Validation of Four Thyroid Ultrasound Risk Stratification Systems in Patients with Hashimoto’s Thyroiditis; Impact of Changes in the Threshold for Nodule’s Shape Criterion
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Effectiveness of the Assessment of Suspicious Nodule’s Shape in Differentiation between Benign and Malignant Nodules in HT and non-HT Groups
2.2. Effectiveness of the Assessment of Other US Malignancy Features
2.3. Comparison of the Effectiveness of Analyzed SRSs
3. Discussion
4. Materials and Methods
4.1. Examined Patients
4.2. Analysis of US Malignancy Features
4.3. Analyses, Statistical Evaluation
4.4. Microscopic Examination
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russ, G.; Bonnema, S.J.; Erdogan, M.F.; Durante, C.; Ngu, R.; Leenhardt, L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur. Thyroid J. 2017, 6, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.H.; Baek, J.H.; Chung, J.; Ha, E.J.; Kim, J.H.; Lee, Y.H.; Lim, H.K.; Moon, W.J.; Na, D.G.; Park, J.S.; et al. Korean Society of Thyroid Radiology (KSThR) and Korean Society of Radiology. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2016, 17, 370–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandelm, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.H.; Suh, C.H.; Baek, J.H.; Chung, S.R.; Choi, Y.J.; Lee, J.H. Diagnostic Performance of Four Ultrasound Risk Stratification Systems: A Systematic Review and Meta-Analysis. Thyroid 2020, 30, 1159–1168. [Google Scholar] [CrossRef]
- Słowińska-Klencka, D.; Wysocka-Konieczna, K.; Klencki, M.; Popowicz, B. Diagnostic Value of Six Thyroid Imaging Reporting and Data Systems (TIRADS) in Cytologically Equivocal Thyroid Nodules. J. Clin. Med. 2020, 9, 2281. [Google Scholar] [CrossRef]
- Hong, M.J.; Na, D.G.; Baek, J.H.; Sung, J.Y.; Kim, J.H. Cytology-Ultrasonography Risk-Stratification Scoring System Based on Fine-Needle Aspiration Cytology and the Korean-Thyroid Imaging Reporting and Data System. Thyroid 2017, 27, 953–959. [Google Scholar] [CrossRef]
- Ahmadi, S.; Herbst, R.; Oyekunle, T.; Jiang, X.; Strickland, K.; Roman, S.; Sosa, J.A. Using the ATA and ACR TI-RADS sonographic classifications as adjunctive predictors of malignancy for indeterminate thyroid nodules. Endocr. Pract. 2019, 25, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.L.M.; Junior, C.O.M.; Graf, H.; Cavalvanti, T.; Trippia, M.A.; da Silveira Ugino, R.T.; de Oliveira, G.L.; Granella, V.H.; de Carvalho, G.A. ACR TI-RADS and ATA US scores are helpful for the management of thyroid nodules with indeterminate cytology. BMC Endocr. Disord. 2019, 19, 112. [Google Scholar] [CrossRef] [PubMed]
- Grani, G.; Lamartina, L.; Ramundo, V.; Falcone, R.; Lomonaco, C.; Ciotti, L.; Barone, M.; Maranghi, M.; Cantisani, V.; Filetti, S.; et al. Taller-Than-Wide Shape: A New Definition Improves the Specificity of TIRADS Systems. Eur. Thyroid J. 2020, 9, 85–91. [Google Scholar] [CrossRef]
