The Impact of Different Timing Schedules on Prostate HDR-Mono-Brachytherapy. A TCP Modeling Investigation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Data Treatment
2.3. Selecting Values for Some of the Model Parameters
3. Results
Investigating the Impact of Variation in the Parameter Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fowler, J.F.; Nahum, A.E.; Orton, C.G. The best radiotherapy for the treatment of prostate cancer involves hypofractionation. Med. Phys. 2006, 33, 3081–3084. [Google Scholar] [CrossRef] [PubMed]
- De Bari, B.; Daidone, A.; Alongi, F. Is high dose rate brachytherapy reliable and effective treatment for prostate cancer patients? A review of the literature. Crit. Rev. Oncol. Hematol. 2015, 94, 360–370. [Google Scholar] [CrossRef]
- Tselis, N.; Hoskin, P.; Baltas, D.; Strnad, V.; Zamboglou, N.; Rödel, C.; Chatzikonstantinou, G. High Dose Rate Brachytherapy as Monotherapy for Localised Prostate Cancer: Review of the Current Status. Clin. Oncol. (R. Coll. Radiol.) 2017, 29, 401–411. [Google Scholar] [CrossRef]
- Alongi, F.; Mazzola, R.; Fiorentino, A.; Corradini, S.; Aiello, D.; Figlia, V.; Gregucci, F.; Ballario, R.; Cavalleri, S.; Ruggieri, R. Phase II study of accelerated Linac-based SBRT in five consecutive fractions for localized prostate cancer. Strahlenther. Und Onkol. 2019, 195, 113–120. [Google Scholar] [CrossRef]
- Zilli, T.; Scorsetti, M.; Zwahlen, D.; Franzese, C.; Förster, R.; Giaj-Levra, N.; Koutsouvelis, N.; Bertaut, A.; Zimmermann, M.; D’Agostino, G.R.; et al. ONE SHOT—single shot radiotherapy for localized prostate cancer: Study protocol of a single arm, multicenter phase I/II trial. Radiat. Oncol. 2018, 13, 166. [Google Scholar] [CrossRef]
- Ritter, M. Rationale, conduct, and outcome using hypofractionated radiotherapy in prostate cancer. Semin. Radiat. Oncol. 2008, 18, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Stavrev, P.V.; Stavreva, N.; Ruggieri, R.; Nahum, A.E.; Tsonev, P.; Penev, D.; Pressyanov, D. Theoretical investigation of the impact of different timing schemes in hypofractionated radiotherapy. Med. Phys. 2021, 48, 4085–4098. [Google Scholar] [CrossRef] [PubMed]
- Stavrev, P.; Stavreva, N.; Ruggieri, R.; Nahum, A.E. EP-1917 Variable versus conventional inter-fraction intervals in SBRT. Radiother. Oncol. 2019, 133, S1042. [Google Scholar] [CrossRef]
- Stavreva, N.A.; Warkentin, B.; Stavrev, P.V.; Fallone, B.G. Investigating the effect of clonogen resensitization on the tumor response to fractionated external radiotherapy. Med. Phys. 2005, 32, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, R. Hypofractionation in non-small cell lung cancer (NSCLC): Suggestions from modelling both acute and chronic hypoxia. Phys. Med. Biol. 2004, 49, 4811–4823. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, R.; Nahum, A.E. The impact of hypofractionation on simultaneous dose-boosting to hypoxic tumor subvolumes. Med. Phys. 2006, 33, 4044–4055. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, R.; Stavreva, N.; Naccarato, S.; Stavrev, P. Applying a hypoxia-incorporating TCP model to experimental data on rat sarcoma. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1603–1608. [Google Scholar] [CrossRef] [PubMed]
- Marignol, L.; Coffey, M.; Lawler, M.; Hollywood, D. Hypoxia in prostate cancer: A powerful shield against tumour destruction? Cancer Treat. Rev. 2008, 34, 313–327. [Google Scholar] [CrossRef] [PubMed]
- McKenna, D.J.; Errington, R.; Pors, K. Current challenges and opportunities in treating hypoxic prostate tumors. J. Cancer Metastasis Treat. 2018, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Movsas, B.; Chapman, J.D.; Greenberg, R.E.; Hanlon, A.L.; Horwitz, E.M.; Pinover, W.H.; Stobbe, C.; Hanks, G.E. Increasing levels of hypoxia in prostate carcinoma correlate significantly with increasing clinical stage and patient age. Cancer 2000, 89, 2018–2024. [Google Scholar] [CrossRef]
- Movsas, B.; Chapman, J.D.; Horwitz, E.M.; Pinover, W.H.; Greenberg, R.E.; Hanlon, A.L.; Iyer, R.; Hanks, G.E. Hypoxic regions exist in human prostate carcinoma. Urology 1999, 53, 11–18. [Google Scholar] [CrossRef]
- Nahum, A.E.; Movsas, B.; Horwitz, E.M.; Stobbe, C.C.; Chapman, J.D. Incorporating clinical measurements of hypoxia into tumor local control modeling of prostate cancer: Implications for the α/β ratio. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 391–401. [Google Scholar] [CrossRef]
- Wang, J.Z.; Li, X.A.; Mayr, N.A. Dose escalation to combat hypoxia in prostate cancer: A radiobiological study on clinical data. Br. J. Radiol. 2006, 79, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.J. Mathematical simulation of radiation therapy of solid tumors. I. Calculations. Acta Radiol. Ther. Phys. Biol. 1971, 10, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Shoghi, K.I.; Deasy, J.O. Modelling the interplay between hypoxia and proliferation in radiotherapy tumour response. Phys. Med. Biol. 2013, 58, 4897–4919. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Brahme, A. Evaluation of fractionation regimens in stereotactic radiotherapy using a mathematical model of repopulation and reoxygenation. Radiat. Med. 1999, 17, 219–225. [Google Scholar]
- Fischer, J.J.; Moulder, J.E. The steepness of the dose-response curve in radiation therapy. Theoretical considerations and experimental results. Radiology 1975, 117, 179–184. [Google Scholar] [CrossRef]
- Fowler, J.F.; Denekamp, J.; Sheldon, P.W.; Smith, A.M.; Begg, A.C.; Harris, S.R.; Page, A.L. Optimum fractionation in X-ray treatment of C3H mouse mammary tumours. Br. J. Radiol. 1974, 47, 781–789. [Google Scholar] [CrossRef]
- Alite, F.; Stang, K.; Balasubramanian, N.; Adams, W.; Shaikh, M.P.; Small, C.; