google Scholar] [CrossRef]
- Hurks, H.M.H.; Metzelaar-Blok, J.A.W.; Barthen, E.R.; Zwinderman, A.H.; De Wolff-Rouendaal, D.; Keunen, J.E.; Jager, M.J. Expression of epidermal growth factor receptor: Risk factor in uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2000, 41, 2023–2027. [Google Scholar]
- Clarijs, R.; Schalkwijk, L.; Ruiter, D.J.; De Waal, R.M.W. EMAP-II expression is associated with macrophage accumulation in primary uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2003, 44, 1801–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajdzis, M.; Theocharis, S.; Gajdzis, P.; Cassoux, N.; Gardrat, S.; Donizy, P.; Klijanienko, J.; Kaczmarek, R. Ephrin receptors (EPH): EphA1, EphA5, and EphA7 expression in uveal melanoma—associations with clinical parameters and patient survival. Life 2020, 10, 225. [Google Scholar] [CrossRef] [PubMed]
- Trocmé, E.; Mougiakakos, D.; Johansson, C.C.; All-Eriksson, C.; Economou, M.A.; Larsson, O.; Seregard, S.; Kiessling, R.; Lin, Y. Nuclear HER3 is associated with favorable overall survival in uveal melanoma. Int. J. Cancer 2012, 130, 1120–1127. [Google Scholar] [CrossRef]
- Kashyap, S.; Singh, M.K.; Jha, J.; Singh, J.; Pushker, N.; Sen, S.; Venkatesh, P.; Meel, R.; Lomi, N. Prognostic impact of HERC2 protein and pink-eyed dilution protein in uveal melanoma. Hum. Cell 2020, 33, 1264–1272. [Google Scholar] [CrossRef]
- Faingold, D.; Marshall, J.C.; Antecka, E. Immune expression and inhibition of heat shock protein 90 in uveal melanoma. Clin. Cancer Res. 2008, 14, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Anastassiou, G.; Schilling, H.; Stang, A.; Djakovic, S.; Heiligenhaus, A.; Bornfeld, N. Expression of the cell adhesion molecules ICAM-1, VCAM-1 and NCAM in uveal melanoma: A clinicopathological study. Oncology 2000, 58, 83–88. [Google Scholar] [CrossRef]
- All-Ericsson, C.; Girnita, L.; Seregard, S.; Bartolazzi, A.; Jager, M.J.; Larsson, O. Insulin-like growth factor-1 receptor in uveal melanoma: A predictor for metastatic disease and a potential therapeutic target. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1–8. [Google Scholar]
- Radberger, P.; Radberger, A.; Vladimir, J.N.B.; Seregard, S.; Economou, M.A. JARID1B Protein Expression and Prognostic Implications in Uveal Melanoma. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4442–4449. [Google Scholar] [CrossRef] [PubMed]
- Abourbih, D.A.; Di Cesare, S.; Orellana, M.E.; Antecka, E.; Martins, C.; Petruccelli, L.A.; Burnier Jr., B.M. Lysyl oxidase expression and inhibition in uveal melanoma. Melanoma Res. 2010, 20, 97–106. [Google Scholar] [CrossRef]
- Beutel, J.; Wegner, J.; Wegner, R.; Ziemssen, F.; Nassar, K.; Rohrbach, J.M.; Hilgers, R.; Lüke, M.; Grisanti, S. Possible implications of MCAM expression in metastasis and non-metastatic of primary uveal melanoma patients. Curr. Eye Res. 2009, 34, 1004–1009. [Google Scholar] [CrossRef]
- Sahin, A.; Kiratli, H.; Soylemezoglu, F.; Tezel, G.G.; Bilgic, S.; Saracbasi, O. Expression of vascular endothelial growth factor-A, matrix metalloproteinase-9, and extravascular matrix patterns and their correlations with clinicopathologic parameters in posterior uveal melanomas. Jpn. J. Ophthalmol. 2007, 51, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P.; Harbour, J.W. NBS1 expression as a prognostic marker in uveal melanoma. Clin. Cancer Res. 2005, 11, 1849–1853. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.K.; Singh, L.; Chosdol, K.; Pushker, N.; Saini, N.; Meel, R.; Bakhshi, S.; Sen, S.; Kashyap, S. Differential expression of p52 and RelB proteins in the metastatic and non-metastatic groups of uveal melanoma with patient outcome. J. Cancer Res. Clin. Oncol. 2019, 145, 2969–2982. [Google Scholar] [CrossRef]
- Singh, M.K.; Pushker, N.; Meel, R.; Chodsol, K.; Sen, S.; Bakhshi, S.; Singh, L.; Kashyap, S. Does NEMO/IKKγ protein have a role in determining prognostic significance in uveal melanoma? Clin. Transl. Oncol. 2018, 20, 1592–1603. [Google Scholar] [CrossRef] [PubMed]
- Djirackor, L.; Shakir, D.; Kalirai, H.; Petrovski, G.; Coupland, S.E. Nestin expression in primary and metastatic uveal melanoma—Possible biomarker for high-risk uveal melanoma. Acta Ophthalmol. 2018, 96, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Greco, I.M.; Calvisi, G.; Ventura, L.; Cerrito, F. An immunohistochemical analysis of nm23 gene product expression in uveal melanoma. Melanoma Res. 1997, 7, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Bakalian, S.; Marshall, J.C.; Faingold, D.; Logan, P.; Antecka, E.; Burnier, M.N. Expression of nm23-H1 in uveal melanoma. Melanoma Res. 2007, 17, 284–290. [Google Scholar] [CrossRef]
- Lamperska, K.; Mackiewicz, K.; Kaczmarek, A.; Kwiatkowska, E.; Starzycka, M.; Romanowska, B.; Heizman, J.; Stachura, J.; Mackiewicz, A. Expression of p16 in sporadic primary uveal melanoma. Acta Biochim. Pol. 2002, 49, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Gajdzis, M.; Theocharis, S.; Klijanienko, J.; Cassoux, N.; Gardrat, S.; Donizy, P.; Kaczmarek, R.; Gajdzis, P. The Prognostic Values of PARP-1 Expression in Uveal Melanoma. Cells 2021, 10, 285. [Google Scholar] [CrossRef] [PubMed]
- Seregard, S.; Oskarsson, M.; Spångberg, B. PC-10 as a predictor of prognosis after antigen retrieval in posterior uveal melanoma. Investig. Ophthalmol. Vis. Sci. 1996, 37, 1451–1458. [Google Scholar]
- Singh, L.; Singh, M.K.; Kenney, M.C.; Jager, M.J.; Rizvi, M.A.; Meel, R.; Lomi, N.; Bakhshi, S.; Sen, S.; Kashyap, S. Prognostic significance of PD-1/PD-L1 expression in uveal melanoma: Correlation with tumor-infiltrating lymphocytes and clinicopathological parameters. Cancer Immunol. Immunother. 2021, 70, 1291–1303. [Google Scholar] [CrossRef]
- Jiang, Z.; Yan, Y.; Dong, J.; Duan, L. PD-1 expression on uveal melanoma induces tumor proliferation and predicts poor patient survival. Int. J. Biol. Markers 2020, 35, 50–58. [Google Scholar] [CrossRef]
- Paraoan, L.; Gray, D.; Hiscott, P.; Ebrahimi, B.; Damato, B.; Grierson, I. Expression of p53-induced apoptosis effector PERP in primary uveal melanomas: Downregulation is associated with aggressive type. Exp. Eye Res. 2006, 83, 911–919. [Google Scholar] [CrossRef]
- Saraiva, V.S.; Caissie, A.L.; Segal, L.; Edelstein, C.; Burnier, M.N. Immunohistochemical expression of phospho-Akt in uveal melanoma. Melanoma Res. 2005, 15, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Berus, T.; Markiewicz, A.; Zwierzchowska, K.; Biecek, P.; Orlowska-Heitzman, J.; Romanowska-Dixon, B.; Donizy, P. Downregulation of polo-like kinase-1 (Plk-1) expression is associated with poor clinical outcome in uveal melanoma patients. Folia Histochem. Cytobiol. 2020, 58, 108–116. [Google Scholar] [CrossRef]
