Prognostic Value of Procalcitonin, C-Reactive Protein, and Lactate Levels in Emergency Evaluation of Cancer Patients with Suspected Infection
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants and Data Collection
2.2. Statistical Analysis
2.3. Construction and Evaluation of the Final Predictive Scoring System
3. Results
3.1. Patient Characteristics
3.2. Variation of Infection Biomarkers
3.3. Logistic Regression Model Analyses
3.4. Constructing and Evaluating the Scoring System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hensley, M.K.; Donnelly, J.P.; Carlton, E.F.; Prescott, H.C. Epidemiology and Outcomes of Cancer-Related versus Non-Cancer-Related Sepsis Hospitalizations. Crit. Care Med. 2019, 47, 1310–1316. [Google Scholar] [CrossRef]
- Moore, J.X.; Akinyemiju, T.; Bartolucci, A.; Wang, H.E.; Waterbor, J.; Griffin, R. Mediating Effects of Frailty Indicators on the Risk of Sepsis after Cancer. J. Intensive Care Med. 2020, 35, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.D.; Braun, L.A.; Cooper, L.M.; Johnston, J.; Weiss, R.V.; Qualy, R.L.; Linde-Zwirble, W. Hospitalized cancer patients with severe sepsis: Analysis of incidence, mortality, and associated costs of care. Crit. Care 2004, 8, R291–R298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Louw, A.; Cohrs, A.; Leslie, D. Incidence of sepsis and associated mortality within the first year after cancer diagnosis in middle aged adults: A US population based study. PLoS ONE 2020, 15, e0243449. [Google Scholar] [CrossRef]
- Ambrus, J.L.; Ambrus, C.M.; Mink, I.B.; Pickren, J.W. Causes of death in cancer patients. J. Med. 1975, 6, 61–64. [Google Scholar]
- Inagaki, J.; Rodriguez, V.; Bodey, G.P. Proceedings: Causes of death in cancer patients. Cancer 1974, 33, 568–573. [Google Scholar] [CrossRef]
- Nosari, A.; Barberis, M.; Landonio, G.; Magnani, P.; Majno, M.; Oreste, P.; Sozzi, P. Infections in haematologic neoplasms: Autopsy findings. Haematologica 1991, 76, 135–140. [Google Scholar] [PubMed]
- Freund, Y.; Delerme, S.; Goulet, H.; Bernard, M.; Riou, B.; Hausfater, P. Serum lactate and procalcitonin measurements in emergency room for the diagnosis and risk-stratification of patients with suspected infection. Biomarkers 2012, 17, 590–596. [Google Scholar] [CrossRef]
- Fraunberger, P.; Wang, Y.; Holler, E.; Parhofer, K.G.; Nagel, D.; Walli, A.K.; Seidel, D. Prognostic value of interleukin 6, procalcitonin, and C-reactive protein levels in intensive care unit patients during first increase of fever. Shock 2006, 26, 10–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harbarth, S.; Holeckova, K.; Froidevaux, C.; Pittet, D.; Ricou, B.; Grau, G.E.; Vadas, L.; Pugin, J.; Geneva Sepsis, N. Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am. J. Respir Crit. Care Med. 2001, 164, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, N.I.; Howell, M.D.; Talmor, D.; Nathanson, L.A.; Lisbon, A.; Wolfe, R.E.; Weiss, J.W. Serum lactate as a predictor of mortality in emergency department patients with infection. Ann. Emerg. Med. 2005, 45, 524–528. [Google Scholar] [CrossRef]
