Memantine Protects against Paclitaxel-Induced Cognitive Impairment through Modulation of Neurogenesis and Inflammation in Mice
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Preparation
2.2. Pharmacological Treatment of Animals
2.3. Assessment of Learning and Spatial Memory with the Morris Water Maze (MWM) Test
2.4. Assessment of Locomotion and Anxiety with the Open-Field Test (OFT) and of Depressive-like Behavior with the Forced Swimming Test (FST)
2.5. Tissue Preparation and Immunohistochemistry
2.6. Determination of Cell Number
2.7. Determination of Hippocampal Brain-Derived Neurotrophic Factor (BDNF) Expression by Enzyme-Linked Immunosorbent Assay (ELISA)
2.8. Determination of Systemic and Hippocampal Inflammatory Cytokines by ELISA
2.9. Statistical Analysis
3. Results
3.1. Paclitaxel Treatment Induced CICI and Impaired Neurogenesis
3.1.1. Paclitaxel Impaired Spatial Learning and Memory Measured by the MWM Test and Increased Anxiety Measured by the OFT
3.1.2. Paclitaxel Impaired Hippocampal Neurogenesis
3.2. Memantine Pretreatment Restored Hippocampal Neurogenesis and Improved Memory Deficits but Induced Depression-like Behavior and Maintained Anxiety
3.2.1. High-Dose Memantine Pretreatment Restored Hippocampal Neurogenesis
3.2.2. Memantine Pretreatment Successfully Restored Memory Deficits but Caused Depression-like Behavior and Maintained Anxiety in CICI Mice
3.2.3. High-Dose Memantine Pretreatment Significantly Increased Hippocampal BDNF Levels but Did Not Persistently Inhibit the Elevated Expression of Serum and Hippocampal TNF-α and IL-1 in CICI Mice
3.3. Memantine Cotreatment Restored Hippocampal Neurogenesis, Improved Spatial Memory Deficits and Did Not Result in Depression-like Behavior
3.3.1. Memantine Cotreatment Restored Hippocampal Neurogenesis
3.3.2. Memantine Cotreatment Improved Memory Deficits and Did Not Result in Depression-like Behavior
3.3.3. Memantine Cotreatment Significantly Increased Hippocampal BDNF Levels and Suppressed the Expression of Serum and Hippocampal TNF-α and IL-1 in CICI Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wefel, J.S.; Schagen, S.B. Chemotherapy-related cognitive dysfunction. Curr. Neurol. Neurosci. Rep. 2012, 12, 267–275. [Google Scholar] [CrossRef] [PubMed]
- de Ruiter, M.B.; Reneman, L.; Boogerd, W.; Veltman, D.J.; van Dam, F.S.; Nederveen, A.J.; Boven, E.; Schagen, S.B. Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Hum. Brain Mapp. 2011, 32, 1206–1219. [Google Scholar] [CrossRef] [PubMed]
- Mounier, N.M.; Abdel-Maged, A.E.; Wahdan, S.A.; Gad, A.M.; Azab, S.S. Chemotherapy-induced cognitive impairment (CICI): An overview of etiology and pathogenesis. Life Sci. 2020, 258, 118071. [Google Scholar] [CrossRef]
- Dietrich, J.; Prust, M.; Kaiser, J. Chemotherapy, cognitive impairment and hippocampal toxicity. Neuroscience 2015, 309, 224–232. [Google Scholar] [CrossRef]
- Soffietti, R.; Trevisan, E.; Rudà, R. Neurologic complications of chemotherapy and other newer and experimental approaches. Handb. Clin. Neurol. 2014, 121, 1199–1218. [Google Scholar] [CrossRef] [PubMed]
- Hurria, A.; Hurria, A.; Zuckerman, E.; Panageas, K.S.; Fornier, M.; D’Andrea, G.; Dang, C.; Moasser, M.; Robson, M.; Seidman, A.; et al. A prospective, longitudinal study of the functional status and quality of life of older patients with breast cancer receiving adjuvant chemotherapy. J. Am. Geriatr. Soc. 2006, 54, 1119–1124. [Google Scholar] [CrossRef]
