Immune-Checkpoint Inhibitors for Metastatic Colorectal Cancer: A Systematic Review of Clinical Outcomes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Eligibility Criteria and Data Collection
2.2. Study Endpoints
2.3. Literature Search and Study Endpoints
2.4. Data Analysis
3. Results
3.1. Checkpoint Blockade in Colorectal Cancer Patients with High Microsatellite Instability
3.1.1. Single PD-1 Inhibitor
3.1.2. Single PD-L1 Inhibitor
3.1.3. Combination of CTLA-4 + PD-1 Inhibitors
3.2. Checkpoint Blockade in Colorectal Cancer Patients with Stable Microsatellite Status
3.2.1. Immune-Checkpoint Inhibitors + Chemotherapeutic or Biological Agents
3.2.2. Combination of CTLA-4 + PD-L1 Inhibitors
3.3. Study Limitations
4. Discussion
Conclusion and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Wolf, A.M.D.; Fontham, E.T.H.; Church, T.R.; Flowers, C.R.; Guerra, C.E.; LaMonte, S.J.; Etzioni, R.; McKenna, M.T.; Oeffinger, K.C.; Shih, Y.T.; et al. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society. CA Cancer J. Clin. 2018, 68, 250–281. [Google Scholar] [CrossRef]
- Van der Stok, E.P.; Spaander, M.C.W.; Grunhagen, D.J.; Verhoef, C.; Kuipers, E.J. Surveillance after curative treatment for colorectal cancer. Nat. Rev. Clin. Oncol. 2017, 14, 297–315. [Google Scholar] [CrossRef]
- Messersmith, W.A. NCCN guidelines updates: Management of metastatic colorectal cancer. J. Natl. Compr. Cancer Netw. 2019, 17, 599–601. [Google Scholar]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol. 2018, 834, 188–196. [Google Scholar] [CrossRef]
- Yarom, N.; Jonker, D.J. The role of the epidermal growth factor receptor in the mechanism and treatment of colorectal cancer. Discov. Med. 2011, 11, 95–105. [Google Scholar]
- Vecchione, L.; Jacobs, B.; Normanno, N.; Ciardiello, F.; Tejpar, S. EGFR-targeted therapy. Exp. Cell Res. 2011, 317, 2765–2771. [Google Scholar] [CrossRef]
- Mizukami, T.; Izawa, N.; Nakajima, T.E.; Sunakawa, Y. Targeting EGFR and RAS/RAF signaling in the treatment of metastatic colorectal cancer: From current treatment strategies to future perspectives. Drugs 2019, 79, 633–645. [Google Scholar] [CrossRef]
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef]
- Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med. 1971, 285, 1182–1186. [Google Scholar] [PubMed]
- Goel, H.L.; Mercurio, A.M. VEGF targets the tumour cell. Nat. Rev. Cancer 2013, 13, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Harada, K.; Vasilakopoulou, M.; Shanbhag, N.; Ajani, J.A. Targeting angiogenesis in colorectal carcinoma. Drugs 2019, 79, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, K.; Stadler, Z.K.; Cercek, A.; Mendelsohn, R.B.; Shia, J.; Segal, N.H.; Diaz, L.A., Jr. Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Shek, D.; Read, S.A.; Nagrial, A.; Carlino, M.S.; Gao, B.; George, J.; Ahlenstiel, G. Immune-checkpoint inhibitors for advanced hepatocellular carcinoma: A synopsis of response rates. Oncologist 2021, 26, e1216–e1225. [Google Scholar] [CrossRef] [PubMed]
- Andre, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Overman, M.J.; Ernstoff, M.S.; Morse, M.A. Where we stand with immunotherapy in colorectal cancer: Deficient mismatch repair, proficient mismatch repair, and toxicity management. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 239–247. [Google Scholar] [CrossRef]
- Overman, M.J.; Lonardi, S.; Wong, K.Y.M.; Lenz, H.J.; Gelsomino, F.; Aglietta, M.; Morse, M.A.; Van Cutsem, E.; McDermott, R.; Hill, A.; et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol. 2018, 36, 773–779. [Google Scholar] [CrossRef]
