A Retrospective Cohort Study of Myosteatosis and Quality of Life in Head and Neck Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Marker Measurement: Muscle and Adipose Tissue
2.3. Outcome Measurement: Quality of Life
2.4. Covariate Parameterization and Possible Confounders
2.4.1. Demographics
2.4.2. Diagnosis and Treatment
2.4.3. Body Composition
2.4.4. Social History Characteristics
2.5. Statistical Analysis
Longitudinal Analyses
3. Results
3.1. Population Characteristics
3.2. Longitudinal Associations of Baseline Myosteatosis with QOL Trend
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hurria, A.; Naylor, M.; Cohen, H.J. Improving the quality of cancer care in an aging population: Recommendations from an IOM report. Jama 2013, 310, 1795–1796. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Njai, R.; Barker, L.; Siegel, P.Z.; Liao, Y. Summarizing health-related quality of life (HRQOL): Development and testing of a one-factor model. Popul. Health Metrics 2016, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Adelstein, D.; Gillison, M.L.; Pfister, D.G.; Spencer, S.; Adkins, D.; Brizel, D.; Burtness, B.; Busse, P.M.; Caudell, J.J.; Cmelak, A.J.; et al. NCCN Guidelines Insights: Head and Neck Cancers, Version 2.2017. J. Natl. Compr. Cancer Netw. 2017, 15, 761–770. [Google Scholar] [CrossRef]
- Farrugia, M.; Yu, H.; Ma, S.; Iovoli, A.; Attwood, K.; Wooten, K.; Arshad, H.; Gupta, V.; McSpadden, R.; Kuriakose, M.; et al. A Principal Component of Quality of Life Measures Is Associated with Survival for Head and Neck Cancer Patients Treated with Radiation Therapy. Cancers 2021, 13, 1155. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Zhu, D.; Kraus, D.; Tham, T. Radiologically Defined Sarcopenia Affects Survival in Head and Neck Cancer: A Meta-Analysis. Laryngoscope 2020, 131, 333–341. [Google Scholar] [CrossRef]
- Chauhan, N.S. Sarcopenia in male patients with head and neck cancer receiving chemoradiotherapy: A longitudinal pilot study. PeerJ 2020, 8, e8617. [Google Scholar] [CrossRef]
- Santilli, V. Clinical definition of sarcopenia. Clin. Cases Miner. Bone Metab. 2014, 11, 177–180. [Google Scholar] [CrossRef]
- Surov, A.; Wienke, A. Low skeletal muscle mass predicts relevant clinical outcomes in head and neck squamous cell carcinoma. A meta analysis. Ther. Adv. Med. Oncol. 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, M.; Gattazzo, S.; Rossi, A.P. Myosteatosis: A relevant, yet poorly explored element of sarcopenia. Eur. Geriatr. Med. 2018, 10, 5–6. [Google Scholar] [CrossRef] [Green Version]
- Findlay, M.; Brown, C.; Lourenço, R.D.A.; White, K.; Bauer, J. Sarcopenia and myosteatosis in patients undergoing curative radiotherapy for head and neck cancer: Impact on survival, treatment completion, hospital admission and cost. J. Hum. Nutr. Diet. 2020, 33, 811–821. [Google Scholar] [CrossRef]
- Bye, A. Muscle mass and association to quality of life in non-small cell lung cancer patients. J. Cachex-Sarcopenia Muscle 2017, 8, 759–767. [Google Scholar] [CrossRef]
