Implementation of Multigene Germline and Parallel Somatic Genetic Testing in Epithelial Ovarian Cancer: SIGNPOST Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Pre-Test Counselling and Recruitment
2.2. Germline and Somatic Testing
2.3. Test Result Management
3. Results
Pathway Development
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Agency for Research on Cancer. Cancer Tomorrow. In A Tool That Predicts the Future Cancer Incidence and Mortality Burden Worldwide from the Current Estimates in 2018 Up Until 2040; International Agency for Research on Cancer (IARC): Lyon, France, 2018. [Google Scholar]
- CRUK. Ovarian cancer statistics. In Ovarian Cancer Incidence; Cancer Research UK: London, UK, 2017. [Google Scholar]
- Collins, F.S.; Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 2015, 372, 793–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.A.; Mooij, T.M.; Roos-Blom, M.J.; Jervis, S.; van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402–2416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schettini, F.; Giudici, F.; Bernocchi, O.; Sirico, M.; Corona, S.P.; Giuliano, M.; Locci, M.; Paris, I.; Scambia, G.; De Placido, S.; et al. Poly (ADP-ribose) polymerase inhibitors in solid tumours: Systematic review and meta-analysis. Eur. J. Cancer 2021, 149, 134–152. [Google Scholar] [CrossRef] [PubMed]
- Ledermann, J.; Harter, P.; Gourley, C.; Friedlander, M.; Vergote, I.; Rustin, G.; Scott, C.L.; Meier, W.; Shapira-Frommer, R.; Safra, T.; et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: A preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 2014, 15, 852–861. [Google Scholar] [CrossRef]
- Moore, K.; Colombo, N.; Scambia, G.; Kim, B.G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; Sonke, G.S.; et al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2018, 379, 2495–2505. [Google Scholar] [CrossRef]
- Coleman, R.L.; Oza, A.M.; Lorusso, D.; Aghajanian, C.; Oaknin, A.; Dean, A.; Colombo, N.; Weberpals, J.I.; Clamp, A.; Scambia, G.; et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 1949–1961. [Google Scholar] [CrossRef] [Green Version]
- Pujade-Lauraine, E.; Ledermann, J.A.; Selle, F.; Gebski, V.; Penson, R.T.; Oza, A.M.; Korach, J.; Huzarski, T.; Poveda, A.; Pignata, S.; et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1274–1284. [Google Scholar] [CrossRef] [Green Version]
- NHS England. Clinical Commissioning Policy: Genetic Testing for BRCA1 and BRCA2 Mutations; NHS England Specialised Services Clinical Reference Group for Medical Genetics: London, UK, 2015. [Google Scholar]
- Practice Bulletin No 182: Hereditary Breast and Ovarian Cancer Syndrome. Obstet. Gynecol. 2017, 130, e110–e126. [CrossRef]
- Konstantinopoulos, P.A.; Norquist, B.; Lacchetti, C.; Armstrong, D.; Grisham, R.N.; Goodfellow, P.J.; Kohn, E.C.; Levine, D.A.; Liu, J.F.; Lu, K.H.; et al. Germline and Somatic Tumor Testing in Epithelial Ovarian Cancer: ASCO Guideline. J. Clin. Oncol. 2020, 38, 1222–1245. [Google Scholar] [CrossRef]
- Sundar, S.; Manchanda, R.; Gourley, C.; George, A.; Wallace, A.; Balega, J.; Williams, S.; Wallis, Y.; Edmondson, R.; Nicum, S.; et al. British Gynaecological Cancer Society/British Association of Gynaecological Pathology consensus for germline and tumour testing for BRCA1/2 variants in ovarian cancer in the United Kingdom. Int. J. Gynecol. Cancer 2021, 31, 272–278. [Google Scholar]
- Miller, R.E.; Leary, A.; Scott, C.L.; Serra, V.; Lord, C.J.; Bowtell, D.; Chang, D.K.; Garsed, D.W.; Jonkers, J.; Ledermann, J.A.; et al. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann. Oncol. 2020, 31, 1606–1622. [Google Scholar] [CrossRef]
- Norquist, B.M.; Brady, M.F.; Harrell, M.I.; Walsh, T.; Lee, M.K.; Gulsuner, S.; Bernards, S.S.; Casadei, S.; Burger, R.A.; Tewari, K.S.; et al. Mutations in Homologous Recombination Genes and Outcomes in Ovarian Carcinoma Patients in GOG 218: An NRG Oncology/Gynecologic Oncology Group Study. Clin. Cancer Res. 2018, 24, 777–783. [Google Scholar] [CrossRef] [Green Version]