- Tanimukai, H.; Kanayama, D.; Omi, T.; Takeda, M.; Kudo, T. Paclitaxel induces neurotoxicity through endoplasmic reticulum stress. Biochem. Biophys. Res. Commun. 2013, 437, 151–155. [Google Scholar] [CrossRef]
- Lee, B.E.; Choi, B.Y.; Hong, D.K.; Kim, J.H.; Lee, S.H.; Kho, A.R.; Kim, H.; Choi, H.C.; Suh, S.W. The cancer chemotherapeutic agent paclitaxel (Taxol) reduces hippocampal neurogenesis via down-regulation of vesicular zinc. Sci. Rep. 2017, 7, 11667. [Google Scholar] [CrossRef] [Green Version]
- Huehnchen, P.; Boehmerle, W.; Springer, A.; Freyer, D.; Endres, M. A novel preventive therapy for paclitaxel-induced cognitive deficits: Preclinical evidence from C57BL/6 mice. Transl. Psychiatry 2017, 7, e1185. [Google Scholar] [CrossRef] [Green Version]
- Wefel, J.S.; Saleeba, A.K.; Buzdar, A.U.; Meyers, C.A. Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer 2010, 116, 3348–3356. [Google Scholar] [CrossRef] [Green Version]
- Muallaoğlu, S.; Koçer, M.; Güler, N. Acute transient encephalopathy after weekly paclitaxel infusion. Med. Oncol. 2012, 29, 1297–1299. [Google Scholar] [CrossRef] [PubMed]
- Kesler, S.; Janelsins, M.; Koovakkattu, D.; Palesh, O.; Mustian, K.; Morrow, G.; Dhabhar, F.S. Reduced hippocampal volume and verbal memory performance associated with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behav. Immun. 2013, 30, S109–S116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergouignan, L.; Lefranc, J.P.; Chupin, M.; Morel, N.; Spano, J.P.; Fossati, P. Breast cancer affects both the hippocampus volume and the episodic autobiographical memory retrieval. PLoS ONE 2011, 6, e25349. [Google Scholar] [CrossRef] [Green Version]
- Horgusluoglu-Moloch, E.; Risacher, S.L.; Crane, P.K.; Hibar, D.; Thompson, P.M.; Saykin, A.J.; Nho, K. Genome-wide association analysis of hippocampal volume identifies enrichment of neurogenesis-related pathways. Sci. Rep. 2019, 9, 14498. [Google Scholar] [CrossRef] [Green Version]
- Horgusluoglu-Moloch, E.; Nho, K.; Risacher, S.L.; Kim, S.; Foroud, T.; Shaw, L.M.; Trojanowski, J.Q.; Aisen, P.S.; Petersen, R.C.; Jack, C.R., Jr.; et al. Targeted neurogenesis pathway-based gene analysis identifies ADORA2A associated with hippocampal volume in mild cognitive impairment and Alzheimer's disease. Neurobiol. Aging 2017, 60, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Ávila, J.; Llorens-Martín, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nat. Med. 2019, 25, 554–560. [Google Scholar] [CrossRef]
- Galvan, V.; Jin, K. Neurogenesis in the aging brain. Clin. Interv. Aging 2007, 2, 605–610. [Google Scholar]
- Deng, W.; Aimone, J.B.; Gage, F.H. New neurons and new memories: How does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci. 2010, 11, 339–350. [Google Scholar] [CrossRef]
- Wang, H.; Warner-Schmidt, J.; Varela, S.; Enikolopov, G.; Greengard, P.; Flajolet, M. Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice. Proc. Natl. Acad. Sci. USA 2015, 112, 9745–9750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesnokova, V.; Pechnick, R.N.; Wawrowsky, K. Chronic peripheral inflammation, hippocampal neurogenesis, and behavior. Brain Behav. Immun. 2016, 58, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, P.S.; Lin, P.Y.; Liu, C.H.; Su, H.C.; Tsai, K.J. Neuroinflammation and Neurogenesis in Alzheimer's Disease and Potential Therapeutic Approaches. Int. J. Mol. Sci. 2020, 21, 701. [Google Scholar] [CrossRef] [Green Version]