- Ramasamy, P.; Larkin, A.; Linge, A.; Tiernan, D.; McAree, F.; Horgan, N.; Moriarty, P.; Beatty, S.; Murphy, C.C.; Clynes, M.; et al. PRDX3 is associated with metastasis and poor survival in uveal melanoma. J. Clin. Pathol. 2020, 73, 408–412. [Google Scholar] [CrossRef]
- Caltabiano, R.; Puzzo, L.; Barresi, V.; Cardile, V.; Loreto, C.; Ragusa, M.; Russo, A.; Reibaldi, M.; Longo, A. Expression of Raf Kinase Inhibitor Protein (RKIP) is a predictor of uveal melanoma metastasis. Histol. Histopathol. 2014, 29, 1325–1334. [Google Scholar] [CrossRef]
- Salvatorelli, L.; Puzzo, L.; Russo, A.; Reibaldi, M.; Longo, A.; Ragusa, M.; Aldo, C.; Rappazzo, G.; Caltabiano, R.; Salemi, M. Immunoexpression of SPANX-C in metastatic uveal melanoma. Pathol. Res. Pract. 2019, 215. [Google Scholar] [CrossRef] [PubMed]
- Ardjomand, N.; Ardjomand, N.; Schaffler, G.; Radner, H.; El-Shabrawi, Y. Expression of somatostatin receptors in uveal melanomas. Investig. Ophthalmol. Vis. Sci. 2003, 44, 980–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gangemi, R.; Mirisola, V.; Barisione, G.; Fabbi, M.; Brizzolara, A.; Lanza, F.; Mosci, C.; Salvi, S.; Gualco, M.; Truini, M.; et al. Mda-9/syntenin is expressed in uveal melanoma and correlates with metastatic progression. PLoS ONE 2012, 7, e29989. [Google Scholar] [CrossRef] [PubMed]
- Kujala, E.; Damato, B.; Coupland, S.E.; Desjardins, L.; Bechrakis, N.E.; Grange, J.D.; Kivelä, T. Staging of ciliary body and choroidal melanomas based on anatomic extent. J. Clin. Oncol. 2013, 31, 2825–2831. [Google Scholar] [CrossRef]
- Angi, M.; Damato, B.; Kalirai, H.; Dodson, A.; Taktak, A.; Coupland, S.E. Immunohistochemical assessment of mitotic count in uveal melanoma. Acta Ophthalmol. 2011, 89, e155–e160. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.G.; Jiao, D. Necroptosis, tumor necrosis and tumorigenesis. Cell Stress 2020, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Diener-West, M.; Reynolds, S.M.; Agugliaro, D.J.; Caldwell, R.; Cumming, K.; Earle, J.D.; Green, D.L.; Hawkins, B.S.; Hayman, J.; Jaiyesimi, I.; et al. Screening for metastasis from choroidal melanoma: The Collaborative Ocular Melanoma Study Group Report 23. J. Clin. Oncol. 2004, 22, 2438–2444. [Google Scholar] [CrossRef]
- Wu, T.; Sun, L.; Wu, Y.; Xiang, R.; Li, Y.; Rong, W.; Sun, F.; Wang, N. Prognostic value of legumain in uveal melanoma. Mol. Med. Rep. 2016, 13, 2377–2384. [Google Scholar] [CrossRef] [Green Version]
- Rozeman, E.A.; Prevoo, W.; Meier, M.A.J.; Sikorska, K.; Van, T.M.; van de Wiel, B.A.; van der Wal, J.E.; Mallo, H.A.; Grijpink-Ongering, L.G.; Broeks, A.; et al. Phase Ib/II trial testing combined radiofrequency ablation and ipilimumab in uveal melanoma (SECIRA-UM). Melanoma Res. 2020, 30, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Lee, J.; Kim, T.M.; Lee, D.H.; Kang, J.H.; Oh, S.Y.; Lee, S.J.; Shin, S.J. Ipilimumab real-world efficacy and safety in Korean melanoma patients from the Korean named-patient program cohort. Cancer Res. Treat. 2017, 49, 44–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fountain, E.; Bassett, R.L.; Cain, S.; Posada, L.; Gombos, D.S.; Hwu, P.; Bedikian, A.; Patel, S.P. Adjuvant ipilimumab in high-risk Uveal melanoma. Cancers 2019, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Joshua, A.M.; Monzon, J.G.; Mihalcioiu, C.; Hogg, D.; Smylie, M.; Cheng, T. A phase 2 study of tremelimumab in patients with advanced uveal melanoma. Melanoma Res. 2015, 25, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Schadendorf, D.; Ascierto, P.A.; Haanen, J.B.A.G.; Espinosa, E.; Demidov, L.V.; Garbe, C.; Lorigan, P.; Gogas, H.; Hoeller, C.; Guren, T.K.; et al. Efficacy and safety of nivolumab (NIVO) in patients with advanced melanoma (MEL) and poor prognostic factors who progressed on or after ipilimumab (IPI): Results from a phase II study (CheckMate 172). J. Clin. Oncol. 2017, 35, 9524. [Google Scholar] [CrossRef]
- Namikawa, K.; Takahashi, A.; Mori, T.; Tsutsumida, A.; Suzuki, S.; Motoi, N.; Jinnai, S.; Kage, Y.; Mizuta, H.; Muto, Y.; et al. Nivolumab for patients with metastatic uveal melanoma previously untreated with ipilimumab: A single-institution retrospective study. Melanoma Res. 2020, 30, 76–84. [Google Scholar] [CrossRef]
- Rossi, E.; Pagliara, M.M.; Orteschi, D.; Dosa, T.; Sammarco, M.G.; Caputo, C.G.; Petrone, G.; Rindi, G.; Zollino, M.; Blasi, M.A.; et al. Pembrolizumab as first-line treatment for metastatic uveal melanoma. Cancer Immunol. Immunother. 2019, 68, 1179–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoushtari, A.N.; Navid-Azarbaijani, P.; Friedman, C.F.; Panageas, K.; Postow, M.A.; Callahan, M.K.; Parisa Momtaz, P.; Campbell, S.C.; Shames, Y.; Prempeh-Keteku, N.A.; et al. Efficacy of nivolumab and ipilimumab (Nivo + Ipi) combination in melanoma patients (pts) treated at a single institution on an expanded-access program (EAP). J. Clin. Oncol. 2016, 34, 9554. [Google Scholar] [CrossRef]
- Itchins, M.; Ascierto, P.A.; Menzies, A.M.; Oatley, M.; Lo, S.; Douraghi-Zadeh, D.; Harrington, T.; Maher, R.; Grimaldi, A.M.; Guminski, A. A multireferral centre retrospective cohort analysis on the experience in treatment of metastatic uveal melanoma and utilization of sequential liver-directed treatment and immunotherapy. Melanoma Res. 2017, 27, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Cavallo, F.; Leleu, X.; Hulin, C.; Amiot, M.; Descamps, G.; Facon, T.; Boccadoro, M.; Mignard, D.; Harousseau, J.L. Phase i study of the anti insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibody, AVE1642, as single agent and in combination with bortezomib in patients with relapsed multiple myeloma. Leukemia 2011, 25, 872–874. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Xie, S.; Xie, C.; Fang, Y.; Li, Z.; Wang, R.; Jiang, W. Pristimerin attenuates cell proliferation of uveal melanoma cells by inhibiting insulin-like growth factor-1 receptor and its downstream pathways. J. Cell Mol. Med. 2019, 23, 7545–7553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaro, A.; Mirisola, V.; Angelini, G.; Musso, A.; Tosetti, F.; Esposito, A.I.; Perri, P.; Lanza, F.; Nasciuti, F.; Mosci, C.; et al. Evidence of epidermal growth factor receptor expression in uveal melanoma: Inhibition of epidermal growth factor-mediated signalling by Gefitinib and Cetuximab triggered antibody-dependent cellular cytotoxicity. Eur. J. Cancer 2013, 49, 3353–3365. [Google Scholar] [CrossRef]