- Winkels, R. Are Skeletal Muscle Mass and Density Associated with Fatigue in Early-Stage Colorectal Cancer Patients? Cancer Epidemiol. Biomark. Prev. 2019, 28, 625. [Google Scholar] [CrossRef] [Green Version]
- Prado, C.M.M.; Heymsfield, S.B. Lean tissue imaging: A new era for nutritional assessment and intervention. JPEN J. Parenter. Enter. Nutr. 2014, 38, 940–953. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Punyanitya, M.; Wang, Z.; Gallagher, D.; St.-Onge, M.-P.; Albu, J.; Heymsfield, S.B.; Heshka, S. Total body skeletal muscle and adipose tissue volumes: Estimation from a single abdominal cross-sectional image. J. Appl. Physiol. 2004, 97, 2333–2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osoba, D.; Rodrigues, G.; Myles, J.; Zee, B.C.-Y.; Pater, J. Interpreting the significance of changes in health-related quality-of-life scores. J. Clin. Oncol. 1998, 16, 139–144. [Google Scholar] [CrossRef]
- Groenvold, M. Validation of the EORTC QLQ-C30 quality of life questionnaire through combined qualitative and quantitative assessment of patient-observer agreement. J. Clin. Epidemiol. 1997, 50, 441–450. [Google Scholar] [CrossRef] [Green Version]
- Fayers, P. EORTC QLQ–C30 Scoring Manual; European Organisation for Research and Treatment of Cancer: Brussels, Belgium, 1995. [Google Scholar]
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.; Nguyen-Tân, P.F.; Westra, W.H.; Chung, C.H.; Jordan, R.C.; Lu, C.; et al. Human Papillomavirus and Survival of Patients with Oropharyngeal Cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stretch, C. Sarcopenia and myosteatosis are accompanied by distinct biological profiles in patients with pancreatic and periam-pullary adenocarcinomas. PLoS ONE 2018, 13, e0196235. [Google Scholar] [CrossRef]
- Martin, L.; Birdsell, L.; MacDonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef]
- Schielzeth, H.; Dingemanse, N.J.; Nakagawa, S.; Westneat, D.F.; Allegue, H.; Teplitsky, C.; Réale, D.; Dochtermann, N.A.; Garamszegi, L.Z.; Araya-Ajoy, Y.G. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 2020, 11, 1141–1152. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA A Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Dijksterhuis, W.P.; Pruijt, M.J.; Van Der Woude, S.O.; Klaassen, R.; Kurk, S.A.; Van Oijen, M.G.; Van Laarhoven, H.W. Association between body composition, survival, and toxicity in advanced esophagogastric cancer patients receiving palliative chemotherapy. J. Cachex-Sarcopenia Muscle 2019, 10, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Shachar, S.S.; Deal, A.M.; Weinberg, M.; Williams, G.; Nyrop, K.A.; Popuri, K.; Choi, S.K.; Muss, H.B. Body Composition as a Predictor of Toxicity in Patients Receiving Anthracycline and Taxane–Based Chemotherapy for Early-Stage Breast Cancer. Clin. Cancer Res. 2017, 23, 3537–3543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson-Harvey, A.; Yetukuri, M.; Ba, A.R.H.; Mph, M.C.S.; Boakye, E.A.; Varvares, M.A.; Osazuwa-Peters, N. Rising incidence of late-stage head and neck cancer in the United States. Cancer 2019, 126, 1090–1101. [Google Scholar] [CrossRef] [PubMed]