- Maekawa, M.; Namba, T.; Suzuki, E.; Yuasa, S.; Kohsaka, S.; Uchino, S. NMDA receptor antagonist memantine promotes cell proliferation and production of mature granule neurons in the adult hippocampus. Neurosci. Res. 2009, 63, 259–266. [Google Scholar] [CrossRef]
- Cahill, S.P.; Cole, J.D.; Yu, R.Q.; Clemans-Gibbon, J.; Snyder, J.S. Differential Effects of Extended Exercise and Memantine Treatment on Adult Neurogenesis in Male and Female Rats. Neuroscience 2018, 390, 241–255. [Google Scholar] [CrossRef]
- Rosi, S.; Vazdarjanova, A.; Ramirez-Amaya, V.; Worley, P.F.; Barnes, C.A.; Wenk, G.L. Memantine protects against LPS-induced neuroinflammation, restores behaviorally-induced gene expression and spatial learning in the rat. Neuroscience 2006, 142, 1303–1315. [Google Scholar] [CrossRef]
- Atarod, D.; Eskandari-Sedighi, G.; Pazhoohi, F.; Karimian, S.M.; Khajeloo, M.; Riazi, G.H. Microtubule Dynamicity Is More Important than Stability in Memory Formation: An In Vivo Study. J. Mol. Neurosci. MN 2015, 56, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Y.T.; Ng, T.; Shwe, M.; Ho, H.K.; Foo, K.M.; Cham, M.T.; Lee, J.A.; Fan, G.; Tan, Y.P.; Yong, W.S.; et al. Association of proinflammatory cytokines and chemotherapy-associated cognitive impairment in breast cancer patients: A multi-centered, prospective, cohort study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2015, 26, 1446–1451. [Google Scholar] [CrossRef]
- Staff, N.P.; Grisold, A.; Grisold, W.; Windebank, A.J. Chemotherapy-induced peripheral neuropathy: A current review. Ann. Neurol. 2017, 81, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Boriero, D.; Chaiswing, L.; Bondada, S.; St Clair, D.K.; Butterfield, D.A. Plausible biochemical mechanisms of chemotherapy-induced cognitive impairment (“chemobrain”), a condition that significantly impairs the quality of life of many cancer survivors. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 1088–1097. [Google Scholar] [CrossRef] [PubMed]
- Budni, J.; Feijo, D.P.; Batista-Silva, H.; Garcez, M.L.; Mina, F.; Belletini-Santos, T.; Krasilchik, L.R.; Luz, A.P.; Schiavo, G.L.; Quevedo, J. Lithium and memantine improve spatial memory impairment and neuroinflammation induced by beta-amyloid 1-42 oligomers in rats. Neurobiol. Learn. Mem. 2017, 141, 84–92. [Google Scholar] [CrossRef]
- Liu, P.Z.; Nusslock, R. Exercise-Mediated Neurogenesis in the Hippocampus via BDNF. Front. Neurosci. 2018, 12, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahles, T.A.; Saykin, A.J. Candidate mechanisms for chemotherapy-induced cognitive changes. Nat. Rev. Cancer 2007, 7, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Christie, L.A.; Acharya, M.M.; Parihar, V.K.; Nguyen, A.; Martirosian, V.; Limoli, C.L. Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012, 18, 1954–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, T.; Sykes, D.; Allen, A.R. Implications of Breast Cancer Chemotherapy-Induced Inflammation on the Gut, Liver, and Central Nervous System. Biomedicines 2021, 9, 189. [Google Scholar] [CrossRef]