- Wacharasint, P.; Nakada, T.A.; Boyd, J.H.; Russell, J.A.; Walley, K.R. Normal-range blood lactate concentration in septic shock is prognostic and predictive. Shock 2012, 38, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Jansen, T.C.; van Bommel, J.; Schoonderbeek, F.J.; Sleeswijk Visser, S.J.; van der Klooster, J.M.; Lima, A.P.; Willemsen, S.P.; Bakker, J.; group, L.s. Early lactate-guided therapy in intensive care unit patients: A multicenter, open-label, randomized controlled trial. Am. J. Respir Crit. Care Med. 2010, 182, 752–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, R.; Hu, L.; Ling, Y.; Hou, Y.; Fang, H.; Zhang, H.; Liang, S.; He, Z.; Fang, M.; Li, J.; et al. C-reactive protein concentration as a risk predictor of mortality in intensive care unit: A multicenter, prospective, observational study. BMC Anesth. 2020, 20, 292. [Google Scholar] [CrossRef]
- Sbrana, A.; Torchio, M.; Comolli, G.; Antonuzzo, A.; Danova, M.; Italian Network for Supportive Care in, O. Use of procalcitonin in clinical oncology: A literature review. New Microbiol. 2016, 39, 174–180. [Google Scholar]
- Gunasekaran, V.; Radhakrishnan, N.; Dinand, V.; Sachdeva, A. Serum Procalcitonin for Predicting Significant Infections and Mortality in Pediatric Oncology. Indian Pediatr. 2016, 53, 1075–1078. [Google Scholar]
- Jin, M.; Khan, A.I. Procalcitonin: Uses in the Clinical Laboratory for the Diagnosis of Sepsis. Lab. Med. 2010, 41, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Durnas, B.; Watek, M.; Wollny, T.; Niemirowicz, K.; Marzec, M.; Bucki, R.; Gozdz, S. Utility of blood procalcitonin concentration in the management of cancer patients with infections. Onco. Targets Ther. 2016, 9, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Schuttrumpf, S.; Binder, L.; Hagemann, T.; Berkovic, D.; Trumper, L.; Binder, C. Utility of procalcitonin concentration in the evaluation of patients with malignant diseases and elevated C-reactive protein plasma concentrations. Clin. Infect. Dis. 2006, 43, 468–473. [Google Scholar] [CrossRef]
- Koizumi, Y.; Sakanashi, D.; Ohno, T.; Nakamura, A.; Yamada, A.; Shibata, Y.; Shiota, A.; Kato, H.; Hagihara, M.; Asai, N.; et al. Plasma procalcitonin levels remain low at the onset of gram-positive bacteremia regardless of severity or the presence of shock: A retrospective analysis of patients with detailed clinical characteristics. J. Microbiol. Immunol. Infect. 2020. [Google Scholar] [CrossRef]
- Goodlet, K.J.; Cameron, E.A.; Nailor, M.D. Low Sensitivity of Procalcitonin for Bacteremia at an Academic Medical Center: A Cautionary Tale for Antimicrobial Stewardship. Open Forum. Infect. Dis. 2020, 7, ofaa096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karagiannis, A.K.; Girio-Fragkoulakis, C.; Nakouti, T. Procalcitonin: A New Biomarker for Medullary Thyroid Cancer? A Systematic Review. Anticancer Res. 2016, 36, 3803–3810. [Google Scholar]
- Kataja, A.; Tarvasmaki, T.; Lassus, J.; Sionis, A.; Mebazaa, A.; Pulkki, K.; Banaszewski, M.; Carubelli, V.; Hongisto, M.; Jankowska, E.; et al. Kinetics of procalcitonin, C-reactive protein and interleukin-6 in cardiogenic shock—Insights from the CardShock study. Int. J. Cardiol. 2021, 322, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.; Cohen, M.J.; Benenson, S.; Duchin, O.; Haviv, Y.S.; Elhalel-Darnitski, M.; Levin, P.D. Procalcitonin in hemodialysis patients presenting with fever or chills to the emergency department. Intern. Emerg. Med. 2020, 15, 257–262. [Google Scholar] [CrossRef]