- Patel, S.P.; Kim, K.B.; Papadopoulos, N.E.; Hwu, W.; Hwu, P.; Prieto, V.G.; Bar-Eli, M.; Zigler, M.; Dobroff, A.; Bronstein, Y.; et al. A phase II study of gefitinib in patients with metastatic melanoma. Melanoma Res. 2011, 21, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Moser, J.C.; Pulido, J.S.; Dronca, R.S.; McWilliams, R.R.; Markovic, S.N.; Mansfield, A.S. The Mayo Clinic experience with the use of kinase inhibitors, ipilimumab, bevacizumab, and local therapies in the treatment of metastatic uveal melanoma. Melanoma Res. 2015, 25, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.; Yan, X.; Chi, Z.; Si, L.; Cui, C.; Tang, B.; Li, S.; Mao, L.; Lian, B.; Wang, X.; et al. Axitinib in combination with toripalimab, a humanized immunoglobulin G 4 monoclonal antibody against programmed cell death-1, in patients with metastatic mucosal melanoma: An open-label phase Ib trial. J. Clin. Oncol. 2019, 37, 2987–2999. [Google Scholar] [CrossRef]
- Dayer, L.E.; Hutchins, L.F.; Johnson, J.T. Treatment of metastatic melanoma with pazopanib: A report of five patient cases. J. Oncol. Pharm. Pract. 2014, 21, 224–231. [Google Scholar] [CrossRef]
- De Silva, D.M.; Roy, A.; Kato, T.; Cecchi, F.; Lee, Y.H.; Matsumoto, K.; Bottaro, D.P. Targeting the hepatocyte growth factor/Met pathway in cancer. Biochem. Soc. Trans. 2017, 45, 855–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schöffski, P.; Wozniak, A.; Escudier, B.; Rutkowski, P.; Anthoney, A.; Bauer, S.; Sufliarsky, J.; van Herpen, C.; Lindner, L.H.; Grünwald, V.; et al. Crizotinib achieves long-lasting disease control in advanced papillary renal-cell carcinoma type 1 patients with MET mutations or amplification. EORTC 90101 CREATE trial. Eur. J. Cancer 2017, 87, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Chua, V.; Liao, C.; Purwin, T.J.; Terai, M.; Kageyama, K.; Davies, M.A.; Sato, T.; Aplin, A.E. Co-Targeting HGF/cMET Signaling with MEK Inhibitors in metastatic uveal melanoma. Mol. Cancer Ther. 2017, 16, 516–528. [Google Scholar] [CrossRef] [Green Version]
- Daud, A.; Kluger, H.M.; Kurzrock, R.; Schimmoller, F.; Weitzman, A.L.; Samuel, T.A.; Moussa, A.H.; Gordon, M.S.; Shapiro, G.I. Phase II randomised discontinuation trial of the MET/VEGF receptor inhibitor cabozantinib in metastatic melanoma. Br. J. Cancer 2017, 116, 432–440. [Google Scholar] [CrossRef] [Green Version]
- Luke, J.J.; Olson, D.J.; Allred, J.B.; Strand, C.A.; Bao, R.; Zha, Y.; Carll, T.; Labadie, B.W.; Bastos, B.R.; Butler, M.O.; et al. Randomized Phase II trial and tumor mutational spectrum analysis from cabozantinib versus chemotherapy in metastatic uveal melanoma (Alliance A091201). Clin. Cancer Res. 2020, 26, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Puzanov, I.; Sosman, J.; Santoro, A.; Saif, M.W.; Goff, L.; Dy, G.K.; Zucali, P.; Means-Powell, J.A.; Ma, W.W.; Simonelli, M.; et al. Phase 1 trial of tivantinib in combination with sorafenib in adult patients with advanced solid tumors. Investig. N. Drugs 2015, 33, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Falchook, G.S.; Kurzrock, R.; Amin, H.M.; Xiong, W.; Fu, S.; Piha-Paul, S.A.; Janku, F.; Eskandari, G.; Catenacci, D.V.; Klevesath, M.; et al. First-in-man phase I trial of the selective MET inhibitor tepotinib in patients with advanced solid tumors. Clin. Cancer Res. 2020, 26, 1237–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middleton, M.R.; McAlpine, C.; Woodcock, V.K.; Corrie, P.; Infante, J.R.; Steven, N.M.; Evans, T.R.J.; Anthoney, A.; Shoushtari, A.N.; Hamid, O.; et al. Tebentafusp, A TCR/Anti-CD3 Bispecific Fusion Protein Targeting gp100, Potently Activated Antitumor Immune Responses in Patients with Metastatic Melanoma. Clin. Cancer Res. 2020, 26, 5869–5878. [Google Scholar] [CrossRef] [PubMed]
- Damato, B.E.; Dukes, J.; Goodall, H.; Carvajal, R.D. Tebentafusp: T Cell Redirection for the Treatment of Metastatic Uveal Melanoma. Cancers 2019, 11, 971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbagallo, C.; Caltabiano, R.; Broggi, G.; Russo, A.; Puzzo, L.; Avitabile, T.; Longo, A.; Reibaldi, M.; Barbagallo, D.; Di Pietro, C.; et al. LncRNA LINC00518 Acts as an Oncogene in Uveal Melanoma by Regulating an RNA-Based Network. Cancers 2020, 12, 3867. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Park, S.J.; Maeng, K.J.; Lee, S.C.; Lee, C.S. Multi-Platform Omics Analysis for Identification of Molecular Characteristics and Therapeutic Targets of Uveal Melanoma. Sci. Rep. 2019, 9, 19235. [Google Scholar] [CrossRef] [PubMed]
- Durante, M.A.; Rodriguez, D.A.; Kurtenbach, S.; Kuznetsov, J.N.; Sanchez, M.I.; Decatur, C.L.; Snyder, H.; Feun, L.G.; Livingstone, A.S.; Harbour, J.W. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat. Commun. 2020, 11, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandiani, C.; Strub, T.; Nottet, N.; Cheli, Y.; Gambi, G.; Bille, K.; Husser, C.; Dalmasso, M.; Béranger, G.; Lassalle, S.; et al. Single-cell RNA sequencing reveals intratumoral heterogeneity in primary uveal melanomas and identifies HES6 as a driver of the metastatic disease. Cell Death Diff. 2021, 28, 1990–2000. [Google Scholar] [CrossRef]
- Karlsson, J.; Nilsson, L.M.; Mitra, S.; Alsén, S.; Shelke, G.V.; Sah, V.R.; Forsberg, E.M.V.; Stierner, U.; All-Eriksson, C.; Einarsdottir, B.; et al. Molecular profiling of driver events in metastatic uveal melanoma. Nat. Commun. 2020, 11, 1894. [Google Scholar] [CrossRef] [Green Version]
Marker | Protein Function | Study Group Size | Conclusion |
---|---|---|---|
ABCB5 (ATP-binding cassette sub-family B member 5) [17] | Human transmembrane P-glycoprotein, plays a role in transmembrane transport (including chemotherapeutic drugs). | 55 | High expression correlates with presence of metastasis. |
ADAM10 (A disintegrin and metalloproteinase domain-containing protein 10) [18] | Transmembrane protein, controls membrane fusion and cell-cell and cell-matrix interactions. | 52 | High expression correlates with presence of metastasis. |
Adiponectin (GBP-28, apM1, AdipoQ and Acrp30) [19] | Protein hormone involved in regulating glucose levels, fatty acid breakdown, plays a role in limiting cell proliferation and reducing inflammation. | 34 | Low expression correlates with extrascleral extension, more frequent chromosome 3 loss and presence of metastasis. |
AIF (Apoptosis inducing factor) [20] | Ubiquitous protein, plays a proapoptotic function in the nucleus and redox activity in mitochondria. | 54 | High expression correlates with reduced survival time. |
ATM (Ataxia-telangiectasia mutated protein) [21] | Predominantly nuclear protein, an activator of DNA damage response. | 69 | Loss of expression correlates with larger tumor diameter, tumor thickness, presence of epithelioid cells, reduced disease-free survival time. |
