Thrombotic Complications Associated with Immune Checkpoint Inhibitors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Mechanism of Thrombosis Related to Immune Checkpoint Inhibitors
4. Incidence of Thrombosis
4.1. Venous Thromboembolism (VTE)
4.2. Arterial Thrombosis
5. Treatment of Thrombosis
6. Prevention of Thrombosis
7. Survival and Thrombosis in Patients Receiving Immune Checkpoint Inhibitors
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mulder, F.I.; Horvath-Puho, E.; van Es, N.; van Laarhoven, H.W.M.; Pedersen, L.; Moik, F.; Ay, C.; Buller, H.R.; Sorensen, H.T. Venous thromboembolism in cancer patients: A population-based cohort study. Blood 2021, 137, 1959–1969. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Ay, C.; Pabinger, I.; Cohen, A.T. Cancer-associated venous thromboembolism: Burden, mechanisms, and management. Thromb. Haemost. 2017, 117, 219–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Haslam, A.; Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2019, 2, e192535. [Google Scholar] [CrossRef] [Green Version]
- Vaddepally, R.K.; Kharel, P.; Pandey, R.; Garje, R.; Chandra, A.B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers 2020, 12, 738. [Google Scholar] [CrossRef] [Green Version]
- Hegde, A.M.; Stroud, C.R.; Cherry, C.R.; Yogarajah, M.; Cherukuri, S.D.; Walker, P.R. Incidence and impact of thromboembolic events in lung cancer patients treated with nivolumab. J. Clin. Oncol. 2017, 35, e20624. [Google Scholar] [CrossRef]
- Ibrahimi, S.; Machiorlatti, M.; Vesely, S.K.; Malla, M.; Modhia, F.; Jones, S.A.; Roman, D.; Cherry, M.A. Incidence of Vascular Thromboembolic Events in Patients Receiving Immunotherapy: A Single Institution Experience; American Society of Hematology: Washington, DC, USA, 2017; p. 4864. [Google Scholar]
- Hsu, J.C.; Lin, J.Y.; Hsu, M.Y.; Lin, P.C. Effectiveness and safety of immune checkpoint inhibitors: A retrospective study in Taiwan. PLoS ONE 2018, 13, e0202725. [Google Scholar] [CrossRef] [PubMed]
- Bar, J.; Markel, G.; Gottfried, T.; Percik, R.; Leibowitz-Amit, R.; Berger, R.; Golan, T.; Daher, S.; Taliansky, A.; Dudnik, E.; et al. Acute vascular events as a possibly related adverse event of immunotherapy: A single-institute retrospective study. Eur. J. Cancer 2019, 120, 122–131. [Google Scholar] [CrossRef]
- Nichetti, F.; Ligorio, F.; Zattarin, E.; Signorelli, D.; Prelaj, A.; Proto, C.; Galli, G.; Marra, A.; Apollonio, G.; Porcu, L.; et al. Is there an interplay between immune checkpoint inhibitors, thromboprophylactic treatments and thromboembolic events? Mechanisms and impact in non-small cell lung cancer patients. Cancers 2019, 12, 67. [Google Scholar] [CrossRef] [Green Version]
- Ando, Y.; Hayashi, T.; Sugimoto, R.; Nishibe, S.; Ito, K.; Kawada, K.; Ikeda, Y.; Yamada, S.; Imaizumi, K. Risk factors for cancer-associated thrombosis in patients undergoing treatment with immune checkpoint inhibitors. Investig. New Drugs 2020, 38, 1200–1206. [Google Scholar] [CrossRef] [Green Version]