- Fryar, C.D.; Kruszon-Moran, D.; Gu, Q.; Ogden, C.L. Mean Body Weight, Height, Waist Circumference, and Body Mass Index Among Adults: United States, 1999-2000 Through 2015-2016. Natl. Health Stat. Rep. 2018, 122, 1–16. [Google Scholar]
- Ni Bhuachalla, E.; Daly, L.; Cushen, S.; O’Mahony, D.; Bambury, R.; O’Reilly, S.; McEneaney, P.; Twomey, M.; Ryan, A.M.; Power, D.G. Cancer-associated malnutrition: Prevalence of cachexia, sarcopenia and impact on health-related quality of life and survival in a cohort of Irish ambulatory patients receiving chemotherapy. J. Clin. Oncol. 2016, 34, 10137. [Google Scholar] [CrossRef]
- Nakayama, N. Sarcopenic Factors May Have No Impact on Outcomes in Ovarian Cancer Patients. Diagnostics 2019, 9, 206. [Google Scholar] [CrossRef] [Green Version]
- Aleixo, G.; Shachar, S.; Nyrop, K.; Muss, H.; Malpica, L.; Williams, G. Myosteatosis and prognosis in cancer: Systematic review and meta-analysis. Crit. Rev. Oncol. 2019, 145, 102839. [Google Scholar] [CrossRef]
- Hua, X.; Liu, S.; Liao, J.-F.; Wen, W.; Long, Z.-Q.; Lu, Z.-J.; Guo, L.; Lin, H.-X. When the Loss Costs Too Much: A Systematic Review and Meta-Analysis of Sarcopenia in Head and Neck Cancer. Front. Oncol. 2020, 9, 1561. [Google Scholar] [CrossRef]
- Farrugia, M.; Erickson, K.; Wendel, E.; Platek, M.; Ji, W.; Attwood, K.; Ma, S.; Gu, F.; Singh, A.; Ray, A. Change in Physical Performance Correlates with Decline in Quality of Life and Frailty Status in Head and Neck Cancer Patients Undergoing Radiation with and without Chemotherapy. Cancers 2021, 13, 1638. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Ezzatvar, Y.; Izquierdo, M.; García-Hermoso, A. Effect of exercise on myosteatosis in adults: A systematic review and meta-analysis. J. Appl. Physiol. 2021, 130, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, B.H.; Chomentowski, P.; Ward, B.; Rossi, A.; Glynn, N.; Delmonico, M.J.; Kritchevsky, S.; Pahor, M.; Newman, A.B. Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: A randomized controlled trial. J. Appl. Physiol. 2008, 105, 1498–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerritsen, J.K.W.; Vincent, A.J.P.E. Exercise improves quality of life in patients with cancer: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2015, 50, 796–803. [Google Scholar] [CrossRef]
- Kono, M.; Wakisaka, R.; Kumai, T.; Hayashi, R.; Komatsuda, H.; Sato, R.; Abe, Y.; Yamaki, H.; Takahara, M.; Katada, A.; et al. Effects of early nutritional intervention by a nutritional support team for patients with head and neck cancer undergoing chemoradiotherapy or radiotherapy. Head Neck 2020, 43, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Van De Worp, W.R.P.H.; Schols, A.M.W.J.; Theys, J.; Van Helvoort, A.; Langen, R.C.J. Nutritional Interventions in Cancer Cachexia: Evidence and Perspectives from Experimental Models. Front. Nutr. 2020, 7, 601329. [Google Scholar] [CrossRef] [PubMed]
- Almasud, A.A.; Giles, K.H.; Miklavcic, J.; Martins, K.J.B.; Baracos, V.E.; Putman, C.T.; Guan, L.L.; Mazurak, V.C. Fish oil mitigates myosteatosis and improves chemotherapy efficacy in a preclinical model of colon cancer. PLoS ONE 2017, 12, e0183576. [Google Scholar] [CrossRef]