- Lai, L.; Lai, Y.; Wang, H.; Peng, L.; Zhou, N.; Tian, Y.; Jiang, Y.; Gong, G. Diagnostic Accuracy of Procalcitonin Compared to C-Reactive Protein and Interleukin 6 in Recognizing Gram-Negative Bloodstream Infection: A Meta-Analytic Study. Dis. Markers 2020, 2020, 4873074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, J.X.; Zhang, N.; Li, S.S.; Zhang, A.M.; Yin, Y.; Li, Y.F.; Jia, M. The detection of bacterial infections in leukemia patients using procalcitionin levels. Leuk Lymphoma 2020, 61, 165–170. [Google Scholar] [CrossRef]
- Ito, A.; Ito, I.; Inoue, D.; Marumo, S.; Ueda, T.; Nakagawa, H.; Taki, M.; Nakagawa, A.; Tatsumi, S.; Nishimura, T.; et al. The utility of serial procalcitonin measurements in addition to pneumonia severity scores in hospitalised community-acquired pneumonia: A multicentre, prospective study. Int. J. Infect. Dis. 2020, 92, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Arulkumaran, N.; Khpal, M.; Tam, K.; Baheerathan, A.; Corredor, C.; Singer, M. Effect of Antibiotic Discontinuation Strategies on Mortality and Infectious Complications in Critically Ill Septic Patients: A Meta-Analysis and Trial Sequential Analysis. Crit. Care Med. 2020, 48, 757–764. [Google Scholar] [CrossRef]
- DeSear, K.E.; Thompson-Leduc, P.; Kirson, N.; Chritton, J.J.; Ie, S.; Van Schooneveld, T.C.; Cheung, H.C.; Ou, S.; Schuetz, P. ProCommunity: Procalcitonin use in real-world US community hospital settings. Curr. Med. Res. Opin. 2020, 36, 1529–1532. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; Beriault, D.; Schwartz, K.L.; Seah, J.; Pasic, M.D.; Cirone, R.; Chan, A.; Downing, M. A real-world assessment of procalcitonin combined with antimicrobial stewardship in a community ICU. J. Crit. Care 2020, 57, 130–133. [Google Scholar] [CrossRef]
- Lafon, T.; Cazalis, M.A.; Vallejo, C.; Tazarourte, K.; Blein, S.; Pachot, A.; Laterre, P.F.; Laribi, S.; Francois, B.; The TRIAGE Study Group. Prognostic performance of endothelial biomarkers to early predict clinical deterioration of patients with suspected bacterial infection and sepsis admitted to the emergency department. Ann. Intensive Care 2020, 10, 113. [Google Scholar] [CrossRef]
- Haag, E.; Molitor, A.; Gregoriano, C.; Muller, B.; Schuetz, P. The value of biomarker-guided antibiotic therapy. Expert Rev. Mol. Diagn. 2020, 20, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, M.; Zhu, B.; Zhu, Y.; Xi, X. Prediction of median survival time in sepsis patients by the SOFA score combined with different predictors. Burn. Trauma 2020, 8, tkz006. [Google Scholar] [CrossRef]
- Xia, Y.; Zou, L.; Li, D.; Qin, Q.; Hu, H.; Zhou, Y.; Cao, Y. The ability of an improved qSOFA score to predict acute sepsis severity and prognosis among adult patients. Medicine 2020, 99, e18942. [Google Scholar] [CrossRef]
- LeGuen, M.; Ballueer, Y.; McKay, R.; Eastwood, G.; Bellomo, R.; Jones, D.; Austin Health, R.R.T.q.i. Frequency and significance of qSOFA criteria during adult rapid response team reviews: A prospective cohort study. Resuscitation 2018, 122, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; de Mendonca, A.; Cantraine, F.; Moreno, R.; Takala, J.; Suter, P.M.; Sprung, C.L.; Colardyn, F.; Blecher, S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: Results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit. Care Med. 1998, 26, 1793–1800. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef] [Green Version]
- Zweig, M.H.; Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, 39, 561–577. [Google Scholar] [CrossRef] [PubMed]