- Topaloglu, O.; Baser, H.; Cuhaci, F.N.; Sungu, N.; Yalcin, A.; Ersoy, R.; Cakir, B. Malignancy is associated with microcalcification and higher AP/T ratio in ultrasonography, but not with Hashimoto’s thyroiditis in histopathology in patients with thyroid nodules evaluated as Bethesda Category III (AUS/FLUS) in cytology. Endocrine 2016, 54, 156–168. [Google Scholar] [CrossRef]
- Huang, K.; Gao, N.; Zhai, Q.; Bian, D.; Wang, D.; Wang, X. The anteroposterior diameter of nodules in the risk assessment of papillary thyroid microcarcinoma. Medicine 2018, 97, e9712. [Google Scholar] [CrossRef]
- Ragusa, F.; Fallahi, P.; Elia, G.; Gonnella, D.; Paparo, S.R.; Giusti, C.; Churilov, L.P.; Ferrari, S.M.; Antonelli, A. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract Res. Clin. Endocrinol. Metab. 2019, 33, 101367. [Google Scholar] [CrossRef]
- Caturegli, P.; De Remigis, A.; Rose, N.R. Hashimoto thyroiditis: Clinical and diagnostic criteria. Autoimmun Rev. 2014, 13, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.; Middleton, W.D.; Teefey, S.A.; Reading, C.C.; Langer, J.E.; Desser, T.; Szabunio, M.M.; Hildebolt, C.F.; Mandel, S.J.; Cronan, J.J. Hashimoto thyroiditis: Part 1, sonographic analysis of the nodular form of Hashimoto thyroiditis. AJR Am. J. Roentgenol. 2010, 195, 208–215. [Google Scholar] [CrossRef]
- Anderson, L.; Middleton, W.D.; Teefey, S.A.; Reading, C.C.; Langer, J.E.; Desserm, T.; Szabunio, M.M.; Mandel, S.J.; Hildebolt, C.F.; Cronan, J.J. Hashimoto thyroiditis: Part 2, sonographic analysis of benign and malignant nodules in patients with diffuse Hashimoto thyroiditis. AJR Am. J. Roentgenol. 2010, 195, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Oppenheimer, D.C.; Giampoli, E.; Montoya, S.; Patel, S.; Dogra, V. Sonographic Features of Nodular Hashimoto Thyroiditis. Ultrasound Q. 2016, 32, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Boi, F.; Pani, F.; Calò, P.G.; Lai, M.L.; Mariotti, S. High prevalence of papillary thyroid carcinoma in nodular Hashimoto’s thyroiditis at the first diagnosis and during the follow-up. J. Endocrinol Invest. 2018, 41, 395–402. [Google Scholar] [CrossRef]
- Resende de Paiva, C.; Grønhøj, C.; Feldt-Rasmussen, U.; von Buchwald, C. Association between Hashimoto’s Thyroiditis and Thyroid Cancer in 64,628 Patients. Front. Oncol. 2017, 7, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durfee, S.M.; Benson, C.B.; Arthaud, D.M.; Alexander, E.K.; Frates, M.C. Sonographic appearance of thyroid cancer in patients with Hashimoto thyroiditis. J. Ultrasound Med. 2015, 34, 697–704. [Google Scholar] [CrossRef]
- Han, R.; Li, F.; Wang, Y.; Ying, Z.; Zhang, Y. Virtual touch tissue quantification (VTQ) in the diagnosis of thyroid nodules with coexistent chronic autoimmune Hashimoto’s thyroiditis: A preliminary study. Eur. J. Radiol. 2015, 84, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Baser, H.; Ozdemir, D.; Cuhaci, N.; Aydin, C.; Ersoy, R.; Kilicarslan, A.; Cakir, B. Hashimoto’s Thyroiditis Does Not Affect Ultrasonographical, Cytological, and Histopathological Features in Patients with Papillary Thyroid Carcinoma. Endocr. Pathol. 2015, 26, 356–364. [Google Scholar] [CrossRef]