- Drobni, Z.D.; Alvi, R.M.; Taron, J.; Zafar, A.; Murphy, S.P.; Rambarat, P.K.; Mosarla, R.C.; Lee, C.; Zlotoff, D.A.; Raghu, V.K.; et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation 2020, 142, 2299–2311. [Google Scholar] [CrossRef]
- Deschenes-Simard, X.; Richard, C.; Galland, L.; Blais, F.; Desilets, A.; Malo, J.; Cvetkovic, L.; Belkaid, W.; Elkrief, A.; Gagne, A.; et al. Venous thrombotic events in patients treated with immune checkpoint inhibitors for non-small cell lung cancer: A retrospective multicentric cohort study. Thromb. Res. 2021, 205, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Sainz, L.; Martinez-Marin, V.; Vinal, D.; Martinez-Perez, D.; Pedregosa, J.; Garcia-Cuesta, J.A.; Villamayor, J.; Zamora, P.; Pinto, A.; Redondo, A.; et al. Incidence of venous thromboembolic events in cancer patients receiving immunotherapy: A single-institution experience. Clin. Transl. Oncol. 2021, 23, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Guven, D.C.; Aksun, M.S.; Sahin, T.K.; Aktepe, O.H.; Yildirim, H.C.; Taban, H.; Ceylan, F.; Kertmen, N.; Arik, Z.; Dizdar, O.; et al. Poorer baseline performance status is associated with increased thromboembolism risk in metastatic cancer patients treated with immunotherapy. Supportive Care Cancer 2021, 29, 5417–5423. [Google Scholar] [CrossRef] [PubMed]
- Icht, O.; Darzi, N.; Shimony, S.; Jacobi, O.; Reinhorn, D.; Landman, Y.; Mutai, R.; Averbuch, I.; Shochat, T.; Spectre, G.; et al. Venous thromboembolism incidence and risk assessment in lung cancer patients treated with immune checkpoint inhibitors. J. Thromb. Haemost. 2021, 19, 1250–1258. [Google Scholar] [CrossRef]
- Kewan, T.; Ko, T.; Flores, M.; Sallam, Y.; Haddad, A.; Daw, H. Prognostic impact and risk factors of cancer-associated thrombosis events in stage-IV cancer patients treated with immune checkpoint inhibitors. Eur. J. Haematol. 2021, 106, 682–688. [Google Scholar] [CrossRef]
- Madison, C.J.; Melson, R.A.; Conlin, M.J.; Gundle, K.R.; Thompson, R.F.; Calverley, D.C. Thromboembolic risk in patients with lung cancer receiving systemic therapy. Br. J. Haematol. 2021, 194, 179–190. [Google Scholar] [CrossRef]
- Moik, F.; Chan, W.-S.E.; Wiedemann, S.; Hoeller, C.; Tuchmann, F.; Aretin, M.-B.; Fuereder, T.; Zochbauer-Muller, S.; Preusser, M.; Pabinger, I.; et al. Incidence, risk factors, and outcomes of venous and arterial thromboembolism in immune checkpoint inhibitor therapy. Blood 2021, 137, 1669–1678. [Google Scholar] [CrossRef]
- Roopkumar, J.; Swaidani, S.; Kim, A.S.; Thapa, B.; Gervaso, L.; Hobbs, B.P.; Wei, W.; Alban, T.J.; Funchain, P.; Kundu, S.; et al. Increased Incidence of Venous Thromboembolism with Cancer Immunotherapy. Med 2021, 2, 423–434. [Google Scholar]
- Sussman, T.A.; Li, H.; Hobbs, B.; Funchain, P.; McCrae, K.R.; Khorana, A.A. Incidence of thromboembolism in patients with melanoma on immune checkpoint inhibitor therapy and its adverse association with survival. J. Immunother. Cancer 2021, 9, e001719. [Google Scholar] [CrossRef] [PubMed]