- Camporez, J.-P.G.; Petersen, M.C.; Abudukadier, A.; Moreira, G.V.; Jurczak, M.J.; Friedman, G.; Haqq, C.M.; Petersen, K.F.; Shulman, G.I. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc. Natl. Acad. Sci. USA 2016, 113, 2212–2217. [Google Scholar] [CrossRef] [Green Version]
- Solheim, T.S.; Laird, B.J.; Balstad, T.R.; Stene, G.B.; Bye, A.; Johns, N.; Pettersen, C.H.; Fallon, M.; Fayers, P.; Fearon, K.; et al. A randomized phase II feasibility trial of a multimodal intervention for the management of cachexia in lung and pancreatic cancer. J. Cachex-Sarcopenia Muscle 2017, 8, 778. [Google Scholar] [CrossRef]
- Bosch, L.V.; van der Laan, H.P.; van der Schaaf, A.; Oosting, S.F.; Halmos, G.B.; Witjes, M.J.; Oldehinkel, E.; Meijer, T.W.; Hoek, J.G.V.D.; Steenbakkers, R.J.; et al. Patient-reported toxicity and quality of life profiles in head and neck cancer patients treated with definitive radiotherapy or chemoradiation. Int. J. Radiat. Oncol. 2021, 110, 1–12. [Google Scholar] [CrossRef]
- Achim, V.; Bash, J.; Mowery, A.; Guimaraes, A.R.; Li, R.; Schindler, J.; Wax, M.; Andersen, P.; Clayburgh, D. Prognostic Indication of Sarcopenia for Wound Complication After Total Laryngectomy. JAMA Otolaryngol. Neck Surg. 2017, 143, 1159–1165. [Google Scholar] [CrossRef] [Green Version]
Characteristics | All n = 163 | Myosteatosis n = 55 (33.7) | Normal SMD n = 108 (62.6) | p |
---|---|---|---|---|
Age (years) | 61.8 (9.6) | 66.3 (9.6) | 59.5 (8.0) | <0.0001 |
Sex | <0.0001 | |||
Male | 134 (82.2) | 33 (60.0) | 101 (93.5) | |
Female | 29 (17.8) | 22 (40.0) | 7 (6.5) | |
Race | 0.45 | |||
White | 149 (91.4) | 49 (89.1) | 100 (92.6) | |
Black | 14 (8.6) | 6 (10.9) | 8 (7.4) | |
Comorbidities | 2.3 (1.9) | 2.5 (1.8) | 2.3 (2.0) | 0.43 |
BMI (kg/m2) | 28.9 (6.4) | 29.0 (5.7) | 28.4 (9.0) | 0.001 |
SMA (cm2) | 163.2 (40.5) | 128.8 (31.9) | 180.7 (32.4) | <0.0001 |
SMI (cm2/m2) | 54.6 (12.4) | 44.4 (8.6) | 59.9 (10.7) | <0.0001 |
VAT (cm2) | 180.0 (94.9) | 142.4 (94.1) | 199.2 (89.9) | 0.0002 |
SAT (cm2) | 190.3 (97.7) | 177.3 (124.7) | 197.0 (80.5) | 0.29 |
IMAT (cm2) | 12.8 (8.3) | 17.4 (11.6) | 10.4 (4.6) | <0.0001 |
TAT (cm2) | 383.2 (386.4) | 337.1 (198.0) | 406.6 (142.0) | 0.02 |
SMD (HU) | 39.3 (9.1) | 29.6 (6.1) | 44.2 (5.9) | <0.0001 |
Myosteatosis | -- | |||
Yes | 55 (33.7) | 55 (100.0) | 0 | |
No | 108 (66.3) | 0 | 108 (100.0) | |
Tumor site | 0.40 | |||
Oral cavity | 5 (3.1) | 2 (3.6) | 3 (2.8) | |
Nasopharynx | 8 (4.9) | 2 (3.6) | 6 (5.6) | |
Oropharynx | 91 (55.8) | 25 (45.5) | 66 (61.1) | |
Hypopharynx | 8 (4.9) | 4 (7.3) | 4 (3.7) | |
Larynx | 39 (23.9) | 17 (30.9) | 22 (20.4) | |
Salivary | 1 (0.6) | 1 (1.8) | -- | |
Other | 11 (6.7) | 4 (7.3) | 7 (6.5) | |
AJCC stage | 0.19 | |||
I | 6 (3.7) | 2 (3.6) | 4 (3.7) | |
II | 60 (36.8) | 14 (25.5) | 46 (42.6) | |
III | 46 (28.2) | 18 (32.7) | 28 (25.9) | |
IV | 51 (31.3) | 21 (38.2) | 30 (27.8) | |
KPS | 88.90 (10.4) | 84.9 (12.8) | 90.9 (8.4) | 0.002 |
HPV | 0.008 | |||
Positive | 84 (51.5) | 19 (34.6) | 20 (18.5) | |
Negative | 37 (22.7) | 17 (30.9) | 20 (18.5) | |
Inapplicable | 42 (25.8) | 19 (34.6) | 23 (21.3) | |