- Le, D.T.; Kim, T.W.; Van Cutsem, E.; Geva, R.; Jager, D.; Hara, H.; Burge, M.; O’Neil, B.; Kavan, P.; Yoshino, T.; et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J. Clin. Oncol. 2020, 38, 11–19. [Google Scholar] [CrossRef]
- Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 2017, 18, 1182–1191. [Google Scholar] [CrossRef]
- Hochster, H.S.; Bendell, J.C.; Cleary, J.M.; Foster, P.; Zhang, W.; He, X.; Hernandez, G.; Iizuka, K.; Eckhardt, S.G. Efficacy and safety of atezolizumab (atezo) and bevacizumab (bev) in a phase Ib study of microsatellite instability (MSI)-high metastatic colorectal cancer (mCRC). J. Clin. Oncol. 2017, 35, 673. [Google Scholar] [CrossRef]
- Segal, N.H.; Wainberg, Z.A.; Overman, M.J.; Ascierto, P.A.; Arkenau, H.-T.; Butler, M.O.; Eder, J.P.; Keilholz, U.; Kim, D.-W.; Cunningham, D.; et al. Safety and clinical activity of durvalumab monotherapy in patients with microsatellite instability–high (MSI-H) tumors. J. Clin. Oncol. 2019, 37, 670. [Google Scholar] [CrossRef]
- Mettu, N.B.; Twohy, E.; Ou, F.S.; Halfdanarson, T.R.; Lenz, H.J.; Breakstone, R.; Boland, P.M.; Crysler, O.; Wu, C.; Grothey, A.; et al. BACCI: A phase II randomized, double-blind, multicenter, placebo-controlled study of capecitabine (C) bevacizumab (B) plus atezolizumab (A) or placebo (P) in refractory metastatic colorectal cancer (mCRC): An ACCRU network study. Ann. Oncol. 2019, 30, v203. [Google Scholar] [CrossRef]
- Fukuoka, S.; Hara, H.; Takahashi, N.; Kojima, T.; Kawazoe, A.; Asayama, M.; Yoshii, T.; Kotani, D.; Tamura, H.; Mikamoto, Y.; et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: An open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J. Clin. Oncol. 2020, 38, 2053–2061. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Kim, T.W.; Lee, C.B.; Goh, B.C.; Miller, W.H., Jr.; Oh, D.Y.; Jamal, R.; Chee, C.E.; Chow, L.Q.M.; Gainor, J.F.; et al. Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors. Ann. Oncol. 2019, 30, 1134–1142. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.Y.; Baek, J.Y.; Cha, Y.J.; Ahn, J.B.; Kim, H.S.; Lee, K.W.; Kim, J.W.; Kim, T.Y.; Chang, W.J.; et al. A phase II study of avelumab monotherapy in patients with mismatch repair-deficient/microsatellite instability-high or POLE-mutated metastatic or unresectable colorectal cancer. Cancer Res. Treat. 2020, 52, 1135–1144. [Google Scholar] [CrossRef]
- Eng, C.; Kim, T.W.; Bendell, J.; Argiles, G.; Tebbutt, N.C.; Di Bartolomeo, M.; Falcone, A.; Fakih, M.; Kozloff, M.; Segal, N.H.; et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): A multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2019, 20, 849–861. [Google Scholar] [CrossRef]
- Martinelli, E.; Martini, G.; Troiani, T.; Pietrantonio, F.; Avallone, A.; Normanno, N.; Nappi, A.; Maiello, E.; Falcone, A.; Santabarbara, G.; et al. 397O Avelumab plus cetuximab in pre-treated RAS wild type metastatic colorectal cancer patients as a rechallenge strategy: The phase II CAVE (cetuximab-avelumab) mCRC study. Ann. Oncol. 2020, 31, S409–S410. [Google Scholar] [CrossRef]
- Chen, E.X.; Jonker, D.J.; Loree, J.M.; Kennecke, H.F.; Berry, S.R.; Couture, F.; Ahmad, C.E.; Goffin, J.R.; Kavan, P.; Harb, M.; et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: The Canadian cancer trials group CO.26 study. JAMA Oncol. 2020, 6, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.C.; Savovic, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- Wells, G.S.B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://wwwohrica/programs/clinical_epidemiology/oxfordasp2013 (accessed on 22 June 2021).