- Moik, F.; Ay, C.; Horváth-Puhó, E.; Pabinger, I.; Mulder, F.I.; van Es, N.; Sørensen, H.T. Risk of Venous and Arterial Thromboembolic Events in Patients Receiving Targeted Anti-Cancer Therapy—A Nationwide Cohort Study. In Proceedings of the International Society on Thrombosis and Haemostasis Congress, Philadelphia, PA, USA, 17–21 July 2021. [Google Scholar]
- Hu, Y.B.; Zhang, Q.; Li, H.J.; Michot, J.M.; Liu, H.B.; Zhan, P.; Lv, T.F.; Song, Y. Evaluation of rare but severe immune related adverse effects in PD-1 and PD-L1 inhibitors in non-small cell lung cancer: A meta-analysis. Transl. Lung Cancer Res. 2017, 6, S8–S20. [Google Scholar] [CrossRef] [Green Version]
- Nso, N.; Antwi-Amoabeng, D.; Beutler, B.D.; Ulanja, M.B.; Ghuman, J.; Hanfy, A.; Nimo-Boampong, J.; Atanga, S.; Doshi, R.; Enoru, S.; et al. Cardiac adverse events of immune checkpoint inhibitors in oncology patients: A systematic review and meta-analysis. World J. Cardiol. 2020, 12, 584–598. [Google Scholar] [CrossRef]
- Solinas, C.; Saba, L.; Sganzerla, P.; Petrelli, F. Venous and arterial thromboembolic events with immune checkpoint inhibitors: A systematic review. Thromb. Res. 2020, 196, 444–453. [Google Scholar] [CrossRef]
- Agostinetto, E.; Eiger, D.; Lambertini, M.; Ceppi, M.; Bruzzone, M.; Ponde, N.; Plummer, C.; Awada, A.H.; Santoro, A.; Piccart-Gebhart, M.; et al. Cardiotoxicity of immune checkpoint inhibitors: A systematic review and meta-analysis of randomised clinical trials. Eur. J. Cancer 2021, 148, 76–91. [Google Scholar] [CrossRef]
- Urwyler, P.; Earnshaw, I.; Bermudez, M.; Perucha, E.; Wu, W.; Ryan, S.; McDonald, L.; Karagiannis, S.N.; Taams, L.S.; Powell, N.; et al. Mechanisms of checkpoint inhibition-induced adverse events. Clin. Exp. Immunol. 2020, 200, 141–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cochain, C.; Chaudhari, S.M.; Koch, M.; Wiendl, H.; Eckstein, H.H.; Zernecke, A. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS ONE 2014, 9, e93280. [Google Scholar] [CrossRef] [Green Version]
- Bu, D.X.; Tarrio, M.; Maganto-Garcia, E.; Stavrakis, G.; Tajima, G.; Lederer, J.; Jarolim, P.; Freeman, G.J.; Sharpe, A.H.; Lichtman, A.H. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1100–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inno, A.; Chiampan, A.; Lanzoni, L.; Verze, M.; Molon, G.; Gori, S. Immune checkpoint inhibitors and atherosclerotic vascular events in cancer patients. Front. Cardiovasc. Med. 2021, 8, 484. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, G.; De Carli, M.; Lammel, R.M.; D’Elios, M.M.; Daniel, K.C.; Giusti, B.; Abbate, R.; Romagnani, S. Th1 and Th2 T-helper cells exert opposite regulatory effects on procoagulant activity and tissue factor production by human monocytes. Blood 1995, 86, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Horio, Y.; Takamatsu, K.; Tamanoi, D.; Sato, R.; Saruwatari, K.; Ikeda, T.; Nakane, S.; Nakajima, M.; Saeki, S.; Ichiyasu, H.; et al. Trousseau’s syndrome triggered by an immune checkpoint blockade in a non-small cell lung cancer patient. Eur. J. Immunol. 2018, 48, 1764–1767. [Google Scholar] [CrossRef] [Green Version]
- Boutte, A.M.; McDonald, W.H.; Shyr, Y.; Yang, L.; Lin, P.C. Characterization of the MDSC proteome associated with metastatic murine mammary tumors using label-free mass spectrometry and shotgun proteomics. PLoS ONE 2011, 6, e22446. [Google Scholar] [CrossRef]