- Ramus, S.J.; Song, H.; Dicks, E.; Tyrer, J.P.; Rosenthal, A.N.; Intermaggio, M.P.; Fraser, L.; Gentry-Maharaj, A.; Hayward, J.; Philpott, S.; et al. Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer. J. Natl. Cancer Inst. 2015, 107, djv214. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Song, H.; Leslie, G.; Engel, C.; Hahnen, E.; Auber, B.; Horvath, J.; Kast, K.; Niederacher, D.; Turnbull, C.; et al. Ovarian and breast cancer risks associated with pathogenic variants in RAD51C and RAD51D. J. Natl. Cancer Inst. 2020, 112, 1242–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domchek, S.M.; Robson, M.E. Update on Genetic Testing in Gynecologic Cancer. J. Clin. Oncol. 2019, 37, 2501–2509. [Google Scholar] [CrossRef] [PubMed]
- Finch, A.; Beiner, M.; Lubinski, J.; Lynch, H.T.; Moller, P.; Rosen, B.; Murphy, J.; Ghadirian, P.; Friedman, E.; Foulkes, W.D.; et al. Salpingo-oophorectomy and the risk of ovarian, fallopian tube, and peritoneal cancers in women with a BRCA1 or BRCA2 Mutation. JAMA 2006, 296, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Rebbeck, T.R.; Kauff, N.D.; Domchek, S.M. Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers. J. Natl. Cancer Inst. 2009, 101, 80–87. [Google Scholar] [CrossRef]
- Rebbeck, T.R.; Friebel, T.; Lynch, H.T.; Neuhausen, S.L.; van ‘t Veer, L.; Garber, J.E.; Evans, G.R.; Narod, S.A.; Isaacs, C.; Matloff, E.; et al. Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: The PROSE Study Group. J. Clin. Oncol. 2004, 22, 1055–1062. [Google Scholar] [CrossRef] [Green Version]
- Cuzick, J.; Sestak, I.; Bonanni, B.; Costantino, J.P.; Cummings, S.; DeCensi, A.; Dowsett, M.; Forbes, J.F.; Ford, L.; LaCroix, A.Z.; et al. Selective oestrogen receptor modulators in prevention of breast cancer: An updated meta-analysis of individual participant data. Lancet 2013, 381, 1827–1834. [Google Scholar] [CrossRef] [Green Version]
- George, A.; Riddell, D.; Seal, S.; Talukdar, S.; Mahamdallie, S.; Ruark, E.; Cloke, V.; Slade, I.; Kemp, Z.; Gore, M.; et al. Implementing rapid, robust, cost-effective, patient-centred, routine genetic testing in ovarian cancer patients. Sci. Rep. 2016, 6, 29506. [Google Scholar] [CrossRef] [Green Version]
- Plaskocinska, I.; Shipman, H.; Drummond, J.; Thompson, E.; Buchanan, V.; Newcombe, B.; Hodgkin, C.; Barter, E.; Ridley, P.; Ng, R.; et al. New paradigms for BRCA1/BRCA2 testing in women with ovarian cancer: Results of the Genetic Testing in Epithelial Ovarian Cancer (GTEOC) study. J. Med. Genet. 2016, 53, 655–661. [Google Scholar] [CrossRef] [Green Version]
- Senter, L.; O’Malley, D.M.; Backes, F.J.; Copeland, L.J.; Fowler, J.M.; Salani, R.; Cohn, D.E. Genetic consultation embedded in a gynecologic oncology clinic improves compliance with guideline-based care. Gynecol. Oncol. 2017, 147, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Childers, C.P.; Childers, K.K.; Maggard-Gibbons, M.; Macinko, J. National Estimates of Genetic Testing in Women with a History of Breast or Ovarian Cancer. J. Clin. Oncol. 2017, 35, 3800–3806. [Google Scholar] [CrossRef]
- Kurian, A.W.; Ward, K.C.; Howlader, N.; Deapen, D.; Hamilton, A.S.; Mariotto, A.; Miller, D.; Penberthy, L.S.; Katz, S.J. Genetic Testing and Results in a Population-Based Cohort of Breast Cancer Patients and Ovarian Cancer Patients. J. Clin. Oncol. 2019, 37, 1305–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randall, L.M.; Pothuri, B.; Swisher, E.M.; Diaz, J.P.; Buchanan, A.; Witkop, C.T.; Bethan Powell, C.; Smith, E.B.; Robson, M.E.; Boyd, J.; et al. Multi-disciplinary summit on genetics services for women with gynecologic cancers: A Society of Gynecologic Oncology White Paper. Gynecol. Oncol. 2017, 146, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Ellard, S.; Baple, E.L.; Berry, I.; Forrester, N.; Turnbull, C.; Owens, M.; Eccles, D.M.; Abbs, S.; Scott, R.; Deans, Z.; et al. ACGS Best Practice Guidelines for Variant Classification in Rare Disease 2020; Association for Clinical Genomic Science (ACGS): London, UK, 2020; Available online: https://www.acgs.uk.com/quality/best-practice-guidelines/ (accessed on 1 May 2021).