- Korn, R.L.; Crowley, J.J. Overview: Progression-free survival as an endpoint in clinical trials with solid tumors. Clin. Cancer Res. 2013, 19, 2607–2612. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food & Drug Administration. FDA Approves Pembrolizumab for First-Line Treatment of MSI-H/dMMR Colorectal Cancer. Available online: https://wwwfdagov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-first-line-treatment-msi-hdmmr-colorectal-cancer (accessed on 12 July 2021).
- Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal. Transduct. Target. Ther. 2020, 5, 22. [Google Scholar] [CrossRef]
- Mlecnik, B.; Bindea, G.; Angell, H.K.; Maby, P.; Angelova, M.; Tougeron, D.; Church, S.E.; Lafontaine, L.; Fischer, M.; Fredriksen, T.; et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 2016, 44, 698–711. [Google Scholar] [CrossRef] [Green Version]
- Westra, J.L.; Plukker, J.T.; Buys, C.H.; Hofstra, R.M. Genetic alterations in locally advanced stage II/III colon cancer: A search for prognostic markers. Clin. Colorectal. Cancer 2004, 4, 252–259. [Google Scholar] [CrossRef]
- Nosho, K.; Baba, Y.; Tanaka, N.; Shima, K.; Hayashi, M.; Meyerhardt, J.A.; Giovannucci, E.; Dranoff, G.; Fuchs, C.S.; Ogino, S. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: Cohort study and literature review. J. Pathol. 2010, 222, 350–366. [Google Scholar] [CrossRef] [Green Version]
- Rooney, M.S.; Shukla, S.A.; Wu, C.J.; Getz, G.; Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015, 160, 48–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, D.L.; Chen, C.W.; Hsu, C.L.; Chung, C.H.; Feng, Z.R.; Lee, B.S.; Cheng, A.L.; Yang, M.H.; Hsu, C. Regorafenib enhances antitumor immunity via inhibition of p38 kinase/Creb1/Klf4 axis in tumor-associated macrophages. J. Immunother. Cancer 2021, 9, e001657. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Xu, J.; Lan, H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 2019, 12, 76. [Google Scholar] [CrossRef] [PubMed]
NCT | Phase | ICI | Total N | Prior Systemic Treatment: % (n) | Median PFS (95% CI) | ORR (95% CI) | Marker Status: % (n) |
---|---|---|---|---|---|---|---|
NCT02060188 [21] | 2 | NIVO 3 mg/kg + IPI 1 mg/kg Q3W (4 doses) followed by NIVO 3 mg/kg Q2W | 119 | 0: 1 (1) 1: 23 (27) 2: 36 (43) ≥3: 40 (48) | NR | 54.6% (45.2 to 63.8) | BRAF/KRAS wt: 26 (31) BRAF mt: 24 (29) KRAS mt: 37 (44) PD-L1 ≥ 1%: 22 (26) PD-L1 < 1%: 55 (65) Unknown: 24 (28) |
NCT02460198—cohort A [22] | 2 | PEMBRO 200 mg Q3W | 61 | 1: 10 (6) 2: 46 (28) ≥3: 44 (27) | 2.3 mo. (2.1 to 8.1) | 33% (21 to 46) | MSI-H/dMMR: 100 (61) BRAF/KRAS/NRAS wt: 18 (11) BRAF mt: 15 (9) KRAS mt: 26 (16) NRAS mt: 5 (3) |
NCT02460198—cohort B [22] | 2 | PEMBRO 200 mg Q3W | 63 | 1: 38 (24) 2: 32 (20) ≥3: 30 (19) | 4.1 mo. (2.1 to 18.9) | 33% (22 to 46) | MSI-H/dMMR: 100 (63) BRAF/KRAS/NRAS wt: 9 (6) BRAF mt: 8 (5) KRAS mt: 35 (22) NRAS mt: 8 (5) |