ATM (Ataxia-telangiectasia mutated protein) [22] | Predominantly nuclear protein, an activator of DNA damage response. | 69 | Loss of expression correlates with reduced disease-free survival time. |
Beclin [23] | Autophagy related protein, plays a central role in the autophagic process as a major member of the macro-autophagic phase. | 85 | High expression correlates with less frequent presence of metastasis and longer disease-free survival time. |
BNIP3 (BCL2 19 kD protein-interacting protein 3) [24] | Cytoplasm protein, regulates cell death, autophagy, and cytoprotection. | 47 | High expression correlates with deeper scleral invasion, increased pigmentation and reduced overall survival time. |
BTNL9 (Butyrophilin-like protein 9) [25] | Modulator of the T cell response. | 62 | High expression correlates with longer overall survival time. |
CCR7 (C-C Motif Chemokine Receptor 7) [26] | Receptor mainly expressed in lymphoid cells, mediate cell migration of naıve lymphocytes and mature dendritic cells to secondary lymphoid organs and regulate the transport of cancer cells through the extracellular matrix. | 49 | High expression correlates with higher tumor thickness, presence of epithelioid cells, lymphocytic infiltration, presence of necrosis and reduced overall survival time. |
CCR7 (C-C Motif Chemokine Receptor 7) [27] | Receptor mainly expressed in lymphoid cells, mediate cell migration of naıve lymphocytes and mature dendritic cells to secondary lymphoid organs and regulate the transport of cancer cells through the extracellular matrix. | 70 | High expression correlates with presence of metastasis. |
CD147 (Cluster of differentiation 147, Basigin (BSG), extracellular matrix metalloproteinase inducer (EMMPRIN)) [28] | Member of the immunoglobulin superfamily, plays a role in intercellular recognition, various immunologic phenomena, differentiation, and development. | 49 | High expression in the nonmetastatic sub-group correlates with larger tumor diameter and TNM stage. In the metastatic sub-group, the presence of nested CD147 positive cells correlates with ciliary body involvement. |
CEACAM (Carcinoembryonic antigen cell adhesion molecule-1) [29] | Transmembrane glycoprotein, plays a role in the intercellular interactions, regulation of cell growth, angiogenesis, immune modulation, and hepatic insulin clearance. | 79 | High expression correlates with presence of epithelioid cells and network extracellular matrix pattern. |
c-Met (Tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR)) [30] | Transmembrane RTK receptor, plays a role in embryonic development, organogenesis and wound healing, angiogenesis, and metastasis formation. | 60 | High expression correlates with presence of metastasis and reduced overall survival time. |
c-Met (Tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR)) [31] | Transmembrane RTK receptor, plays a role in embryonic development, organogenesis and wound healing, angiogenesis, and metastasis formation. | 132 | High expression correlates with melanoma-specific mortality. |
C-NFκB proteins (Canonical nuclear factor-κB proteins (p65 and p50)) [32] | Nuclear protein, coordinator of innate immunity and inflammation. | 75 | High expression of p65 and p50 correlates with presence of metastasis and reduced survival time. |
COX-2 (Cyclooxygenase-2) [33] | Enzyme, which catalyze the prostanoid synthesis reaction. | 32 | High expression correlates with metastatic death. |
COX-2 (Cyclooxygenase-2) [34] | Enzyme, which catalyze the prostanoid synthesis reaction. | 43 | High expression correlates with presence of metastasis. |
c-REL [35] | Member of the nuclear factor κB (NF-κB) transcription factor family and an emerging regulator of tumorigenesis. | 75 | High expression correlates with tumor thickness, presence of epithelioid cells, presence of metastasis and reduced overall survival time. |
Cripto-1 (Teratocarcinoma-derived growth factor-1) [36] | An oncogenic growth factor involving tumorigenesis and cancer cell proliferation and survival. | 36 | High expression correlates with extrascleral extension and presence of metastasis. |
CXCR4 (C-X-C motif chemokine receptor 4) [37] | Alpha-chemokine receptor specific for stromal-derived-factor-1, a molecule endowed with potent chemotactic activity for lymphocytes. | 44 | High expression correlates with presence of epithelioid cells. |
CyclinD1 [38] | Predominantly nuclear protein, regulator of cell cycle. | 66 | High expression correlates with extrascleral extension and presence of epithelioid cells. |
CyclinD1 [39] | Predominantly nuclear protein, regulator of cell cycle. | 96 | High expression correlates with extrascleral extension, presence of the mixed or epithelioid cells the tumor cell MIB-1 positivity and presence of metastasis. |
EGFR (Epidermal growth factor receptor) [40] | Transmembrane protein, plays a role in epithelial tissue development and homeostasis. | 40 | High expression correlates with higher mitotic activity. |
EGFR (Epidermal growth factor receptor) [41] | Transmembrane protein, plays a role in epithelial tissue development and homeostasis. | 22 | High expression correlates with metastatic death. |
EMAP-II (Endothelial monocyte-activating polypeptide II) [42] | Proinflammatory cytokine and chemoattractant of macrophages, expressed on the cell surface. | 25 | High expression correlates with macrophage infiltration. |
EphA1 (Eph-A1 receptor, erythropoietin-producing human hepatocellular receptor A1) [43] | RTK receptor, plays a role in the regulation of a processes critical to embryonic development including axon guidance, formation of tissue boundaries, cell migration, segmentation, proliferation, and angiogenesis. | 94 | High expression correlates with smaller tumor diameter, less frequently occurring extrascleral extension, lower mitotic activity, and presence of vitreous hemorrhage. |
EphA5 (Eph-A5 receptor, erythropoietin-producing human hepatocellular receptor A5) [43] | RTK receptor, plays a role in the regulation of a processes critical to embryonic development including axon guidance, formation of tissue boundaries, cell migration, segmentation, proliferation, and angiogenesis. | 94 | High expression correlates with less frequent chromosome 3 loss, more frequent occurrence of vitreous hemorrhage, absence of distant metastases and longer overall survival time. |