- Garrett, A.; Callaway, A.; Durkie, M.; Cubuk, C.; Alikian, M.; Burghel, G.J.; Robinson, R.; Izatt, L.; Talukdar, S.; Side, L.; et al. Cancer Variant Interpretation Group UK (CanVIG-UK): An exemplar national subspecialty multidisciplinary network. J. Med. Genet. 2020, 57, 829–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellison, G.; Huang, S.; Carr, H.; Wallace, A.; Ahdesmaki, M.; Bhaskar, S.; Mills, J. A reliable method for the detection of BRCA1 and BRCA2 mutations in fixed tumour tissue utilising multiplex PCR-based targeted next generation sequencing. BMC Clin. Pathol. 2015, 15, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumford, M.; Lythgoe, M.; McNeish, I.; Gabra, H.; Tookman, L.; Rahman, N.; George, A.; Krell, J. Oncologist-led BRCA ‘mainstreaming’ in the ovarian cancer clinic: A study of 255 patients and its impact on their management. Sci. Rep. 2020, 10, 3390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rust, K.; Spiliopoulou, P.; Tang, C.Y.; Bell, C.; Stirling, D.; Phang, T.; Davidson, R.; Mackean, M.; Nussey, F.; Glasspool, R.M.; et al. Routine germline BRCA1 and BRCA2 testing in patients with ovarian carcinoma: Analysis of the Scottish real-life experience. BJOG 2018, 125, 1451–1458. [Google Scholar] [CrossRef]
- Flaum, N.; Morgan, R.D.; Burghel, G.J.; Bulman, M.; Clamp, A.R.; Hasan, J.; Mitchell, C.L.; Badea, D.; Moon, S.; Hogg, M.; et al. Mainstreaming germline BRCA1/2 testing in non-mucinous epithelial ovarian cancer in the North West of England. Eur. J. Hum. Genet. 2020, 28, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Modan, B.; Hartge, P.; Hirsh-Yechezkel, G.; Chetrit, A.; Lubin, F.; Beller, U.; Ben-Baruch, G.; Fishman, A.; Menczer, J.; Ebbers, S.M.; et al. Parity, oral contraceptives, and the risk of ovarian cancer among carriers and noncarriers of a BRCA1 or BRCA2 mutation. N. Engl. J. Med. 2001, 345, 235–240. [Google Scholar] [CrossRef]
- Rahman, B.; Lanceley, A.; Kristeleit, R.S.; Ledermann, J.A.; Lockley, M.; McCormack, M.; Mould, T.; Side, L. Mainstreamed genetic testing for women with ovarian cancer: First-year experience. J. Med. Genet. 2019, 56, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Norquist, B.M.; Harrell, M.I.; Brady, M.F.; Walsh, T.; Lee, M.K.; Gulsuner, S.; Bernards, S.S.; Casadei, S.; Yi, Q.; Burger, R.A.; et al. Inherited Mutations in Women with Ovarian Carcinoma. JAMA Oncol. 2016, 2, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Manchanda, R.; Legood, R.; Antoniou, A.C.; Gordeev, V.S.; Menon, U. Specifying the ovarian cancer risk threshold of ‘premenopausal risk-reducing salpingo-oophorectomy’ for ovarian cancer prevention: A cost-effectiveness analysis. J. Med. Genet. 2016, 53, 591–599. [Google Scholar] [CrossRef] [Green Version]
- CDC. ACCE Model Process for Evaluating Genetic Tests. In Genomic Testing; The Office of Public Health Genomics (OPHG), Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2010. Available online: http://www.cdc.gov/genomics/gtesting/ACCE/ (accessed on 1 January 2021).