- Sacchi, A.; Grassi, G.; Notari, S.; Gili, S.; Bordoni, V.; Tartaglia, E.; Casetti, R.; Cimini, E.; Mariotti, D.; Garotto, G.; et al. Expansion of Myeloid Derived Suppressor Cells Contributes to Platelet Activation by L-Arginine Deprivation during SARS-CoV-2 Infection. Cells 2021, 10, 2111. [Google Scholar] [CrossRef]
- Alfaro, C.; Teijeira, A.; Onate, C.; Perez, G.; Sanmamed, M.F.; Andueza, M.P.; Alignani, D.; Labiano, S.; Azpilikueta, A.; Rodriguez-Paulete, A.; et al. Tumor-Produced Interleukin-8 Attracts Human Myeloid-Derived Suppressor Cells and Elicits Extrusion of Neutrophil Extracellular Traps (NETs). Clin. Cancer Res. 2016, 22, 3924–3936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelmann, B.; Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 2013, 13, 34–45. [Google Scholar] [CrossRef]
- Petrelli, F.; Solinas, C. Reply to the letter to the editor ‘Reply to Solinas et al. venous and arterial thromboembolic events with immune checkpoint inhibitors: A systematic review’ by Frere et al. Thromb. Res. 2021. [Google Scholar] [CrossRef]
- Mandala, M.; Barni, S.; Floriani, I.; Isa, L.; Fornarini, G.; Marangolo, M.; Mosconi, S.; Corsi, D.; Rulli, E.; Frontini, L.; et al. Incidence and clinical implications of venous thromboembolism in advanced colorectal cancer patients: The ‘GISCAD-alternating schedule’ study findings. Eur. J. Cancer 2009, 45, 65–73. [Google Scholar] [CrossRef]
- Chiasakul, T.; Patell, R.; Maraveyas, A.; Carrier, M.; Zwicker, J.I. Discordant reporting of VTE in pancreatic cancer: A systematic review and meta-analysis of thromboprophylaxis versus chemotherapeutic trials. J. Thromb. Haemost. 2021, 19, 489–501. [Google Scholar] [CrossRef]
- Carrier, M.; Khorana, A.A.; Zwicker, J.I.; Lyman, G.H.; Le Gal, G.; Lee, A.Y.; on behalf of the subcommittee on Haemostasis and Malignancy for the SSC of the ISTH. Venous thromboembolism in cancer clinical trials: Recommendation for standardized reporting and analysis. J. Thromb. Haemost. 2012, 10, 2599–2601. [Google Scholar] [CrossRef]
- Li, H.; Sun, X.; Sun, D.; Zhao, J.; Xu, Z.; Zhao, P.; Ma, Z.; Zhang, Y. Thromboembolic events associated with immune checkpoint inhibitors: A real-world study of data from the food and drug administration adverse event reporting system (FAERS) database. Int. Immunopharmacol. 2021, 98, 107818. [Google Scholar] [CrossRef]
- Di Nisio, M.; van Es, N.; Carrier, M.; Wang, T.F.; Garcia, D.; Segers, A.; Weitz, J.; Buller, H.; Raskob, G. Extended treatment with edoxaban in cancer patients with venous thromboembolism: A post-hoc analysis of the Hokusai-VTE Cancer study. J. Thromb. Haemost. 2019, 17, 1866–1874. [Google Scholar] [CrossRef] [PubMed]
- Carrier, M.; Wang, T.F. Direct oral anticoagulants and cancer-associated VTE: Good for all, or just some? Blood 2020, 136, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Lyman, G.H.; Carrier, M.; Ay, C.; Di Nisio, M.; Hicks, L.K.; Khorana, A.A.; Leavitt, A.D.; Lee, A.Y.Y.; Macbeth, F.; Morgan, R.L.; et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv. 2021, 5, 927–974. [Google Scholar] [CrossRef] [PubMed]