- Zhou, H.; Yue, W.W.; Du, L.Y.; Xu, J.M.; Liu, B.J.; Li, X.L.; Wang, D.; Zhou, X.L.; Xu, H.X. A Modified Thyroid Imaging Reporting and Data System (mTI-RADS) For Thyroid Nodules in Coexisting Hashimoto’s Thyroiditis. Sci. Rep. 2016, 6, 26410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.W.; Chen, Z.J.; Gopinathan, A. Focal Nodular Hashimoto’s Thyroiditis: Comparison of Ultrasonographic Features with Malignant and Other Benign Nodules. Ann. Acad Med. Singap. 2016, 45, 357–363. [Google Scholar]
- Gul, K.; Dirikoc, A.; Kiyak, G.; Ersoy, P.; Ugras, N.S.; Ersoy, R.; Cakir, B. The association between thyroid carcinoma and Hashimoto’s thyroiditis: The ultrasonographic and histopathologic characteristics of malignant nodules. Thyroid 2010, 20, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Niu, C.; Zhang, M.; Peng, Q.; Chen, S. Sonographic Characteristics of Papillary Thyroid Carcinoma with Coexistent Hashimoto’s Thyroiditis: Conventional Ultrasound, Acoustic Radiation Force Impulse Imaging and Contrast-Enhanced Ultrasound. Ultrasound Med. Biol. 2019, 45, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, N.; Miyakawa, M.; Ohmori, K.; Takano, K. Ultrasonographic findings of papillary thyroid carcinoma with Hashimoto’s thyroiditis. Intern. Med. 2007, 46, 547–550. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Park, S.H.; Kim, E.K.; Yoon, J.H.; Moon, H.J.; Lee, H.S.; Kwak, J.Y. Heterogeneous echogenicity of the underlying thyroid parenchyma: How does this affect the analysis of a thyroid nodule? BMC Cancer 2013, 13, 550. [Google Scholar] [CrossRef] [Green Version]
- Słowińska-Klencka, D.; Wojtaszek-Nowicka, M.; Klencki, M.; Wysocka-Konieczna, K.; Popowicz, B. The Presence of Hypoechoic Micronodules in Patients with Hashimoto’s Thyroiditis Increases the Risk of an Alarming Cytological Outcome. J. Clin. Med. 2021, 10, 638. [Google Scholar] [CrossRef]
- Fukushima, M.; Fukunari, N.; Murakami, T.; Kunii, Y.; Suzuki, S.; Kitaoka, M. Reconfirmation of the accuracy of the taller-than-wide sign in multicenter collaborative research in Japan. Endocr. J. 2021, 68, 897–904. [Google Scholar] [CrossRef]
- Cappelli, C.; Castellano, M.; Pirola, I.; Gandossi, E.; De Martino, E.; Cumetti, D.; Agosti, B.; Rosei, E.A. Thyroid nodule shape suggests malignancy. Eur. J. Endocrinol. 2006, 155, 27–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.Y.; Na, D.G.; Paik, W. Which ultrasound image plane is appropriate for evaluating the taller-than-wide sign in the risk stratification of thyroid nodules? Eur. Radiol. 2021, 8, 1–9. [Google Scholar] [CrossRef]
- Ren, J.; Liu, B.; Zhang, L.L.; Li, H.Y.; Zhang, F.; Li, S.; Zhao, L.R. A taller-than-wide shape is a good predictor of papillary thyroid carcinoma in small solid nodules. J. Ultrasound Med. 2015, 34, 19–26. [Google Scholar] [CrossRef]