- Burke, W.; Zimmerman, R. Moving beyond ACCE: An. Expanded Framework for Genetic Test. Evaluation; PHG Foundation: London, UK, 2007. [Google Scholar]
- Yang, X.; Leslie, G.; Doroszuk, A.; Schneider, S.; Allen, J.; Decker, B.; Dunning, A.M.; Redman, J.; Scarth, J.; Plaskocinska, I.; et al. Cancer Risks Associated with Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J. Clin. Oncol. 2020, 38, 674–685. [Google Scholar] [CrossRef]
- Pal, T.; Akbari, M.R.; Sun, P.; Lee, J.H.; Fulp, J.; Thompson, Z.; Coppola, D.; Nicosia, S.; Sellers, T.A.; McLaughlin, J.; et al. Frequency of mutations in mismatch repair genes in a population-based study of women with ovarian cancer. Br. J. Cancer 2012, 107, 1783–1790. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Cicek, M.S.; Dicks, E.; Harrington, P.; Ramus, S.J.; Cunningham, J.M.; Fridley, B.L.; Tyrer, J.P.; Alsop, J.; Jimenez-Linan, M.; et al. The contribution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population. Hum. Mol. Genet. 2014, 23, 4703–4709. [Google Scholar] [CrossRef] [Green Version]
- Minion, L.E.; Dolinsky, J.S.; Chase, D.M.; Dunlop, C.L.; Chao, E.C.; Monk, B.J. Hereditary predisposition to ovarian cancer, looking beyond BRCA1/BRCA2. Gynecol. Oncol. 2015, 137, 86–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fumagalli, C.; Tomao, F.; Betella, I.; Rappa, A.; Calvello, M.; Bonanni, B.; Bernard, L.; Peccatori, F.; Colombo, N.; Viale, G.; et al. Tumor BRCA Test for Patients with Epithelial Ovarian Cancer: The Role of Molecular Pathology in the Era of PARP Inhibitor Therapy. Cancers 2019, 11, 1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuntini, R.; Ferrari, S.; Bonora, E.; Buscherini, F.; Bertonazzi, B.; Grippa, M.; Godino, L.; Miccoli, S.; Turchetti, D. Dealing With BRCA1/2 Unclassified Variants in a Cancer Genetics Clinic: Does Cosegregation Analysis Help? Front. Genet. 2018, 9, 378. [Google Scholar] [CrossRef] [PubMed]
- Eccles, D.M.; Mitchell, G.; Monteiro, A.N.; Schmutzler, R.; Couch, F.J.; Spurdle, A.B.; Gomez-Garcia, E.B.; Group, E.C.W. BRCA1 and BRCA2 genetic testing-pitfalls and recommendations for managing variants of uncertain clinical significance. Ann. Oncol. 2015, 26, 2057–2065. [Google Scholar] [CrossRef]
- Mersch, J.; Brown, N.; Pirzadeh-Miller, S.; Mundt, E.; Cox, H.C.; Brown, K.; Aston, M.; Esterling, L.; Manley, S.; Ross, T. Prevalence of Variant Reclassification Following Hereditary Cancer Genetic Testing. JAMA 2018, 320, 1266–1274. [Google Scholar] [CrossRef]
- Sluiter, M.D.; van Rensburg, E.J. Large genomic rearrangements of the BRCA1 and BRCA2 genes: Review of the literature and report of a novel BRCA1 mutation. Breast Cancer Res. Treat. 2011, 125, 325–349. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.J. New challenges for BRCA testing: A view from the diagnostic laboratory. Eur. J. Hum. Genet. 2016, 24 (Suppl. 1), S10–S18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schouten, J.P.; McElgunn, C.J.; Waaijer, R.; Zwijnenburg, D.; Diepvens, F.; Pals, G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002, 30, e57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunyan, D.J.; Eccles, D.M.; Sillibourne, J.; Wilkins, E.; Thomas, N.S.; Shea-Simonds, J.; Duncan, P.J.; Curtis, C.E.; Robinson, D.O.; Harvey, J.F.; et al. Dosage analysis of cancer predisposition genes by multiplex ligation-dependent probe amplification. Br. J. Cancer 2004, 91, 1155–1159. [Google Scholar] [CrossRef] [Green Version]