HER3 (Human epidermal growth factor receptor 3 or receptor tyrosine-protein kinase erbB-3) [44] | Transmembrane RTK receptor, implicated in growth, proliferation, chemotherapeutic resistance, and the promotion of invasion and metastasis. | 128 | High nuclear expression correlates with longer overall survival time. |
HERC2 (HECT and RLD Domain Containing E3 Ubiquitin Protein Ligase 2) [45] | Predominantly nuclear and cytoplasm protein, plays a role in DNA repair regulation, pigmentation, and neurological disorders. | 52 | High expression correlates with ciliary body involvement, presence of epithelioid cells and increased pigmentation. |
Hsp90 (Heat shock protein 90) [46] | Cytoplasmic protein, plays a role in folding, intracellular transport, maintenance, and degradation of proteins, and facilitating cell signaling. | 44 | High expression correlates with larger tumor diameter. |
ICAM-1 (Intercellular cell adhesion molecule-1) [47] | Adhesion molecule, ligand for leukocyte function-associated antigen-1, involved in the process of inflammation, the circulation of blood cells, and in the immune surveillance of the host. | 90 | Loss of expression correlates with presence of metastasis. |
IGF-1R (Insulin-like growth factor 1 receptor) [31] | Transmembrane receptor, implicated in insulin signaling, plays a role in several cancer development. | 132 | High expression correlates with melanoma-specific mortality. |
IGF-1R (Insulin-like growth factor 1 receptor) [48] | Transmembrane receptor, implicated in insulin signaling, plays a role in several cancer development. | 36 | High expression correlates with death of disease. |
JARID1B (Jumonji AT-rich interactive domain 1B) [49] | Demethylase enzyme, induce demethylation of tri- and di-methylated lysines in the 4 position of histone 3. | 121 | High expression correlates with reduced survival time. |
LOX (Lysyl oxidase) [50] | Extracellular enzyme, plays a role in embryonic development, wound healing and adult tissue remodeling. | 33 | High expression correlates with presence of epithelioid cells and reduced metastasis-free survival time. |
MCAM (Melanoma cell adhesion molecule, MUC18, Mel-Cam, CD146) [51] | Adhesion molecule, plays a role in intracellular signaling cascades. | 35 | High expression correlates with death of disease. |
MMP-2 and MMP-9 (Matrix metalloproteinase-2 and -9) [28] | Secreted and membrane-associated neutral endopeptidase, plays a role in degrading extracellular matrix proteins, cell proliferation, migration, differentiation, angiogenesis, apoptosis, and host defense. | 26 | High expression correlates with presence of metastasis and reduced survival time. |
MMP-9 (Matrix metalloproteinase 9) [52] | Secreted and membrane-associated neutral endopeptidase, plays a role in degrading extracellular matrix proteins, cell proliferation, migration, differentiation, angiogenesis, apoptosis, and host defense. | 100 | High expression correlates with presence of loop and/or network patterns, lymphocytic infiltration, presence of necrosis and presence of metastasis. |
Nbs1 (Nibrin, NBN) [53] | Intracellular protein, plays a role in the repair of double strand breaks and telomere maintenance. | 49 | High expression correlates with reduced survival time. |
NC-NFκB proteins (p52, RelB, and co-expression of p52/RelB) [54] | Nuclear protein, plays a role in promoting cancer proliferation and progression. | 75 | High expression correlates with reduced metastasis-free survival time and reduced overall survival time. |
NEMO/IKKγ (Factor κB essential modulator, inhibitor of nuclear factor kappa B kinase subunit gamma) [55] | Protein essential for the activation of transcription factor NFκB, which regulates the cellular responses to inflammation, immunity, and cell survival. | 75 | Low expression correlates with presence of epithelioid cells, higher mitotic activity, presence of vascular loop, neovascularization and reduced overall survival time. |
Nestin (Neural stem cell protein) [56] | Cytoplasm and membrane-bound protein, member of the intermediate filament (IF) class VI protein family | 167 | High expression correlates with presence of epithelioid cells, more frequent chromosome 3 loss and chromosome 8q gain, higher mitotic activity, presence of vascular loop and reduced survival time. |
nm23 (Nucleoside diphosphate kinase A) [57] | Cytoplasm protein, product of metastasis suppressor gene (NM23). | 33 | Low expression correlates with larger tumor diameter and deeper scleral invasion. |
nm23-H1 (Nucleoside diphosphate kinase A) [58] | Cytoplasm protein, product of metastasis suppressor gene (NM23). | 32 | The increased immunostaining intensity correlates with longer survival time. |
p16 (Cyclin-dependent kinase inhibitor 2A, CDKN2A, multiple tumor suppressor 1) [59] | Predominantly nuclear protein, slowing the progression of the cell cycle from G1 phase to the S phase. | 41 | Low expression correlates with mixed cell type. |
p53 [39] | Cell-cycle regulatory protein. | 96 | High expression correlates with presence of metastasis. |
PARP (Poly (ADP-ribose) polymerase) [60] | Nuclear protein, which participate in the DNA repair processes. | 91 | High expression correlates with larger tumor diameter, higher histopathological grade, more frequent chromosome 3 loss, reduced overall survival time and disease-free survival time. |
PCNA (Proliferating cell nuclear antigen, ATLD2) [61] | The DNA polymerase auxiliary protein involved in the control of DNA replication. | 212 | High expression correlates with presence of metastasis. |
PD-1 (Programmed cell death receptor-1) [62] | Membrane-bound receptor, plays a role in regulation immune system’s response to the cells of the human body. | 71 | High expression correlates with ciliary body involvement, presence of epithelioid cells, macrophage infiltration, absence of BAP-1 staining and presence of metastasis. |
PD-1 (Programmed cell death receptor-1) [63] | Membrane-bound receptor, plays a role in regulation immune system’s response to the cells of the human body. | 82 | High expression correlates with larger tumor diameter and reduced survival time. |
PD-L1 (Programmed death-ligand 1) [62] | Ligand for PD-1 (programmed cell death receptor-1), plays a role in regulation immune system’s response to the cells of the human body. | 71 | High expression correlates with macrophage infiltration, higher AJCC prognostic stage group and presence of metastasis. |
PERP (p53 apoptosis effector related to PMP-22) [64] | Cytoplasm protein, plays a role in inducing cell death. | 16 | Low expression correlates with more frequent chromosome 3 loss. |
Phospho-Akt [65] | Cytoplasmic protein, plays a role in phosphorylation and inactivation of several proteins involved in apoptosis. | 34 | High expression correlates with presence of metastasis. |