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Francis, C.W.; et al. Venous Thromboembolism Prophylaxis and Treatment in Patients With Cancer: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 2020, 38, 496–520. [Google Scholar] [CrossRef] [PubMed]
- Carrier, M.; Abou-Nassar, K.; Mallick, R.; Tagalakis, V.; Shivakumar, S.; Schattner, A.; Kuruvilla, P.; Hill, D.; Spadafora, S.; Marquis, K.; et al. Apixaban to Prevent Venous Thromboembolism in Patients with Cancer. N. Engl. J. Med. 2019, 380, 711–719. [Google Scholar] [CrossRef]
- Khorana, A.A.; Soff, G.A.; Kakkar, A.K.; Vadhan-Raj, S.; Riess, H.; Wun, T.; Streiff, M.B.; Garcia, D.A.; Liebman, H.A.; Belani, C.P.; et al. Rivaroxaban for Thromboprophylaxis in High-Risk Ambulatory Patients with Cancer. N. Engl. J. Med. 2019, 380, 720–728. [Google Scholar] [CrossRef]
- Cortellini, A.; Tucci, M.; Adamo, V.; Stucci, L.S.; Russo, A.; Tanda, E.T.; Spagnolo, F.; Rastelli, F.; Bisonni, R.; Santini, D.; et al. Integrated analysis of concomitant medications and oncological outcomes from PD-1/PD-L1 checkpoint inhibitors in clinical practice. J. Immunother. Cancer 2020, 8, e001361. [Google Scholar] [CrossRef]
- Ruf, W.; Graf, C. Coagulation signaling and cancer immunotherapy. Thromb. Res. 2020, 191, S106–S111. [Google Scholar] [CrossRef]
- Graf, C.; Wilgenbus, P.; Pagel, S.; Pott, J.; Marini, F.; Reyda, S.; Kitano, M.; Macher-Goppinger, S.; Weiler, H.; Ruf, W. Myeloid cell-synthesized coagulation factor X dampens antitumor immunity. Sci. Immunol. 2019, 4, eaaw8405. [Google Scholar] [CrossRef]
- Johannet, P.; Sawyers, A.; Gulati, N.; Donnelly, D.; Kozloff, S.; Qian, Y.; Floristan, A.; Hernando, E.; Zhong, J.; Osman, I. Treatment with therapeutic anticoagulation is not associated with immunotherapy response in advanced cancer patients. J. Transl. Med. 2021, 19, 1–7. [Google Scholar] [CrossRef]
Study | Study Design | N | Age (Median, IQR) | Male, % (n) | Stage IV, % (n) | Type of Cancer |
---|---|---|---|---|---|---|
Hegde et al. 2017 [7] abstract | Retrospective | 76 | N/A | N/A | N/A | Lung |
Ibrahimi et al. 2017 [8] abstract | Retrospective | 154 | 63 (range 23–89) | 43% (66) | 92% (142) | Lung 20.8% Melanoma 20.1% Ovarian 12.3% |
Hsu et al. 2018 [9] | Retrospective | 50 | 58.7 (mean, range 37–80) | 58% (29) | 74% (37) | All cancers NSCLC 48% |
Bar et al. 2019 [10] | Retrospective | 1215 | 52.3% ≥ 65 | 59% (717) | N/A | All cancers Melanoma 40.5% Lung 28.7% |
Nichetti et al. 2019 [11] | Retrospective analysis from prospective APOLLO cohort | 217 | 70 (range 32–90) | 62.7% (136) | 95.4% (207) | NSCLC |
Ando et al. 2020 [12] | Retrospective | 122 | N/A | 74.6% (91) | N/A | Lung, kidney, stomach, urothelial, melanoma |
Drobni et al. 2020 [13] | Retrospective (case control and case cross-over) | 2842 | 66 (57–74) | 57.4% (1631) | N/A | All cancer NSCLC 28.8% Melanoma 27.9% |
Deschˆenes-Simard et al. 2021 [14] | Retrospective | 593 | 66.7 (60.4–72.5) | 54.3% (322) | 87.2% (368) | NSCLC |