- Woodward, A.M.; Davis, T.A.; Silva, A.G.; Kirk, J.A.; Leary, J.A. Large genomic rearrangements of both BRCA2 and BRCA1 are a feature of the inherited breast/ovarian cancer phenotype in selected families. J. Med. Genet. 2005, 42, e31. [Google Scholar] [CrossRef] [Green Version]
- James, P.A.; Sawyer, S.; Boyle, S.; Young, M.A.; Kovalenko, S.; Doherty, R.; McKinley, J.; Alsop, K.; Beshay, V.; Harris, M.; et al. Large genomic rearrangements in the familial breast and ovarian cancer gene BRCA1 are associated with an increased frequency of high risk features. Fam. Cancer 2015, 14, 287–295. [Google Scholar] [CrossRef]
- Judkins, T.; Rosenthal, E.; Arnell, C.; Burbidge, L.A.; Geary, W.; Barrus, T.; Schoenberger, J.; Trost, J.; Wenstrup, R.J.; Roa, B.B. Clinical significance of large rearrangements in BRCA1 and BRCA2. Cancer 2012, 118, 5210–5216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, T.; Jonson, L.; Albrechtsen, A.; Andersen, M.K.; Ejlertsen, B.; Nielsen, F.C. Large BRCA1 and BRCA2 genomic rearrangements in Danish high risk breast-ovarian cancer families. Breast Cancer Res. Treat. 2009, 115, 315–323. [Google Scholar] [CrossRef] [Green Version]
- del Valle, J.; Feliubadalo, L.; Nadal, M.; Teule, A.; Miro, R.; Cuesta, R.; Tornero, E.; Menendez, M.; Darder, E.; Brunet, J.; et al. Identification and comprehensive characterization of large genomic rearrangements in the BRCA1 and BRCA2 genes. Breast Cancer Res. Treat. 2010, 122, 733–743. [Google Scholar] [CrossRef]
- Kwon, J.S.; Tinker, A.V.; Karsan, A.; Schrader, K.A.; Sun, S. Costs and benefits of tumor testing for mutations in high-grade serous ovarian cancer as a triage for confirmatory genetic testing. Gynecol. Oncol. 2019, 154, 5. [Google Scholar] [CrossRef]
- Vlessis, K.; Purington, N.; Chun, N.; Haraldsdottir, S.; Ford, J.M. Germline Testing for Patients With BRCA1/2 Mutations on Somatic Tumor Testing. JNCI Cancer Spectr. 2020, 4, pkz095. [Google Scholar] [CrossRef] [Green Version]
- de Jonge, M.M.; Ruano, D.; van Eijk, R.; van der Stoep, N.; Nielsen, M.; Wijnen, J.T.; Ter Haar, N.T.; Baalbergen, A.; Bos, M.; Kagie, M.J.; et al. Validation and Implementation of BRCA1/2 Variant Screening in Ovarian Tumor Tissue. J. Mol. Diagn. 2018, 20, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Hauke, J.; Hahnen, E.; Schneider, S.; Reuss, A.; Richters, L.; Kommoss, S.; Heimbach, A.; Marme, F.; Schmidt, S.; Prieske, K.; et al. Deleterious somatic variants in 473 consecutive individuals with ovarian cancer: Results of the observational AGO-TR1 study (NCT02222883). J. Med. Genet. 2019, 56, 574–580. [Google Scholar] [CrossRef] [PubMed]
Variation | 1 Consultation n (%) | >1 Consultation n (%) | p-Value * |
---|---|---|---|
Member of oncology team undertaking pre-test counselling | |||
Medical Oncologist | 116/235 (49%) | 21/68 (30%) | <0.001 |