NCT02060188 [23] | 2 | NIVO 3 mg/kg Q3W | 74 | 0: 1 (1) 1: 15 (11) 2: 30 (22) ≥3: 54 (40) | 14.3 mo. (4.3 to NR) | 31.1% (20.8 to 42.9) | MSI-H/dMMR: 100 (74) BRAF/KRAS wt: 39 (29) BRAF mt: 16 (12) KRAS mt: 35 (26) Unknown: 9 (7) PD-L1 ≥ 1%: 28 (21) PD-L1 < 1%: 64 (47) Unknown: 8 (6) |
NCT01633970 [24] | 1b | ATEZO 1200 mg Q3W + Bevacizumab | 10 | 1: 30 (3) ≥2: 70 (7) | NR | 30% (6.7 to 65.3) | MSI-H/dMMR: 100 (10) |
NCT01693562 [25] | 1/2 | DURVA 10 mg/kg Q2W | 36 | - | 6 mo. (3 to 20) | 22% (10 to 39) | MSI-H/dMMR: 100 (36) |
NCT02873195 [26] | 2 | Capecitabine + ATEZO 1200 mg Q3W + Bevacizumab | 82 | - | 4.4 mo. (4.1 to 6.4) | 8.54% (3.5 to 16.8) | MSS/pMMR: 85.7 (70) |
NCT03406871 [27] | 1b | NIVO 3 mg/kg Q2W + Regorafenib | 25 | - | 7.9 mo. (2.9 to NR) | 36% (18 to 57.5) | MSI-H/dMMR: 0 (0) MSS/pMMR: 100 (25) PD-L1 ≥ 1%: 42 (10) PD-L1 < 1%: 58 (14) |
NCT01988896 [28] | 1/1b | ATEZO 800 mg Q2W + cobimetinib | 84 | - | 1.9 mo. (1.8 to 2.3) | 8% (3 to 16) | MSI-H/dMMR: 2.4 (2) MSS/pMMR: 72 (60) MSI-Unknown: 21 (18) BRAF mt: 6 (5) KRAS mt: 68 (57) Unknown: 23 (19) |
NCT03150706 [29] | 2 | Avelumab 10 mg/kg Q2W | 33 | 1: 48.5 (16) 2: 33.3 (11) ≥3: 18.2 (6) | 3.9 mo. (2.3 to 5.6) | 24.2% (9.4 to 38.6) | BRAF mt: 12.1 (4) KRAS mt: 60.6 (20) Unknown: 27 (9) |
NCT02563002 [19] | 3 | PEMBRO 200 mg Q3W | 153 | 0: 75 (115) >1: 25 (38) | 16.5 mo. (5.4 to 32.4) | 43.8% (35.8 to 52) | MSI-H/dMMR: 100 (153) BRAF/KRAS wt: 22 (34) BRAF mt: 22 (34) KRAS mt: 22 (34) Unknown: 34 (52) |
NCT02788279—cohort A [30] | 3 | ATEZO 840 mg Q2W + cobimetinib | 183 | <3: 73 (134) >3: 27 (49) | 1.91 mo. (1.87 to 1.97) | 3% (0.9 to 6.3) | MSI-H/dMMR: 2 (3) MSS/pMMR: 93 (170) BRAF wt: 95 (174) KRAS wt: 46 (84) BRAF mt: 5 (9) KRAS mt: 54 (99) PD-L1 ≥ 1%: 43 (79) PD-L1 < 1%: 46 (84) Unknown: 11 (20) |
NCT02788279—cohort B [30] | 3 | ATEZO 1200 mg Q3W | 90 | <3: 71 (64) >3: 29 (26) | 1.94 mo. (1.91 to 2.1) | 2% (0.3 to 7.8) | MSI-H/dMMR: 3 (3) MSS/pMMR: 92 (83) BRAF wt: 97 (87) KRAS wt: 46 (41) BRAF mt: 3 (3) KRAS mt: 54 (49) PD-L1 ≥ 1%: 39 (35) PD-L1 < 1%: 47 (42) Unknown: 14 (13) |
CAVE trial [31] | 2 | Avelumab 10 mg/kg Q2W + Cetuximab | 77 | 1: 100 (77) | 3.6 mo. (3.3 to 3.9) | 6.1% (4.2 to 9.8) | KRAS wt: 100 (77) |
NCT02870920 [32] | 2 | DURVA 1500 mg Q4W + TREM 75 mgQ4W | 119 | - | 1.8 mo. (1.8 to 1.9) | 0.8% (0.2 to 1.6) | MSI-H/dMMR: 1 (1) MSS/pMMR: 98 (117) BRAF wt: 92 (110) KRAS wt: 21 (25) BRAF mt: 7 (8) KRAS mt: 78 (93) |
NCT | Phase | Sponsor | ICI | Primary Endpoint | Estimated Date for Primary Results |
---|---|---|---|---|---|
NCT04513951 | 2 | Gruppo Oncologico del Nord-Ovest | Avelumab |
| May 2021 |
NCT04659382 | 2 | Federation Francophone de Cancerologie Digestive | ATEZO |
| October 2021 |
NCT03983954 | 1 | NeoTX Therapeutics Ltd. | DURVA |
| November 2021 |