PLK-1 (Polo-like kinase-1) [66] | Regulator of mitotic entry and cytokinesis. | 158 | Low expression correlates with higher clinical tumor stage, higher AJCC prognostic stage group and reduced overall survival time. |
P-protein (Pink-eyeddilution protein) [45] | Membrane protein, plays a role in melanin synthesis in melanocytes and retinal pigment epithelium. | 52 | High expression correlates with ciliary body involvement, presence of epithelioid cells, increased pigmentation, and advanced clinical tumor staging. High cytoplasmic expression correlates with presence of metastasis. |
PRDX3 (Thioredoxin-dependent peroxidase reductase) [67] | Cytoplasmic protein, involved in redox regulation of the cell and protects radical-sensitive enzymes from oxidative damage. | 92 | High expression correlates with presence of metastasis and reduced survival time. |
RKIP (Raf Kinase Inhibitor Protein) [68] | Regulator of proliferative pathways within the cell. | 44 | Low expression correlates with presence of metastasis. |
SPANX-C (SPANX family member C; Sperm protein associated with the nucleus on the X chromosome C) [69] | Cytoplasmic protein, expressed in highly metastatic cell lines. | 55 | High expression correlates with presence of metastasis. |
SSR (Somatostatin receptor, SSTR) [70] | The binding of somatostatin to its membrane receptor starts a signaling pathway that leads to arrest of cell growth or apoptosis. | 25 | High expression correlates with longer survival time. |
Syntenin (Syndecan binding protein syntenin-1, melanoma differentiation-associated gene 9, mda-9) [71] | Predominantly cytoplasm protein, plays a role in clustering of membrane receptors, intracellular trafficking, Sox4 activation, and signal transduction. | 29 | High expression correlates with risk of metastasis recurrence. |
TIMP-1 and TIMP-2 (Tissue inhibitor of metalloproteinase-1 and -2) [28] | Metalloproteinase inhibitors. | 26 | High expression correlates with longer survival time. |
VEGF-A (Vascular endothelial growth factor-A) [52] | Acts specifically on endothelial cells, mediates increased vascular permeability, induces angiogenesis, vasculogenesis and endothelial cell growth, promotes cell migration, and inhibits apoptosis. | 100 | High expression correlates with presence of vascular loos and/or network patterns, lymphocytic infiltration, necrosis, and presence of metastasis. |
Marker | Study Group Size | Conclusion |
---|---|---|
EphA1 (Eph-A1 receptor, erythropoietin-producing human hepatocellular receptor A1) [43] | 94 | High expression correlates with smaller tumor diameter. |
nm23 (Nucleoside diphosphate kinase A) [57] | 33 | Low expression correlates with larger tumor diameter. |
CD147 (Cluster of differentiation 147, Basigin (BSG), extracellular matrix metalloproteinase inducer (EMMPRIN)) [28] | 49 | High expression in the nonmetastatic sub-group correlates with larger tumor diameter. |
Hsp90 (Heat shock protein 90) [46] | 44 | High expression correlates with larger tumor diameter. |
PARP (Poly (ADP-ribose) polymerase) [60] | 91 | High expression correlates with larger tumor diameter. |
PD-1 (Programmed cell death receptor-1) [63] | 82 | High expression correlates with larger tumor diameter. |
ATM (Ataxia-telangiectasia mutated protein) [21] | 69 | Loss correlates with larger tumor diameter and tumor thickness. |
CCR7 (C-C Motif Chemokine Receptor 7) [26] | 49 | High expression correlates with tumor thickness. |
c-REL [35] | 75 | High expression correlates with tumor thickness. |
Marker | Study Group Size | Conclusion |
---|---|---|
CD147 (Cluster of differentiation 147, Basigin (BSG), extracellular matrix metalloproteinase inducer (EMMPRIN)) [28] | 49 | In the metastatic sub-group, the presence of nested CD147 positive cells correlates with ciliary body involvement. |
HERC2 (HECT and RLD Domain Containing E3 Ubiquitin Protein Ligase 2) [45] | 52 | High expression correlates with ciliary body involvement. |
PD-1 (Programmed cell death receptor-1) [62] | 71 | High expression correlates with ciliary body involvement. |
P-protein (Pink-eyed dilution protein) [45] | 52 | High expression correlates with ciliary body involvement. |
Marker | Study Group Size | Conclusion |
---|---|---|
BNIP3 (BCL2 19 kD protein-interacting protein 3) [24] | 47 | High expression correlates with deeper scleral invasion. |
nm23 (Nucleoside diphosphate kinase A) [57] | 33 | Low expression correlates with deeper scleral invasion. |
Adiponectin (GBP-28, apM1, AdipoQ and Acrp30) [19] | 34 | Low expression correlates with extrascleral extension. |
Cripto-1 (Teratocarcinoma-derived growth factor-1) [36] | 36 | High expression correlates with extrascleral extension. |
CyclinD1 [38] | 66 | High expression correlates with extrascleral extension. |
CyclinD1 [39] | 96 | High expression correlates with extrascleral extension. |
EphA1 (Eph-A1 receptor, erythropoietin-producing human hepatocellular receptor A1) [43] | 94 | High expression correlates with less frequently occurring extrascleral extension. |
Marker | Study Group Size | Conclusion |
---|---|---|
ATM (Ataxia-telangiectasia mutated protein) [21] | 69 | Low expression correlates with presence of epithelioid cells. |
CCR7 (C-C Motif Chemokine Receptor 7) [26] | 49 | High expression correlates with presence of epithelioid cells. |
CEACAM (Carcinoembryonic antigen cell adhesion molecule-1) [29] | 79 | High expression correlates with presence of epithelioid cells. |
c-REL [35] | 75 | High expression correlates with presence of epithelioid cells. |
CXCR4 (C-X-C motif chemokine receptor 4) [37] | 44 | High expression correlates with presence of epithelioid cells. |
CyclinD1 [38] | 66 | High expression correlates with presence of epithelioid cells. |
HERC2 (HECT and RLD Domain Containing E3 Ubiquitin Protein Ligase 2) [45] | 52 | High expression correlates with presence of epithelioid cells. |
LOX (Lysyl oxidase) [50] | 33 | High expression correlates with presence of epithelioid cells. |
NEMO/IKKγ (Nuclear factor κB essential modulator, inhibitor of nuclear factor kappa B kinase subunit gamma) [55] | 75 | Low expression correlates with presence of epithelioid cells. |
Nestin (Neural stem cell protein) [56] | 167 | High expression correlates with presence of epithelioid cells. |
PD-1 (Programmed cell death receptor-1) [62] | 71 | High expression correlates with presence of epithelioid cells. |
P-protein (Pink-eyed dilution protein) [45] | 52 | High expression correlates with presence of epithelioid cells. |