- Chen, S.P.; Hu, Y.P.; Chen, B. Taller-than-wide sign for predicting thyroid microcarcinoma: Comparison and combination of two ultrasonographic planes. Ultrasound Med. Biol. 2014, 40, 2004–2011. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.J.; Kwak, J.Y.; Kim, E.K.; Kim, M.J. A taller-than-wide shape in thyroid nodules in transverse and longitudinal ultrasonographic planes and the prediction of malignancy. Thyroid 2011, 21, 1249–1253. [Google Scholar] [CrossRef]
- Wildman-Tobriner, B.; Ahmed, S.; Erkanli, A.; Mazurowski, M.A.; Hoang, J.K. Using the American College of Radiology Thyroid Imaging Reporting and Data System at the Point of Care: Sonographer Performance and Interobserver Variability. Ultrasound Med. Biol. 2020, 46, 1928–1933. [Google Scholar] [CrossRef]
- Wang, J.; Li, P.; Sun, L.; Sun, Y.; Fang, S.; Liu, X. Diagnostic value of strain ratio measurement in differential diagnosis of thyroid nodules coexisted with Hashimoto thyroiditis. Int. J. Clin. Exp. Med. 2015, 8, 6420–6426. [Google Scholar]
- Gao, L.; Xi, X.; Jiang, Y.; Yang, X.; Wang, Y.; Zhu, S.; Lai, X.; Zhang, X.; Zhao, R.; Zhang, B. Comparison among TIRADS (ACR TI-RADS and KWAK- TI-RADS) and 2015 ATA Guidelines in the diagnostic efficiency of thyroid nodules. Endocrine 2019, 64, 90–96. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, M.; He, J.; Wu, S.; Chen, M.; Wan, Y.; Gao, L.; Cai, X.; Ding, J.; Fu, X. Comparison of Different Risk-Stratification Systems for the Diagnosis of Benign and Malignant Thyroid Nodules. Front. Oncol. 2019, 9, 378. [Google Scholar] [CrossRef]
- Castellana, M.; Piccardo, A.; Virili, C.; Scappaticcio, L.; Grani, G.; Durante, C.; Giovanella, L.; Trimboli, P. Can ultrasound systems for risk stratification of thyroid nodules identify follicular carcinoma? Cancer Cytopathol. 2020, 128, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Trimboli, P.; Castellana, M.; Piccardo, A.; Romanelli, F.; Grani, G.; Giovanella, L.; Durante, C. The ultrasound risk stratification systems for thyroid nodule have been evaluated against papillary carcinoma. A meta-analysis. Rev. Endocr. Metab. Disord. 2021, 22, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Borlea, A.; Borcan, F.; Sporea, I.; Dehelean, C.A.; Negrea, R.; Cotoi, L.; Stoian, D. TI-RADS Diagnostic Performance: Which Algorithm is Superior and How Elastography and 4D Vascularity Improve the Malignancy Risk Assessment. Diagnostics 2020, 10, 180. [Google Scholar] [CrossRef] [Green Version]
- Russ, G. Risk stratification of thyroid nodules on ultrasonography with the French TI-RADS: Description and reflections. Ultrasonography 2016, 35, 25–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wang, Y.; Wu, Q.; Hu, B. Papillary thyroid microcarcinoma co-exists with Hashimoto’s thyroiditis: Is strain elastography still useful? Ultrasonics 2016, 68, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liang, J.; Zhou, L.; Lu, Y.; Zheng, Y.; Tian, W.; Xie, X. Shear Wave Elastography in the Diagnosis of Thyroid Nodules with Coexistent Chronic Autoimmune Hashimoto’s Thyroiditis. Otolaryngol. Head Neck Surg. 2015, 153, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; de Morais, N.S.; Stuart, J.; Ahmadi, S.; Marqusee, E.; Kimm, M.I.; Alexander, E.K. Discordance of serological and sonographic markers for Hashimoto’s thyroiditis with gold standard histopathology. Eur. J. Endocrinol. 2019, 181, 539–544. [Google Scholar] [CrossRef]