Treatment | 0.01 | |||
RT only | 8 (4.9) | 6 (10.9) | 2 (1.9) | |
RT + chemotherapy | 155 (95.1) | 49 (89.1) | 106 (98.2) | |
Smoking status | 0.09 | |||
Current | 28 (17.2) | 14 (25.5) | 14 (13.0) | |
Former | 88 (54.0) | 29 (52.7) | 59 (54.6) | |
Never | 47 (28.8) | 12 (21.8) | 35 (32.4) | |
Alcohol drinking status | 0.09 | |||
Current | 84 (51.5) | 25 (45.5) | 59 (54.6) | |
Former | 40 (24.5) | 19 (34.6) | 21 (19.4) | |
Never | 25 (15.3) | 5 (9.1) | 20 (18.5) | |
Unknown | 14 (8.6) | 6 (10.9) | 8 (7.4) | |
Partner status | 0.04 | |||
Married | 87 (53.4) | 23 (41.8) | 64 (59.3) | |
Single | 44 (27.0) | 18 (32.7) | 26 (24.1) | |
Divorced | 18 (11.0) | 7 (12.7) | 11 (10.2) | |
Widowed | 6 (3.7) | 5 (9.1) | 1 (1.0) | |
Unknown | 8 (4.9) | 2 (3.6) | 6 (5.6) | |
Quality of life | ||||
Global function | 73.3 (22.3) | 73.0 (23.8) | 73.4 (21.8) | 0.93 |
Physical function | 88.3 (17.2) | 82.1 (21.2) | 91.5 (13.8) | 0.004 |
Overall Population | ||||||||
---|---|---|---|---|---|---|---|---|
Assessment time | Physical | Beta Coefficient * | 95% CI | p | Physical | Beta Coefficient * | 95% CI | p |
Pretreatment | Crude model | −9.48 | −15.96, −3.00 | 0.004 | Adjusted | −0.74 | −7.97, 6.94 | 0.84 |
Post-treatment | −5.52 | −12.40, 1.35 | 0.12 | 3.03 | −4.47, 10.52 | 0.43 | ||
3 months post-treatment | −10.94 | −20.56, 7.89 | 0.006 | −2.79 | −10.98, 5.39 | 0.50 | ||
6 months post-treatment | −6.33 | −14.68, 19.33 | 0.38 | 2.26 | −12.11, 16.62 | 0.76 | ||
9 months post-treatment | −8.24 | −24.17, 7.69 | 0.31 | −1.07 | −16.74, 14.61 | 0.89 | ||
1 year post-treatment | −31.74 | −60.87, −2.61 | 0.03 | −24.55 | −52.46, 3.36 | 0.08 | ||
Males | ||||||||
Assessment time | Physical | Beta Coefficient * | 95% CI | p | Physical | Beta Coefficient * | 95% CI | p |
Pretreatment | Crude model | −9.98 | −17.68, −2.29 | 0.01 | Adjusted | −2.99 | −11.57, 5.58 | 0.49 |
Post-treatment | −7.52 | −15.70, 0.66 | 0.07 | −0.47 | −9.39, 8.45 | 0.92 | ||
3 months post-treatment | −12.07 | −21.41, −2.74 | 0.01 | −5.80 | −15.62, 4.03 | 0.25 | ||
6 months post-treatment | −9.57 | −27.10, 8.00 | 0.28 | −3.65 | −21.22, 13.93 | 0.68 | ||
9 months post-treatment | −8.88 | −24.82, 7.05 | 0.27 | −3.25 | −19.09, 12.59 | 0.69 | ||
1 year post-treatment | −51.51 | −90.71, −12.31 | 0.01 | −46.84 | −84.79, −8.90 | 0.01 | ||
Females | ||||||||
Assessment time | Physical | Beta Coefficient * | 95% CI | p | Physical | Beta Coefficient * | 95% CI | p |
Pretreatment | Crude model | 5.02 | −13.52, 23.56 | 0.59 | Adjusted | 12.19 | −4.99, 29.38 | 0.16 |
Post-treatment | 12.39 | −7.29, 32.07 | 0.87 | 19.12 | 0.89, 37.35 | 0.04 | ||
3 months post-treatment | 1.58 | −19.84, 23.01 | 0.88 | 3.67 | −16.21, 23.55 | 0.71 | ||
6 months post-treatment | −6.98 | −52.14, 38.18 | 0.76 | −0.28 | −42.91, 42.34 | 0.99 | ||
9 months post-treatment | 11.35 | −48.91, 71.61 | 0.71 | 6.51 | −47.24, 60.27 | 0.81 | ||
1 year post-treatment | −13.74 | −74.33, 46.85 | 0.65 | 11.07 | −41.03, 63.16 | 0.67 |
Overall Population | ||||||||
---|---|---|---|---|---|---|---|---|
Assessment time | Global | Beta Coefficient * | 95% CI | p | Global | Beta Coefficient * | 95% CI | p |