- Panoz-Brown, D.; Carey, L.M.; Smith, A.E.; Gentry, M.; Sluka, C.M.; Corbin, H.E.; Wu, J.E.; Hohmann, A.G.; Crystal, J.D. The chemotherapeutic agent paclitaxel selectively impairs reversal learning while sparing prior learning, new learning and episodic memory. Neurobiol. Learn. Mem. 2017, 144, 259–270. [Google Scholar] [CrossRef] [Green Version]
- You, Z.; Zhang, S.; Shen, S.; Yang, J.; Ding, W.; Yang, L.; Lim, G.; Doheny, J.T.; Tate, S.; Chen, L.; et al. Cognitive impairment in a rat model of neuropathic pain: Role of hippocampal microtubule stability. Pain 2018, 159, 1518–1528. [Google Scholar] [CrossRef] [PubMed]
- Marvanová, M.; Lakso, M.; Pirhonen, J.; Nawa, H.; Wong, G.; Castrén, E. The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol. Cell. Neurosci. 2001, 18, 247–258. [Google Scholar] [CrossRef]
- Ishikawa, R.; Uchida, C.; Kitaoka, S.; Furuyashiki, T.; Kida, S. Improvement of PTSD-like behavior by the forgetting effect of hippocampal neurogenesis enhancer memantine in a social defeat stress paradigm. Mol. Brain 2019, 12, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iosif, R.E.; Ekdahl, C.T.; Ahlenius, H.; Pronk, C.J.; Bonde, S.; Kokaia, Z.; Jacobsen, S.E.; Lindvall, O. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 9703–9712. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, B.L.; van Praag, H.; Gage, F.H. Adult brain neurogenesis and psychiatry: A novel theory of depression. Mol. Psychiatry 2000, 5, 262–269. [Google Scholar] [CrossRef]
- Revest, J.M.; Dupret, D.; Koehl, M.; Funk-Reiter, C.; Grosjean, N.; Piazza, P.V.; Abrous, D.N. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol. Psychiatry 2009, 14, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Boufidou, F.; Lambrinoudaki, I.; Argeitis, J.; Zervas, I.M.; Pliatsika, P.; Leonardou, A.A.; Petropoulos, G.; Hasiakos, D.; Papadias, K.; Nikolaou, C. CSF and plasma cytokines at delivery and postpartum mood disturbances. J. Affect. Disord. 2009, 115, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Berthold-Losleben, M.; Himmerich, H. The TNF-alpha system: Functional aspects in depression, narcolepsy and psychopharmacology. Curr. Neuropharmacol. 2008, 6, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Song, Y.; Yang, J.; Zhang, Y.; Zhao, P.; Zhu, X.J.; Su, H.C. The contribution of TNF-α in the amygdala to anxiety in mice with persistent inflammatory pain. Neurosci. Lett 2013, 541, 275–280. [Google Scholar] [CrossRef]
- Postal, M.; Appenzeller, S. The importance of cytokines and autoantibodies in depression. Autoimmun. Rev. 2015, 14, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Becking, K.; Spijker, A.T.; Hoencamp, E.; Penninx, B.W.; Schoevers, R.A.; Boschloo, L. Disturbances in Hypothalamic-Pituitary-Adrenal Axis and Immunological Activity Differentiating between Unipolar and Bipolar Depressive Episodes. PLoS ONE 2015, 10, e0133898. [Google Scholar] [CrossRef] [PubMed]
- Juruena, M.F.; Eror, F.; Cleare, A.J.; Young, A.H. The Role of Early Life Stress in HPA Axis and Anxiety. Adv. Exp. Med. Biol. 2020, 1191, 141–153. [Google Scholar] [CrossRef]