- Gibot, S.; Bene, M.C.; Noel, R.; Massin, F.; Guy, J.; Cravoisy, A.; Barraud, D.; De Carvalho Bittencourt, M.; Quenot, J.P.; Bollaert, P.E.; et al. Combination biomarkers to diagnose sepsis in the critically ill patient. Am. J. Respir Crit. Care Med. 2012, 186, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Henriquez-Camacho, C.; Losa, J. Biomarkers for sepsis. Biomed. Res. Int. 2014, 2014, 547818. [Google Scholar] [CrossRef] [PubMed]
- Garcia de Guadiana-Romualdo, L.; Cerezuela-Fuentes, P.; Espanol-Morales, I.; Esteban-Torrella, P.; Jimenez-Santos, E.; Hernando-Holgado, A.; Albaladejo-Oton, M.D. Prognostic value of procalcitonin and lipopolysaccharide binding protein in cancer patients with chemotherapy-associated febrile neutropenia presenting to an emergency department. Biochem. Med. 2019, 29, 010702. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Qdaisat, A.; Hu, Z.; Wagar, E.A.; Reyes-Gibby, C.; Meng, Q.H.; Yeung, S.C. Cardiac Troponin Is a Predictor of Septic Shock Mortality in Cancer Patients in an Emergency Department: A Retrospective Cohort Study. PLoS ONE 2016, 11, e0153492. [Google Scholar] [CrossRef] [Green Version]
- Schuetz, P.; Beishuizen, A.; Broyles, M.; Ferrer, R.; Gavazzi, G.; Gluck, E.H.; Gonzalez Del Castillo, J.; Jensen, J.U.; Kanizsai, P.L.; Kwa, A.L.H.; et al. Procalcitonin (PCT)-guided antibiotic stewardship: An international experts consensus on optimized clinical use. Clin. Chem. Lab. Med. 2019, 57, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Peacock, W.F.; Rafique, Z. Procalcitonin Cut-point Strategies. Clin. Infect. Dis. 2020, 71, 245–246. [Google Scholar] [CrossRef]
- Czajka, S.; Ziebinska, K.; Marczenko, K.; Posmyk, B.; Szczepanska, A.J.; Krzych, L.J. Validation of APACHE II, APACHE III and SAPS II scores in in-hospital and one year mortality prediction in a mixed intensive care unit in Poland: A cohort study. BMC Anesth. 2020, 20, 296. [Google Scholar] [CrossRef]
- Gilani, M.T.; Razavi, M.; Azad, A.M. A comparison of Simplified Acute Physiology Score II, Acute Physiology and Chronic Health Evaluation II and Acute Physiology and Chronic Health Evaluation III scoring system in predicting mortality and length of stay at surgical intensive care unit. Niger Med. J. 2014, 55, 144–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varghese, Y.E.; Kalaiselvan, M.S.; Renuka, M.K.; Arunkumar, A.S. Comparison of acute physiology and chronic health evaluation II (APACHE II) and acute physiology and chronic health evaluation IV (APACHE IV) severity of illness scoring systems, in a multidisciplinary ICU. J. Anaesthesiol Clin. Pharm. 2017, 33, 248–253. [Google Scholar] [CrossRef]
- Almansour, I.M.; Aldalaykeh, M.K.; Saleh, Z.T.; Yousef, K.M.; Alnaeem, M.M. Predictive Performance of two Measures of Prognostic Mortality of Cancer Patients in Intensive Care Unit in Jordan: A Comparative Single-Centre Study. Open Nurs. J. 2020, 14, 168–173. [Google Scholar] [CrossRef]
- O’Brien, M.E.; Borthwick, A.; Rigg, A.; Leary, A.; Assersohn, L.; Last, K.; Tan, S.; Milan, S.; Tait, D.; Smith, I.E. Mortality within 30 days of chemotherapy: A clinical governance benchmarking issue for oncology patients. Br. J. Cancer 2006, 95, 1632–1636. [Google Scholar] [CrossRef] [Green Version]
Characteristic | No. of Patients (%) | No. of ED Visits (%) |
---|---|---|
Total | 3623 | 5118 |