Pretreatment | Crude model | −0.35 | −7.56, 6.86 | 0.92 | Adjusted | 8.27 | −0.16, 16.71 | 0.05 |
Post-treatment | 2.09 | −5.63, 9.82 | 0.59 | 10.67 | 1.90, 19.44 | 0.02 | ||
3 months post-treatment | −2.16 | −10.96, 6.64 | 0.63 | 5.40 | −4.19, 14.98 | 0.27 | ||
6 months post-treatment | 0.37 | −16.35, 17.09 | 0.97 | 9.11 | −8.06, 26.28 | 0.30 | ||
9 months post-treatment | −21.97 | −40.29, −3.65 | 0.02 | −14.06 | −32.59, 4.47 | 0.14 | ||
1 year post-treatment | −30.70 | −63.56, 2.16 | 0.07 | −23.01 | −56.21, 10.19 | 0.17 | ||
Males | ||||||||
Assessment time | Global | Beta Coefficient * | 95% CI | p | Global | Beta Coefficient * | 95% CI | p |
Pretreatment | Crude model | −0.27 | −8.97, 8.43 | 0.95 | Adjusted | 7.69 | −2.29, 17.68 | 0.13 |
Post-treatment | 1.76 | −7.53, 11.04 | 0.71 | 9.78 | −0.61, 20.16 | 0.06 | ||
3 months post-treatment | −4.40 | −15.06, 6.27 | 0.42 | 2.39 | −9.07, 13.84 | 0.68 | ||
6 months post-treatment | −4.58 | −25.01, 15.84 | 0.66 | 3.93 | −16.71, 24.58 | 0.71 | ||
9 months post-treatment | −21.64 | −39.93, −3.35 | 0.02 | −13.02 | −31.60, 5.55 | 0.05 | ||
1 year post-treatment | −54.64 | −98.88, −9.55 | 0.02 | −57.57 | −103.71, 11.42 | 0.01 | ||
Females | ||||||||
Assessment time | Global | Beta Coefficient * | 95% CI | p | Global | Beta Coefficient * | 95% CI | p |
Pretreatment | Crude model | 7.68 | −12.30, 27.67 | 0.45 | Adjusted | 13.96 | −24.28, 52.21 | 0.45 |
Post-treatment | 10.15 | −11.73, 32.02 | 0.36 | 17.68 | −21.44, 56.79 | 0.35 | ||
3 months post-treatment | −4.63 | −28.45, 19.19 | 0.70 | 2.54 | −37.42, 42.51 | 0.89 | ||
6 months post-treatment | 4.61 | −48.85, 58.08 | 0.86 | 13.29 | −55.35, 81.92 | 0.70 | ||
9 months post-treatment | 16.04 | −49.23, 81.30 | 0.63 | −8.84 | −103.20, 85.51 | 0.85 | ||
1 year post-treatment | −16.51 | −81.66, 48.64 | 0.61 | 13.60 | −89.73, 116.93 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaver, A.L.; Noyes, K.; Ochs-Balcom, H.M.; Wilding, G.; Ray, A.D.; Ma, S.J.; Farrugia, M.; Singh, A.K.; Platek, M.E. A Retrospective Cohort Study of Myosteatosis and Quality of Life in Head and Neck Cancer Patients. Cancers 2021, 13, 4283. https://doi.org/10.3390/cancers13174283
Shaver AL, Noyes K, Ochs-Balcom HM, Wilding G, Ray AD, Ma SJ, Farrugia M, Singh AK, Platek ME. A Retrospective Cohort Study of Myosteatosis and Quality of Life in Head and Neck Cancer Patients. Cancers. 2021; 13(17):4283. https://doi.org/10.3390/cancers13174283
Chicago/Turabian StyleShaver, Amy L., Katia Noyes, Heather M. Ochs-Balcom, Gregory Wilding, Andrew D. Ray, Sung Jun Ma, Mark Farrugia, Anurag K. Singh, and Mary E. Platek. 2021. "A Retrospective Cohort Study of Myosteatosis and Quality of Life in Head and Neck Cancer Patients" Cancers 13, no. 17: 4283. https://doi.org/10.3390/cancers13174283
APA StyleShaver, A. L., Noyes, K., Ochs-Balcom, H. M., Wilding, G., Ray, A. D., Ma, S. J., Farrugia, M., Singh, A. K., & Platek, M. E. (2021). A Retrospective Cohort Study of Myosteatosis and Quality of Life in Head and Neck Cancer Patients. Cancers, 13(17), 4283. https://doi.org/10.3390/cancers13174283