Gutierrez-Sainz et al. 2021 [15] | Retrospective | 229 | 64 (range 19–86) | 63.8% (146) | 96.5% (221) | Lung 48% Melanoma 23.6% RCC 11.8% |
Guven et al. 2021 [16] | Retrospective | 133 | 60 (48–66) | 64.7% (86) | 100% (133) | Renal cell 26.3% Melanoma 24.1%, NSCLC |
Icht et al. 2021 [17] | Retrospective | 176 | 66 (60–72) | 60.8% (107) | 85.8% (151) | NSCLC |
Kewan et al. 2021 [18] | Retrospective | 552 | 38.8 (range 26.8–94.8) | 65% (359) | 100% (552) | All cancers NSCLC 47.3% |
Madison et al. 2021 [19] | Retrospective | 6127 * | 69–71 * (range 30–96) | 97.4% (5967) | N/A | Lung |
Moik et al. 2021 [20] | Retrospective | 672 | 64 (54–72) | 61.3% (412) | 85.8% (566) | Melanoma 30.4% NSCLC 24.1% RCC 11% |
Mulder et al. 2021 [1] | Population cohort | 370 | N/A | N/A | N/A | All cancers |
Roopkumar et al. 2021 [21] | Retrospective | 1686 | Mean 64.5 (range 18–93) | 60.1% (1014) | 90.3% (1523) | Lung 49.6% Melanoma 13.2% |
Sussman et al. 2021 [22] | Retrospective | 228 | 65.5 (range 23–91) | 67.5% (154) | 81.1% (181) | Melanoma |
Moik et al. 2021 [23] abstract | Population cohort | 3259 | N/A | N/A | N/A | All cancers |
Study | Study Design | N | Follow Up [Median (IQR), Unless Specified] | VTE Incidence (%, 95% CI) | ATE Incidence (%, 95% CI) | Risk Factors for Thrombosis | Comments |
---|---|---|---|---|---|---|---|
Hegde et al. 2017 [7] abstract | Retrospective | 76 | 10.8 mo | 18.4 | 2.6 | Female | VTE after ICI did not affect survival, but before ICI did |
Ibrahimi et al. 2017 [8] abstract | Retrospective | 154 | 7 mo (198 days) | 10.4 | 0 | N/A | VTE was not associated with progression-free survival |
Hsu et al. 2018 [9] | Retrospective | 50 | N/A | 2 | N/A | N/A | Focused on survival and toxicity No follow up duration nor how VTE assessed |
Bar et al. 2019 [10] | Retrospective | 1215 | 12 mo | AVE (including MI, stroke, PE, multisite DVT): 6 mo: 2.6 12 mo: 3.0 AVE plus single site DVT: 6 mo: 4.9 12 mo: 5.8 |
| AVE was associated with worse survival Rate of AVE was similar in ICI vs. chemo vs. ICI+chemo in lung cancer | |
Nichetti et al. 2019 [11] | Retrospective analysis from prospective APOLLO cohort | 217 | 37.8 mo | 7.4 | 6.5 |
| TE is associated with worse survival after TE |
Ando et al. 2020 [12] | Retrospective | 122 | N/A Time to thrombosis 90 days (range 6–178) | 4.1 Likely 6 mo rate | 4.9 | History of TE | No follow up duration, unclear definition of TE |
Drobni et al. 2020 [13] | Retrospective | 2842 | 2 years | N/A | Composite: 5.35/100 person-yrs MI: 2.49 Stroke: 2.08 | Overall study: ICIs, age, h/o stroke, diabetes, hypertension, NSCLC, male, history of radiation | ICI was associated with increased risk of composite cardiovascular events Statin and steroids attenuated atherosclerotic plaque progression |
Deschˆenes-Simard et al. 2021 [14] | Retrospective | 593 | 12.7 (4.9–22.7) mo | 9.9 (7.5–12.3) 76.5 (59.9–97.8) per 1000 person-years | 1.3 |
| VTE was not correlated with survival |
Gutierrez-Sainz et al. 2021 [15] | Retrospective | 229 | 9.8 mo | 7 (4–10) | N/A |
| VTE was not an independent factor for shorter survival |