- Cibas, E.S.; Ali, S.Z. The Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2009, 19, 1159–1165. [Google Scholar] [CrossRef] [Green Version]
- Cibas, E.S.; Ali, S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2017, 27, 1341–1346. [Google Scholar] [CrossRef]
The Plane | AP/T Ratio | No./% of Nodules | Ben./Mal p | SEN | SPC | ACC | PPV (RoM) | NPV | LR+ | OR (95% CI) p | AUC (95% CI) p |
---|---|---|---|---|---|---|---|---|---|---|---|
transverse | HT group | ||||||||||
AP ≥ T | 76/21.2 | 42/34 <0.0000 | 39.1 | 84.5 | 73.5 | 44.7 | 81.2 | 2.5 | 3.5 (2.0–6.0) <0.0001 | 0.635 (0.565–0.704) <0.0001 | |
AP > T | 22/6.1 | 12/10 0.0170 | 11.5 | 95.6 | 74.7 | 46.6 | 76.6 | 2.6 | 2.8 (1.2–6.7) 0.0212 | ||
AP/T ≥ 1.14 max ACC | 11/3.1 | 4/7 0.0063 | 8.0 | 98.5 | 76.5 | 63.6 | 76.9 | 5.5 | 5.8 (1.8–5.4) <0.0001 | ||
non-HT group | |||||||||||
AP ≥ T | 116/14.0 | 61/55 <0.000 | 26.4 | 90.2 | 74.2 | 47.4 | 78.6 | 2.7 | 3.3 (2.2–5.0) <0.0001 | 0.627 (0.582–0.671) <0.0001 | |
AP > T | 52/6.2 | 28/24 0.0003 | 11.5 | 95.5 | 74.5 | 46.2 | 76.3 | 2.6 | 2.8 (1.6–4.9) 0.0005 | ||
AP/T ≥ 1.17 max ACC | 28/3.4 | 10/18 <0.0000 | 8.7 | 98.4 | 75.9 | 64.3 | 76.3 | 5.4 | 5.8 (1.8–5.4) <0.0001 | ||
longitudinal | HT group | ||||||||||
AP ≥ T max ACC | 24/6.7 | 12/12 0.0024 | 13.8 | 95.6 | 75.7 | 50.0 | 77.5 | 3.1 | 3.5 (1.5–8.0) <0.0038 | 0.635 (0.572–0.699) <0.0001 | |
AP > T | 9/2.5 | 7/2 0.8055 | 2.3 | 97.4 | 74.3 | 22.29 | 75.6 | 0.9 | 0.9 (0.2–4.4) 0.8830 | ||
non-HT group | |||||||||||
AP ≥ T max ACC | 43/5.2 | 20/23 <0.0000 | 11.1 | 96.8 | 75.3 | 53.5 | 76.5 | 3.4 | 3.7 (2.0–7.0) <0.0001 | 0.647 (0.603–0.690) <0.0001 | |
AP > T | 15/1.8 | 7/8 0.0108 | 3.8 | 98.9 | 75.1 | 53.3 | 75.5 | 3.1 | 3.5 (1.3–9.8) <0.0164 |
Sonographic Feature | HT Group | Non-HT Group | ||||||
---|---|---|---|---|---|---|---|---|
Ben. (271) No/% | Mal. (87) No/% | p | OR (95% CI) p | Ben. (622) No/% | Mal. (208) No/% | p | OR (95% CI) p | |
marked hypoechogenicity * | 14/5.2 | 31/35.6 | <0.0001 | 10.2 (5.1–20.3) <0.0001 | 33/5.3 | 60/28.9 | <0.0001 | 7.2 (4.6–11.5) 0.0001 |
Hypoechogenicity * | 148/54.6 | 75/86.2 | <0.0001 | 5.2 (2.7–10.0) <0.0001 | 365/58.7 | 178/85.8 | <0.0001 | 4.2 (2.7–6.3) 0.0001 |
solid echostructure | 247/91.1 | 84/96.6 | 0.0965 | 2.7 (0.8–9.3) 0.1094 | 436/70.1 | 188/90.4 | <0.0001 | 4.0 (2.5–6.6) 0.0001 |
more solid than cystic echostructure | 264/97.4 | 87/100.0 | 0.2021 | - | 533/85.7 | 204/98.1 | <0.0001 | 8.5 (3.1–23.5) <0.0001 |
suspicious margins | 14/5.2 | 38/43.7 | <0.0001 | 14.2 (7.2–28.2) <0.0001 | 23/3.7 | 72/34.6 | <0.0001 | 13.8 (8.3–22.8) <0.0001 |
microcalcifications | 5/1.9 | 26/29.9 | <0.0001 | 22.7 (8.4–61.4) <0.0001 | 17/2.7 | 38/18.3 | <0.0001 | 8.0 (4.4–14.4) 0.0001 |