CyclinD1 [39] | 96 | High expression correlates with presence of mixed or epithelioid cells. |
p16 (Cyclin-dependent kinase inhibitor 2A, CDKN2A, multiple tumor suppressor 1) [59] | 41 | Low expression correlates with mixed cell type. |
PARP (Poly (ADP-ribose) polymerase) [60] | 91 | High expression correlates with higher histopathological grade. |
Marker | Study Group Size | Conclusion |
---|---|---|
EphA5 (Eph-A5 receptor, erythropoietin-producing human hepatocellular receptor A5) [43] | 94 | High expression correlates with less frequent chromosome 3 loss. |
Nestin (Neural stem cell protein) [56] | 167 | High expression correlates with more frequent chromosome 3 loss and chromosome 8q gain. |
PARP (Poly (ADP-ribose) polymerase) [60] | 91 | High expression correlates with more frequent chromosome 3 loss. |
Adiponectin (GBP-28, apM1, AdipoQ and Acrp30) [19] | 34 | Low expression correlates with more frequent chromosome 3 loss. |
PERP (p53 apoptosis effector related to PMP-22) [64] | 16 | Low expression correlates with more frequent chromosome 3 loss. |
Marker | Study Group Size | Conclusion |
---|---|---|
EGFR (Epidermal growth factor receptor) [40] | 40 | High expression correlates with higher mitotic count. |
EphA1 (Eph-A1 receptor, erythropoietin-producing human hepatocellular receptor A5) [43] | 94 | High expression correlates with lower mitotic count. |
NEMO/IKKγ (Nuclear factor κB essential modulator, inhibitor of nuclear factor kappa B kinase subunit gamma) [55] | 75 | Low expression correlates with higher mitotic count. |
Nestin (Neural stem cell protein) [56] | 167 | High expression correlates with higher mitotic count. |
Marker | Study Group Size | Conclusion |
---|---|---|
CEACAM (Carcinoembryonic antigen cell adhesion molecule-1) [29] | 79 | High expression correlates with network extracellular matrix pattern. |
MMP-9 (Matrix metalloproteinase-9) [52] | 100 | High expression correlates with presence of vascular loops and network patterns. |
VEGF-A (Vascular endothelial growth factor-A) [52] | 100 | High expression correlates with presence of vascular loops and network patterns. |
NEMO/IKKγ (Nuclear factor κB essential modulator, inhibitor of nuclear factor kappa B kinase subunit gamma) [55] | 75 | Low expression correlates with presence of vascular loops. |
Nestin (Neural stem cell protein) [56] | 167 | High expression correlates with presence of vascular loops. |
Marker | Study Group Size | Conclusion |
---|---|---|
EMAP-II (Endothelial monocyte-activating polypeptide II) [42] | 25 | High expression correlates with macrophage infiltration. |
PD-1 (Programmed cell death receptor-1) [62] | 71 | High expression correlates with macrophage infiltration. |
PD-L1 (Programmed death-ligand 1) [62] | 71 | High expression correlates with macrophage infiltration. |
CCR7 (C-C Motif Chemokine Receptor 7) [26] | 49 | High expression correlates with lymphocytic infiltration. |
MMP-9 (Matrix metalloproteinase-9) [52] | 100 | High expression correlates with lymphocytic infiltration. |
VEGF-A (Vascular endothelial growth factor-A) [52] | 100 | High expression correlates with lymphocytic infiltration. |
Marker | Study Group Size | Conclusion |
---|---|---|
BNIP3 (BCL2 19 kD protein-interacting protein 3) [24] | 47 | High expression correlates with increased pigmentation. |
HERC2 (HECT and RLD Domain Containing E3 Ubiquitin Protein Ligase 2) [45] | 52 | High expression correlates with increased pigmentation. |
P-protein (Pink-eyed dilution protein) [45] | 52 | High expression correlates with increased pigmentation and advanced clinical tumor staging. |
PD-L1 (Programmed death-ligand 1) [63] | 71 | High expression correlates with higher AJCC prognostic stage group. |
PLK-1 (Polo-like kinase-1) [66] | 158 | Low expression correlates with higher AJCC prognostic stage group. |
CD147 (Cluster of differentiation 147, Basigin (BSG), extracellular matrix metalloproteinase inducer (EMMPRIN)) [28] | 49 | High expression in the nonmetastatic sub-group correlates with TNM stage. |
CCR7 (C-C Motif Chemokine Receptor 7) [26] | 49 | High expression correlates with necrosis. |
MMP-9 (Matrix metalloproteinase-9) [52] | 100 | High expression correlates with degree of necrosis. |
VEGF-A (Vascular endothelial growth factor-A) [52] | 100 | High expression correlates with degree of necrosis. |
EphA1 (Eph-A1 receptor, erythropoietin-producing human hepatocellular receptor A1) [43] | 94 | High expression correlates with more frequent presence of hemorrhage in the vitreous chamber. |
EphA5 (Eph-A5 receptor, erythropoietin-producing human hepatocellular receptor A5) [43] | 94 | High expression correlates with more frequent presence of hemorrhage in the vitreous chamber. |
NEMO/IKKγ (Nuclear factor κB essential modulator, inhibitor of nuclear factor kappa B kinase subunit gamma) [55] | 75 | Low expression correlates with neovascularization. |
CyclinD1 [39] | 96 | High expression correlates with the tumor cell MIB-1 positivity. |
PD-1(Programmed cell death receptor-1) [62] | 71 | High expression correlates with absence of BAP-1 staining. |
Marker | Study Group Size | Conclusion |
---|---|---|
ABCB5 (ATP-binding cassette sub-family B member 5) [17] | 55 | High expression correlates with presence of metastasis. |
ADAM10 (A disintegrin and metalloproteinase domain-containing protein 10) [18] | 52 | High expression correlates with presence of metastasis. |
Adiponectin (GBP-28, apM1, AdipoQ and Acrp30) [19] | 34 | Low expression correlates with presence of metastasis. |
Beclin [23] | 85 | High expression correlates with less frequent metastasis. |
CCR7 (C-C Motif Chemokine Receptor 7) [27] | 70 | High expression correlates with presence of metastasis. |
c-Met (Tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR)) [30] | 60 | High expression correlates with presence of metastasis. |
C-NFκB proteins (Canonical nuclear factor-κB proteins (p65 and p50)) [32] | 75 | High expression correlates with presence of metastasis. |
COX-2 (Cyclooxygenase-2) [33] | 32 | High expression correlates with metastatic death. |
COX-2 (Cyclooxygenase-2) [34] | 43 | High expression correlates with presence of metastasis. |
c-REL [35] | 75 | High expression correlates with presence of metastasis. |
Cripto-1 (Teratocarcinoma-derived growth factor-1) [36] | 36 | High expression correlates with presence of metastasis. |
CyclinD1 [39] | 96 | High expression correlates with presence of metastasis. |
EGFR (Epidermal growth factor receptor) [41] | 22 | High expression correlates with metastatic death. |