NCT03475004 | 2 | University of Colorado, Denver | PEMBRO |
| December 2021 |
NCT03388190 | 2 | University Hospital, Akershus | NIVO |
| December 2021 |
NCT04575922 | 2 | Massachusetts General Hospital | NIVO + IPI |
| December 2021 |
NCT03519412 | 2 | IFOM, the FIRC Institute of Molecular Oncology | PEMBRO |
| February 2022 |
NCT03866239 | 1 | Hoffmann-La Roche | ATEZO |
| February 2022 |
NCT02997228 | 3 | National Cancer Institute (NCI) | ATEZO |
| April 2022 |
NCT03657641 | 2 | University of Southern California | PEMBRO |
| June 2022 |
NCT04924179 | 2 | Huazhong University of Science and Technology | Tislelizumab |
| December 2022 |
NCT03377361 | 2 | Bristol-Myers Squibb | NIVO |
| January 2023 |
NCT04777162 | 2 | Peking University | Tislelizumab |
| January 2023 |
NCT04730544 | 2 | GERCOR—Multidisciplinary Oncology Cooperative Group | NIVO + IPI |
| March 2023 |
NCT03555149 | 2 | Hoffmann-La Roche | ATEZO |
| April 2023 |
NCT04262687 | 2 | Federation Francophone de Cancerologie Digestive | PEMBRO |
| September 2023 |
NCT03374254 | 1 | Merck Sharp & Dohme Corp. | PEMBRO |
| November 2023 |
NCT04963283 | 2 | University of Colorado, Denver | NIVO |
| February 2024 |
NCT03642067 | 2 | Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins | NIVO |
| February 2024 |
NCT04776148 | 3 | Merck Sharp & Dohme Corp. | PEMBRO |
| March 2024 |
NCT04017650 | 2 | M.D. Anderson Cancer Center | NIVO |
| June 2024 |
NCT03396926 | 2 | University of California, San Francisco | PEMBRO |
| January 2025 |
NCT04008030 | 3 | Bristol-Myers Squibb | NIVO or NIVO + IPI |
| August 2025 |
NCT04430985 | 2 | Dorte Nielsen | IPI |
| September 2025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shek, D.; Akhuba, L.; Carlino, M.S.; Nagrial, A.; Moujaber, T.; Read, S.A.; Gao, B.; Ahlenstiel, G. Immune-Checkpoint Inhibitors for Metastatic Colorectal Cancer: A Systematic Review of Clinical Outcomes. Cancers 2021, 13, 4345. https://doi.org/10.3390/cancers13174345
Shek D, Akhuba L, Carlino MS, Nagrial A, Moujaber T, Read SA, Gao B, Ahlenstiel G. Immune-Checkpoint Inhibitors for Metastatic Colorectal Cancer: A Systematic Review of Clinical Outcomes. Cancers. 2021; 13(17):4345. https://doi.org/10.3390/cancers13174345
Chicago/Turabian StyleShek, Dmitrii, Liia Akhuba, Matteo S. Carlino, Adnan Nagrial, Tania Moujaber, Scott A. Read, Bo Gao, and Golo Ahlenstiel. 2021. "Immune-Checkpoint Inhibitors for Metastatic Colorectal Cancer: A Systematic Review of Clinical Outcomes" Cancers 13, no. 17: 4345. https://doi.org/10.3390/cancers13174345
APA StyleShek, D., Akhuba, L., Carlino, M. S., Nagrial, A., Moujaber, T., Read, S. A., Gao, B., & Ahlenstiel, G. (2021). Immune-Checkpoint Inhibitors for Metastatic Colorectal Cancer: A Systematic Review of Clinical Outcomes. Cancers, 13(17), 4345. https://doi.org/10.3390/cancers13174345