Age (interquartile range), years | 62 (50–70) | 62 (49–70) |
Sex | ||
Female | 1764 (48.7) | 2433 (47.5) |
Male | 1859 (51.3) | 2685 (52.5) |
Race | ||
Nonwhite | 1107 (30.6) | 1636 (32.0) |
White | 2516 (69.4) | 3482 (68.0) |
Cancer type | ||
Leukemia | 602 (16.6) | 992 (19.4) |
Lymphoma | 394 (10.9) | 597 (11.7) |
Breast | 330 (9.1) | 432 (8.4) |
Lung | 313 (8.6) | 390 (7.6) |
Sarcoma | 210 (5.8) | 333 (6.5) |
Multiple myeloma | 202 (5.6) | 322 (6.3) |
Head and neck | 181 (5.0) | 257 (5.0) |
Colorectal | 163 (4.5) | 202 (3.9) |
Hepatobiliary | 149 (4.1) | 209 (4.1) |
Male genital | 142 (3.9) | 186 (3.6) |
Pancreatic | 130 (3.6) | 169 (3.3) |
Uterine | 108 (3.0) | 138 (2.7) |
Melanoma | 91 (2.5) | 106 (2.1) |
Gastroesophageal | 82 (2.3) | 106 (2.1) |
Ovarian | 83 (2.3) | 100 (2.0) |
Kidney | 69 (1.9) | 82 (1.6) |
Bladder | 65 (1.8) | 95 (1.9) |
Thyroid | 50 (1.4) | 69 (1.3) |
Brain and spinal cord | 48 (1.3) | 57 (1.1) |
Others | 211 (5.8) | 276 (5.4) |
Cancer stage | ||
Local/undetermined | 755 (20.8) | 1000 (19.5) |
Hematologic | 1198 (33.1) | 1911 (37.3) |
Advanced/metastatic | 1670 (46.1) | 2207 (43.1) |
Variable a | Beta Coefficient | Standard Error | Odds Ratio (95% Confidence Interval) | p | Assigned Point(s) |
---|---|---|---|---|---|
qSOFA score | |||||
0 | Reference | ||||
1 | 1.003 | 0.249 | 2.73 (1.67–4.45) | <0.001 | 3 |
2 | 1.382 | 0.349 | 3.98 (1.97–7.77) | <0.001 | 4 |
3 | 2.222 | 0.800 | 9.23 (1.87–46.03) | 0.005 | 6 |
Procalcitonin ≥ 0.15 ng/mL | 0.853 | 0.399 | 2.35 (1.13–5.52) | 0.033 | 2 |
Lactate ≥ 2.0 mmol/L | 1.153 | 0.234 | 3.17 (2.01–5.04) | <0.001 | 3 |
CRP ≥ 115 mg/L | 0.535 | 0.241 | 1.71 (1.07–2.76) | 0.026 | 1 |
LDH ≥ 285 U/L | 1.295 | 0.245 | 3.65 (2.28–5.99) | <0.001 | 4 |
Albumin < 3.5 g/dL | 1.124 | 0.287 | 3.08 (1.79–5.54) | <0.001 | 3 |
Cancer type risk group | |||||
Low | Reference | ||||
Intermediate | 0.367 | 0.249 | 1.44 (0.88–2.34) | 0.140 | 1 |
High | 0.588 | 0.352 | 1.80 (0.87–3.51) | 0.095 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaftari, P.; Qdaisat, A.; Chaftari, A.-M.; Maamari, J.; Li, Z.; Lupu, F.; Raad, I.; Hachem, R.; Calin, G.; Yeung, S.-C.J. Prognostic Value of Procalcitonin, C-Reactive Protein, and Lactate Levels in Emergency Evaluation of Cancer Patients with Suspected Infection. Cancers 2021, 13, 4087. https://doi.org/10.3390/cancers13164087
Chaftari P, Qdaisat A, Chaftari A-M, Maamari J, Li Z, Lupu F, Raad I, Hachem R, Calin G, Yeung S-CJ. Prognostic Value of Procalcitonin, C-Reactive Protein, and Lactate Levels in Emergency Evaluation of Cancer Patients with Suspected Infection. Cancers. 2021; 13(16):4087. https://doi.org/10.3390/cancers13164087
Chicago/Turabian StyleChaftari, Patrick, Aiham Qdaisat, Anne-Marie Chaftari, Julian Maamari, Ziyi Li, Florea Lupu, Issam Raad, Ray Hachem, George Calin, and Sai-Ching Jim Yeung. 2021. "Prognostic Value of Procalcitonin, C-Reactive Protein, and Lactate Levels in Emergency Evaluation of Cancer Patients with Suspected Infection" Cancers 13, no. 16: 4087. https://doi.org/10.3390/cancers13164087
APA StyleChaftari, P., Qdaisat, A., Chaftari, A. -M., Maamari, J., Li, Z., Lupu, F., Raad, I., Hachem, R., Calin, G., & Yeung, S. -C. J. (2021). Prognostic Value of Procalcitonin, C-Reactive Protein, and Lactate Levels in Emergency Evaluation of Cancer Patients with Suspected Infection. Cancers, 13(16), 4087. https://doi.org/10.3390/cancers13164087