Surgical Oncologist | 93/235 (40%) | 17/68 (22%) | |
Clinical nurse specialist | 26/235 (12%) | 30/68 (48%) | |
Disease status at the time of counselling | |||
New diagnosis of ovarian cancer | 127/235 (54%) | 40/68 (59%) | 0.580 |
Under follow up | 108/235 (46%) | 28/68 (41%) | |
Treatment status at the time of counselling | |||
Undergoing treatment | 155/235 (66%) | 50/68 (74%) | 0.303 |
Not on treatment | 80/235 (34%) | 18/68 (26%) |
Category | No Germline Pathogenic Variants | Germline Pathogenic Variants | Significance | |
---|---|---|---|---|
Total | 249/303 (82.2%) | 54/303 (17.8%) | ||
Ethnicity | ||||
White | 164/249 (65.9%) | 32/54 (59.3%) | p = 0.515 | |
Black | 23/249 (9.2%) | 5/54 (9.3%) | ||
South Asian | 39/249 (15.7%) | 13/54 (24.1%) | ||
Other | 23/249 (9.2%) | 4/54 (7.4%) | ||
Age in years | ||||
Median (IQR) | 61 (51–71) | 54 (51–62) | p < 0.001 | |
Family History | ||||
Positive | 28/249 (11.2%) | 24/54 (44.4%) | p < 0.001 | |
Negative | 221/249 (88.8%) | 30/54 (55.6%) | ||
Histology | ||||
HGSC | 207/249 (83.1%) | 52/54 (96.3%) | p = 0.010 | |
All others | 42/249 (16.9%) | 2/52 (3.7%) | ||
Stage | ||||
Early stage | 57/249 (22.9%) | 10/54 (18.5%) | p = 0.589 | |
Advanced stage | 192/ 249(77.1%)) | 44/54 (81.5%)) | ||
No Pathogenic Variants | Total Germline or Somatic Pathogenic Variants (PV) | Germline PV | Somatic PV | |
Total | 234/303 (77.2%) | 69/303 (22.8%)* | 54/303 (17.8%) | 15/232 (6.5%)* |
Timing of surgery | ||||
Primary surgery | 115/234 (49.1%) | 30/69 (43.5%) | 23/54 (42.6%) | 7/15 (46.7%) |
Interval surgery | 69/234 (29.5%) | 28/69 (40.6%) | 23/54 (42.6%) | 5/15 (33.3%) |
Delayed surgery | 12/234 (5.1%) | 4/69 (5.8%) | 2/54 (3.7%) | 2/15 (13.3%) |
no surgery | 38/234 (16.1%) | 7/69 (10.1%) | 1/54 (1.9%) | 1/15 (6.7%) |
significance | p = 0.307 | |||
Disease status of ovarian cancer at time of counselling | ||||
New diagnosis | 126/234 (53.8%) | 41/69 (59.4%) | 35/54 (64.8%) | 6/15 (40%) |
Under follow up | 108/234 (46.2%) | 28/69 (40.6%) | 19/54 (35.2%) | 9/15 (60%) |
significance | p = 0.463 | |||
Chemotherapy response score | ||||
1 | 4/234 (1.7%) | 0 | 0 | 0 |
2 | 52/234 (22.2%) | 13/69 (18.8%) | 12/54 (22.2%) | 1/15 (6.7%) |
3 | 13/234 (5.6%) | 13/69 (18.8%) | 9/54 (16.7%) | 4/15 (26.7%) |
Not applicable | 165/234 (70.5%) | 43/69 (60.0%) | 33/54 (61.1%) | 10/15 (66.7) |
significance | p = 0.025 | |||
Resection (residual disease) status post surgery | ||||
R0 | 175/234 (74.8%) | 54/69 (78.2%) | 42/54 (77.8%) | 12/15 (80%) |
R1 | 14/234 (6.0%) | 4/69 (5.8%) | 3/54 (5.6%) | 1/15 (6.7%) |
R2 | 7/234 (3.0%) | 5/69 (7.2%) | 3/54 (5.6%) | 2/15 (13.3%) |
Not applicable | 38/234 (16.2%) | 6/69 (8.7%) | 6/54 (11.1%) | 0/15 (0%) |
significance | p = 0.276 | |||
Mutation Prevalence NELCN Cohort | ||||
Gene | n | Pathogenic (%) | VUS (%) | |
NELCN cohort | ||||
Germline | BRCA1 | 303 | 33 (11%) | 3 (1.0%) |
BRCA2 | 303 | 14 (4.6%) | 7 (2.3%) | |
RAD51C | 303 | 2 (0.7%) | 2 (0.7%) | |
RAD51D | 303 | 3 (1.0%) | 2 (0.7%) | |
BRIP1 | 303 | 2 (0.7%) | 6 (2.0%) | |
Total Germline PVs | 303 | 54 (17.8%) | 20 (6.6%) | |
Sequence PVs | 54 | 48 (88.9%) | - | |