- Thomas, A.J.; Davis, S.; Morris, C.; Jackson, E.; Harrison, R.; O'Brien, J.T. Increase in interleukin-1beta in late-life depression. Am. J. Psychiatry 2005, 162, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Sacchetti, L.; Napolitano, F.; De Chiara, V.; Motta, C.; Studer, V.; Musella, A.; Barbieri, F.; Bari, M.; Bernardi, G.; et al. Interleukin-1β causes anxiety by interacting with the endocannabinoid system. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 13896–13905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Q.Z.; Yang, F.; Li, C.G.; Xu, L.H.; He, X.H.; Mai, F.Y.; Zeng, C.Y.; Zhang, C.C.; Zha, Q.B.; Ouyang, D.Y. Paclitaxel Enhances the Innate Immunity by Promoting NLRP3 Inflammasome Activation in Macrophages. Front. Immunol. 2019, 10, 72. [Google Scholar] [CrossRef]
- Johnson, J.M.; Kotermanski, S.H. Mechanism of action of memantine. Curr. Opin. Pharmacol. 2006, 6, 61–67. [Google Scholar] [CrossRef]
- Thornton, L.M.; Carson, W.E., 3rd; Shapiro, C.L.; Farrar, W.B.; Andersen, B.L. Delayed emotional recovery after taxane-based chemotherapy. Cancer 2008, 113, 638–647. [Google Scholar] [CrossRef] [Green Version]
- Demontis, F.; Serra, G. Failure of memantine to "reverse" quinpirole-induced hypomotility. World J. Psychiatry 2016, 6, 215–220. [Google Scholar] [CrossRef]
- Schwartz, T.L.; Siddiqui, U.A.; Raza, S. Memantine as an augmentation therapy for anxiety disorders. Case Rep. Psychiatry 2012, 2012, 749796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Chen, S.L.; Chang, Y.H.; Chen, P.S.; Huang, S.Y.; Tzeng, N.S.; Wang, Y.S.; Wang, L.J.; Lee, I.H.; Wang, T.Y.; et al. The effects of add-on low-dose memantine on cytokine levels in bipolar II depression: A 12-week double-blind, randomized controlled trial. J. Clin. Psychopharmacol. 2014, 34, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.B.; Wang, T.Y.; Lee, S.Y.; Chang, Y.H.; Chen, S.L.; Tsai, T.Y.; Chen, P.S.; Huang, S.Y.; Tzeng, N.S.; Lee, I.H.; et al. Add-on memantine may improve cognitive functions and attenuate inflammation in middle- to old-aged bipolar II disorder patients. J. Affect. Disord. 2021, 279, 229–238. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, P.-S.; Chen, P.-W.; Yen, C.-J.; Shen, M.-R.; Chen, C.-H.; Tsai, K.-J.; Lin, C.-C.K. Memantine Protects against Paclitaxel-Induced Cognitive Impairment through Modulation of Neurogenesis and Inflammation in Mice. Cancers 2021, 13, 4177. https://doi.org/10.3390/cancers13164177
Sung P-S, Chen P-W, Yen C-J, Shen M-R, Chen C-H, Tsai K-J, Lin C-CK. Memantine Protects against Paclitaxel-Induced Cognitive Impairment through Modulation of Neurogenesis and Inflammation in Mice. Cancers. 2021; 13(16):4177. https://doi.org/10.3390/cancers13164177
Chicago/Turabian StyleSung, Pi-Shan, Pei-Wen Chen, Chia-Jui Yen, Meng-Ru Shen, Chih-Hung Chen, Kuen-Jer Tsai, and Chou-Ching K. Lin. 2021. "Memantine Protects against Paclitaxel-Induced Cognitive Impairment through Modulation of Neurogenesis and Inflammation in Mice" Cancers 13, no. 16: 4177. https://doi.org/10.3390/cancers13164177
APA StyleSung, P. -S., Chen, P. -W., Yen, C. -J., Shen, M. -R., Chen, C. -H., Tsai, K. -J., & Lin, C. -C. K. (2021). Memantine Protects against Paclitaxel-Induced Cognitive Impairment through Modulation of Neurogenesis and Inflammation in Mice. Cancers, 13(16), 4177. https://doi.org/10.3390/cancers13164177