macrocalcifications | 19/7.0 | 5/5.8 | 0.6817 | 0.8 (0.3–2.2) 0.6822 | 43/6.9 | 40/19.2 | <0.0001 | 3.2 (2.0–5.1) <0.0001 |
rim calcifications | 7/2.6 | 4/4.6 | 0.5549 | 1.8 (0.5–6.4) 0.3500 | 20/3.2 | 8/3.9 | 0.6627 | 1.2 (0.5–2.8) 0.6631 |
pathological vascularization | 37/13.7 | 13/14.9 | 0.7628 | 1.1 (0.6–2.2) 0.7628 | 119/19.1 | 48/23.1 | 0.2192 | 1.3 (0.9–1.9) 0.2199 |
Category of TIRADS/Guideline | Expected RoM (PPV) | Calculated RoM (PPV) | |||||
---|---|---|---|---|---|---|---|
HT Group | Non-HT Group | ||||||
AP ≥ T | AP > T | AP/T ≥ 1.14 | AP ≥ T | AP > T | AP/T ≥ 1.17 | ||
EU-TIRADS | |||||||
2—benign | <3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3—low risk | 3–15 | 4.0 | 5.1 | 5.0 | 7.0 | 7.5 | 7.3 |
4—intermediate risk | 15–50 | 11.8 | 14.1 | 15.9 | 18.2 | 19.1 | 19.0 |
5—high risk | >60 | 51.5 | 61.4 | 62.1 | 54.6 | 58.5 | 62.7 |
K-TIRADS | |||||||
2—benign | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3—low suspicion | 2–4 | 5.7 | 6.5 | 6.2 | 7,6 | 8,3 | 8,1 |
4—intermediate | 6–17 | 16.0 | 17.8 | 19.9 | 26.1 | 27.0 | 27.8 |
5—high suspicion | 26–87 | 65.5 | 74.6 | 74.6 | 61.6 | 67.2 | 69.7 |
ACR-TIRADS | |||||||
1—benign | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2—not suspicious | <2 | 0.0 | 0.0 | 0.0 | 3.3 | 4.8 | 4.8 |
3—mildly suspicious | 5 | 5.5 | 6.7 | 7.1 | 9.5 | 10.0 | 9.6 |
4—moderately suspicious | 5–20 | 17.7 | 20.2 | 21.2 | 26.1 | 27.8 | 28.7 |
5—highly suspicious | >20 | 65.4 | 76.8 | 77.4 | 63.4 | 69.7 | 73.9 |
ATA guidelines | |||||||
1—benign | <1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2—very low suspicion | <3 | 0.0 | 0.0 | 0.0 | 2.5 | 2.5 | 2.5 |
3- low suspicion | 5–10 | 5.6 | 6.5 | 6.2 | 9.4 | 9.4 | 9.1 |
4—intermediate suspicion * | 10–20 | 15.7 | 18.1 | 19.8 | 24.9 | 26.3 | 26.9 |
5—high suspicion | 70–90 | 65.9 | 74.6 | 75.0 | 61.0 | 66.7 | 69.9 |
Index of Effectiveness | HT Group | Non-HT Group | ||||
AP ≥ T | AP > T | AP/T ≥ 1.14 | AP ≥ T | AP > T | AP/T ≥ 1.17 | |
EU-TIRADS | ||||||
% of nodules | 37.4 | 28.2 | 25.7 | 30.2 | 26.1 | 24.2 |
SEN | 79.3 | 71.3 | 67.8 | 65.4 | 61.1 | 60.6 |
SPC | 76.0 | 85.6 | 87.8 | 81.5 | 85.5 | 87.9 |
ACC | 76.8 | 82.1 | 83.0 | 77.5 | 79.4 | 81.1 |
NPV | 92.0 | 90.3 | 89.5 | 87.6 | 86.8 | 87.0 |
AUC (CI 95%) | 0.798 (0.747–0.849) | 0.817 (0.765–0.869) | 0.814 (0.762–0.866) | 0.779 (0.744–0.814) | 0.782 (0.716–0.818) | 0.794 a (0.759–0.830) |
K-TIRADS | ||||||
% of nodules | 23.5 | 18.7 | 17.6 | 19.2 | 15.8 | 14.7 |
SEN | 63.2 | 57.5 | 54.0 | 47.1 | 42.3 | 40.9 |
SPC | 89.3 | 93.7 | 94.1 | 90.2 | 93.1 | 94.1 |
ACC | 83.0 | 84.9 | 84.4 | 79.4 | 80.4 | 80.7 |
NPV | 88.3 | 87.3 | 86.4 | 83.6 | 82.8 | 82.6 |
AUC (CI 95%) | 0.804 (0.749–0.858) | 0.808 (0.752–0.764) | 0.805 (0.750–0.860) | 0.775 (0.740–0.811) | 0.775 (0.739–0.811) | 0.779 (0.744–0.815) |
ACR-TIRADS | ||||||
% of nodules | 21.8 | 15.6 | 14.8 | 16.1 | 11.9 | 10.7 |
SEN | 58.6 | 49.4 | 47.1 | 40.9 | 33.2 | 31.3 |
SPC | 90.0 | 95.2 | 95.6 | 92.1 | 95.2 | 96.1 |
ACC | 82.4 | 84.1 | 83.8 | 79.3 | 79.6 | 79.9 |