LGR PVs | 54 | 6 (11.1%) | - | |
Somatic | BRCA1 | 232 | 11 (3.6%) | 1 (3%) |
BRCA2 | 232 | 4 (1.3%) | 4 (1.3%) | |
Total Somatic PVs | 232 | 15 (6.6%) | 5 (2.2%) | |
Total PVs | 303 | 69 (22.8%) | 25 (8.3%) |
Case ID | DNA Concentration (ng/µL) | DNA Yield (µg) | ||
---|---|---|---|---|
Slides | Punch | Slides | Punch | |
Case 1 | 69.35 | 176.4 | 6.94 | 17.64 |
Case 2 | 40.16 | 60.49 | 4.02 | 6.05 |
Case 3 | 25.12 | 69.64 | 2.51 | 6.96 |
Case 4 | 45.19 | 115.9 | 4.52 | 11.59 |
Case 5 | 54.02 | 41.93 | 5.40 | 4.19 |
Category | Successfully Reported (n,%) | Failed Analysis (n,%) |
---|---|---|
Total number of samples | 213/232 (91.8%) | 19/232 (8.9%) * |
Type of tissue | ||
Pre-chemo diagnostic biopsy | 37/48 (77.1%) | 11/48 (22.9%) |
Primary surgery | 104/110 (94.5%) | 6/110 (5.5%) |
Post-chemo cytoreductive surgery | 72/74 (97.3%) | 2/74 (2.7%) |
Type of tumour sample | ||
3 mm core from FFPE | 171/174 (98.3%) | 3/174 (1.7%) |
5 × 5µM unstained slides | 42/58 (72.4%) | 16/58 (27.6%) |
Neoplastic content | ||
<20% | 5/11 (45.5%) | 6/11 (54.5%) |
20–50% | 33/40 (82.5%) | 7/40 (17.5%) |
>50% | 175/181 (96.7%) | 6/181 (3.4%) |
Gene | n | Pathogenic (%) | VUS (%) | |
---|---|---|---|---|
Manchester Cohort | ||||
Germline | BRCA1 | 116 | 8 (6.9%) | 1 (0.9%) |
BRCA2 | 116 | 3 (2.6%) | ||
Total Germline PVs | 11 (9.5%) | |||
Sequence PVs | 11 | 10 (90.9%) | ||
LGR PVs | 11 | 1 (9.1%) | ||
Somatic | BRCA1 | 116 | 7 (6%) | 1 (0.9%) |
BRCA2 | 116 | 5 (4.3%) | 1 (0.9%) | |
Total Somatic PVs | 12 (10.3%) | 2 (1.8%) | ||
Total PVs | 116 | 23 (19.8%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandrasekaran, D.; Sobocan, M.; Blyuss, O.; Miller, R.E.; Evans, O.; Crusz, S.M.; Mills-Baldock, T.; Sun, L.; Hammond, R.F.L.; Gaba, F.; et al. Implementation of Multigene Germline and Parallel Somatic Genetic Testing in Epithelial Ovarian Cancer: SIGNPOST Study. Cancers 2021, 13, 4344. https://doi.org/10.3390/cancers13174344
Chandrasekaran D, Sobocan M, Blyuss O, Miller RE, Evans O, Crusz SM, Mills-Baldock T, Sun L, Hammond RFL, Gaba F, et al. Implementation of Multigene Germline and Parallel Somatic Genetic Testing in Epithelial Ovarian Cancer: SIGNPOST Study. Cancers. 2021; 13(17):4344. https://doi.org/10.3390/cancers13174344
Chicago/Turabian StyleChandrasekaran, Dhivya, Monika Sobocan, Oleg Blyuss, Rowan E. Miller, Olivia Evans, Shanthini M. Crusz, Tina Mills-Baldock, Li Sun, Rory F. L. Hammond, Faiza Gaba, and et al. 2021. "Implementation of Multigene Germline and Parallel Somatic Genetic Testing in Epithelial Ovarian Cancer: SIGNPOST Study" Cancers 13, no. 17: 4344. https://doi.org/10.3390/cancers13174344
APA StyleChandrasekaran, D., Sobocan, M., Blyuss, O., Miller, R. E., Evans, O., Crusz, S. M., Mills-Baldock, T., Sun, L., Hammond, R. F. L., Gaba, F., Jenkins, L. A., Ahmed, M., Kumar, A., Jeyarajah, A., Lawrence, A. C., Brockbank, E., Phadnis, S., Quigley, M., El Khouly, F., ... Manchanda, R. (2021). Implementation of Multigene Germline and Parallel Somatic Genetic Testing in Epithelial Ovarian Cancer: SIGNPOST Study. Cancers, 13(17), 4344. https://doi.org/10.3390/cancers13174344