EphA5 (Eph-A5 receptor, erythropoietin-producing human hepatocellular receptor A5) [43] | 94 | High expression correlates with less frequent metastasis. |
ICAM-1 (Intercellular cell adhesionmolecule-1) [47] | 90 | Loss of expression correlates with presence of metastasis. |
IGF-1R (Insulin-like growth factor 1 receptor) [48] | 36 | High expression correlates with metastatic death. |
LOX (Lysyl oxidase) [50] | 33 | High expression correlates with reduced metastasis-free survival time. |
MCAM (Melanoma cell adhesion molecule, MUC18, Mel-Cam, CD146) [51] | 35 | High expression correlates with metastatic death. |
MMP-2 and MMP-9 (Matrix metalloproteinase-2 and -9) [28] | 26 | High expression correlates with presence of metastasis. |
MMP-9 (Matrix metalloproteinase-9) [52] | 100 | High expression correlates with presence of metastasis. |
NC-NFκB proteins (p52, RelB, and co-expression of p52/RelB) [54] | 75 | High expression correlates with reduced metastasis-free survival time. |
p53 [39] | 96 | High expression correlates with presence of metastasis. |
PCNA (Proliferating cell nuclear antigen, ATLD2) [61] | 212 | High expression correlates with presence of metastasis. |
PD-1 (Programmed cell death receptor-1) [62] | 71 | High expression correlates with presence of metastasis. |
PD-L1 (Programmed death-ligand 1) [62] | 71 | High expression correlates with presence of metastasis. |
phospho-Akt [65] | 34 | High expression correlates with presence of metastasis. |
P-protein (Pink-eyed dilution protein) [45] | 52 | High cytoplasmic expression correlates with presence of metastasis. |
PRDX3 (Thioredoxin-dependent peroxidase reductase) [67] | 92 | High expression correlates with presence of metastasis. |
RKIP (Raf Kinase Inhibitor Protein) [68] | 44 | Low expression correlates with presence of metastasis. |
SPANX-C (SPANX family member C; Sperm protein associated with the nucleus on the X chromosome C) [69] | 55 | High expression correlates with presence of metastasis. |
Syntenin (Syndecan binding protein syntenin-1, melanoma differentiation-associated gene 9, mda-9) [71] | 29 | High expression correlates with risk of metastasis recurrence. |
VEGF-A (Vascular endothelial growth factor-A) [52] | 100 | High expression correlates with presence of metastasis. |
Marker | Study Group Size | Conclusion |
---|---|---|
AIF (Apoptosis inducing factor) [20] | 54 | High expression correlates with reduced survival time. |
ATM (Ataxia-telangiectasia mutated protein) [21] | 69 | Loss of expression correlates with reduced disease-free survival time. |
ATM (Ataxia-telangiectasia mutated protein) [22] | 69 | Loss of expression correlates with reduced disease-free survival time. |
Beclin [23] | 85 | High expression correlates with longer disease-free survival time. |
BNIP3 (BCL2 19 kD protein-interacting protein 3) [24] | 47 | High expression correlates with reduced overall survival time. |
BTNL9 (Butyrophilin-like protein 9) [25] | 62 | High expression correlates with longer overall survival time. |
CCR7 (C-C Motif Chemokine Receptor 7) [26] | 49 | High expression correlates with reduced overall survival time. |
c-Met (Tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR)) [30] | 60 | High expression correlates with reduced overall survival time. |
c-Met (Tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR)) [31] | 132 | High expression correlates with melanoma-specific mortality. |
C-NFκB proteins (Canonical nuclear factor-κB proteins (p65 and p50)) [32] | 75 | High expression correlates with reduced survival time. |
c REL [35] | 75 | High expression correlates with reduced overall survival time. |
EphA5 (Eph-A5 receptor, erythropoietin-producing human hepatocellular receptor A5) [43] | 94 | High expression correlates with longer overall survival time. |
HER3 (Human epidermal growth factor receptor 3 or receptor tyrosine-protein kinase erbB-3) [44] | 128 | High nuclear expression correlates with longer overall survival time. |
IGF-1R (Insulin-like growth factor 1 receptor) [31] | 132 | High expression correlates with melanoma-specific mortality. |
JARID1B (Jumonji AT-rich interactive domain 1B) [49] | 121 | High expression correlates with reduced survival time. |
Legumain (Asparagine endopeptidase (AEP)) [76] | 82 | High expression correlates with reduced survival time. |
MMP-2 and MMP-9 (Matrix metalloproteinase-2 and -9) [28] | 26 | High expression correlates with reduced survival time. |
Nbs1 (Nibrin, NBN) [53] | 49 | High expression correlates with reduced survival time. |
NC-NFκB proteins (p52, RelB, and co-expression of p52/RelB) [54] | 75 | High expression correlates with reduced overall survival time. |
NEMO/IKKγ (Nuclear factor κB essential modulator, inhibitor of nuclear factor kappa B kinase subunit gamma) [55] | 75 | Low expression correlates with reduced overall survival time. |
Nestin (Neural stem cell protein) [56] | 167 | High expression correlates with reduced survival time. |
nm23-H1 (Nucleoside diphosphate kinase A) [58] | 32 | The increased immunostaining intensity correlates with longer survival time. |
PARP (Poly (ADP-ribose) polymerase) [60] | 91 | High expression correlates with reduced overall survival time and disease-free survival time. |
PD-1 (Programmed cell death receptor-1) [63] | 82 | High expression correlates with reduced survival time. |
PLK-1 (Polo-like kinase-1) [66] | 158 | Low expression correlates with reduced overall survival time. |
PRDX3 (Thioredoxin-dependent peroxidase reductase) [67] | 92 | High expression correlates with reduced survival time. |
SSR (Somatostatin receptor, SSTR) [70] | 25 | High expression correlates with longer survival time. |
TIMP-1 and TIMP-2 (Tissue inhibitor of metalloproteinase-1 and -2) [28] | 26 | High expression correlates with longer survival time. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajdzis, M.; Kaczmarek, R.; Gajdzis, P. Novel Prognostic Immunohistochemical Markers in Uveal Melanoma-Literature Review. Cancers 2021, 13, 4031. https://doi.org/10.3390/cancers13164031
Gajdzis M, Kaczmarek R, Gajdzis P. Novel Prognostic Immunohistochemical Markers in Uveal Melanoma-Literature Review. Cancers. 2021; 13(16):4031. https://doi.org/10.3390/cancers13164031
Chicago/Turabian StyleGajdzis, Malgorzata, Radoslaw Kaczmarek, and Pawel Gajdzis. 2021. "Novel Prognostic Immunohistochemical Markers in Uveal Melanoma-Literature Review" Cancers 13, no. 16: 4031. https://doi.org/10.3390/cancers13164031
APA StyleGajdzis, M., Kaczmarek, R., & Gajdzis, P. (2021). Novel Prognostic Immunohistochemical Markers in Uveal Melanoma-Literature Review. Cancers, 13(16), 4031. https://doi.org/10.3390/cancers13164031