NPV | 87.1 | 85.4 | 84.9 | 82.3 | 81.0 | 80.7 |
AUC (CI 95%) | 0.795 (0.741–0.850) | 0.791 (0.735–0.848) | 0.787 (0.731–0.844) | 0.760 (0.724–0.796) | 0.752 c (0.715–0.788) | 0.757 b (0.070–0.793) |
ATA guidelines | ||||||
% of nodules | 23.7 | 18.7 | 17.6 | 20.0 | 15.9 | 14.8 |
SEN | 64.4 | 57.5 | 54.0 | 48.1 | 42.3 | 41.3 |
SPC | 89.3 | 93.7 | 94.1 | 89.4 | 92.9 | 94.1 |
ACC | 83.2 | 84.9 | 84.4 | 79.0 | 80.2 | 80.8 |
NPV | 88.6 | 87.3 | 86.4 | 83.7 | 82.8 | 82.7 |
AUC (CI 95%) | 0.809 (0.756–0.863) | 0.811 (0.756–0.866) | 0.811 (0.757–0.865) | 0.768 (0.731–0.804) | 0.769 (0.732–0.806) | 0.776 (0.740–0.812) |
Parameter | HT Group | Non-HT Group | p |
---|---|---|---|
Number of nodules | 358 | 830 | |
Number of patients | 310 | 712 | |
Age, mean ± SD (years) | 55.1 ± 14.0 | 53.7 ± 13.3 | 0.1113 |
No/% of males | 12/3.9 | 94/13.2 | <0.0001 |
Volume of nodules mean ± SD (cm3) | 3.17 ± 7.4 | 7.61 ±16.2 | <0.0001 |
No/% of nodules < 1 cm # | 58/16.2% | 77/9.3% | 0.0006 |
No/% of cancers | 87/24.3 | 208/25.1 | 0.7813 |
No/% of PTCs among cancers | 76/87.4 | 160/76.9 | 0.0411 |
Other cancers (No/%) | FTC (4/4.6) | FTC (13/6.3), HTC (13/6.3) | |
HTC (1/1.1) | MTC (14/6.7), PDTC (2/1.0) | ||
MTC (5/5.7) | AC (2/1.0), ST (2/1.0) | ||
ST (1/1.1) | ANG (1/0.5), FT-UMP (1/0.5) | ||
category of BSRTC (No/%) | II: 124/34.6 * | II: 253/30.5 | 0.1580 |
III: 121/33.8 | III: 277/33.4 | 0.8867 | |
IV: 40/11.2 | IV: 135/16.2 | 0.0203 | |
V: 21/5.9 | V: 37/4.5 | 0.2580 | |
VI: 52/14.5 | VI: 128/15.4 | 0.6925 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Słowińska-Klencka, D.; Klencki, M.; Wojtaszek-Nowicka, M.; Wysocka-Konieczna, K.; Woźniak-Oseła, E.; Popowicz, B. Validation of Four Thyroid Ultrasound Risk Stratification Systems in Patients with Hashimoto’s Thyroiditis; Impact of Changes in the Threshold for Nodule’s Shape Criterion. Cancers 2021, 13, 4900. https://doi.org/10.3390/cancers13194900
Słowińska-Klencka D, Klencki M, Wojtaszek-Nowicka M, Wysocka-Konieczna K, Woźniak-Oseła E, Popowicz B. Validation of Four Thyroid Ultrasound Risk Stratification Systems in Patients with Hashimoto’s Thyroiditis; Impact of Changes in the Threshold for Nodule’s Shape Criterion. Cancers. 2021; 13(19):4900. https://doi.org/10.3390/cancers13194900
Chicago/Turabian StyleSłowińska-Klencka, Dorota, Mariusz Klencki, Martyna Wojtaszek-Nowicka, Kamila Wysocka-Konieczna, Ewa Woźniak-Oseła, and Bożena Popowicz. 2021. "Validation of Four Thyroid Ultrasound Risk Stratification Systems in Patients with Hashimoto’s Thyroiditis; Impact of Changes in the Threshold for Nodule’s Shape Criterion" Cancers 13, no. 19: 4900. https://doi.org/10.3390/cancers13194900
APA StyleSłowińska-Klencka, D., Klencki, M., Wojtaszek-Nowicka, M., Wysocka-Konieczna, K., Woźniak-Oseła, E., & Popowicz, B. (2021). Validation of Four Thyroid Ultrasound Risk Stratification Systems in Patients with Hashimoto’s Thyroiditis; Impact of Changes in the Threshold for Nodule’s Shape Criterion. Cancers, 13(19), 4900. https://doi.org/10.3390/cancers13194900