Guven et al. 2021 [16] | Retrospective | 133 | 10.1 (5.8–18.5) mo | 11.3 | N/A |
| Median survival numerically shorter in VTE patients, not significant |
Icht et al. 2021 [17] | Retrospective | 176 | 6 mo (187 days) | 4.5 (2.1–8.3) | N/A | Not: KS | VTE was associated with death |
Kewan et al. 2021 [18] | Retrospective | 552 | 12.1 mo | 12.1 | 1.3 |
| Median time to VTE 3.8 mo KS predicts overall survival |
Madison et al. 2021 [19] | Retrospective | 6143 * | 6 mo | 6.3 | 2.6 | N/A | ICIs were associated with higher risk of thrombosis compared to chemo alone but not significant in multivariable analysis |
Moik et al. 2021 [20] | Retrospective | 672 | 8.5 mo | 6 mo: 5.0 (3.4–6.9) Overall: 12.9 (8.2–18.5) | 6 mo: 1.0 (0.4–2.0) Overall 1.8 (0.7–3.6) |
| VTE (after ICI) was associated with worse survival |
Mulder et al. 2021 [1] | Population cohort | 370 | 12 mo | 6 mo: 4.1 (2.3–6.7) 12 mo: 7.1 (4.2–11.1) | N/A | N/A | N/A |
Roopkumar et al. 2021 [21] | Retrospective | 1686 | 438 days (range 7–1971) | 6 mo: 7.1 12 mo: 10.9 Overall: 24 | N/A |
| VTE was associated with worse survival No difference in VTE incidence with types of ICIs |
Sussman et al. 2021 [22] | Retrospective | 228 | 27.3 mo | 6 mo: 8.0 (4.9–12.0) 12 mo: 12.9 (8.9–17.7) | 6 mo: 2.2 (0.84–4.8) 12 mo: 4.5 (2.3–7.8) |
| VTE was associated with worse survival |
Moik et al. 2021 [23] abstract | Population cohort | 3259 | 24 mo | 6 mo: 3.9 (3.3–4.7) 12 mo: 5.7 (4.9–6.6) 24 mo: 7.3 (6.2–8.4) | 6 mo: 1.3 (0.9–1.8) 12 mo: 2.2 (1.7–2.8) 24 mo: 3.1 (2.4–3.8) | N/A | Use of ICI was associated with 1.5 to 6.5 fold increased odds of VTE |
Study | Search Cut-Off Date | N | Cancer Types | Rate of VTE, % (95% CI) | Rate of ATE, % (95% CI) |
---|---|---|---|---|---|
Hu et al. [24] | 24 March 2017 | 4828 (22 studies) | NSCLC | Only one PE reported | MI (n = 402): 1.0 (0–3.8) Stroke (n = 135): 2.0 (0–13.0) |
Nso et al. [25] | 15 May 2020 | 4622 (26 studies) | Various | N/A | MI (n = 1168): 0.4 (CI 0.1–0.7) |
Solina et al. [26] | 21 May 2020 | 20,273 (68 studies) | Various | Overall: 2.7 (1.8–4) PE: 1.6 (0.7–3.2) DVT: 2.7 (1.4–5.4) | Overall: 1.1 (0.5–2.1) MI: 0.7 (0.15–1.15) Stroke: 1.1 (0.65–1.45) |
Agostinetto et al. [27] | 30 June 2020 | 35,337 (80 RCTs) | Various | N/A | ICI group: MI: 0.41% (27/6607) Dual ICI: MI: 0.5% (1/202) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.-F.; Khorana, A.A.; Carrier, M. Thrombotic Complications Associated with Immune Checkpoint Inhibitors. Cancers 2021, 13, 4606. https://doi.org/10.3390/cancers13184606
Wang T-F, Khorana AA, Carrier M. Thrombotic Complications Associated with Immune Checkpoint Inhibitors. Cancers. 2021; 13(18):4606. https://doi.org/10.3390/cancers13184606
Chicago/Turabian StyleWang, Tzu-Fei, Alok A. Khorana, and Marc Carrier. 2021. "Thrombotic Complications Associated with Immune Checkpoint Inhibitors" Cancers 13, no. 18: 4606. https://doi.org/10.3390/cancers13184606
APA StyleWang, T. -F., Khorana, A. A., & Carrier, M. (2021). Thrombotic Complications Associated with Immune Checkpoint Inhibitors. Cancers, 13(18), 4606. https://doi.org/10.3390/cancers13184606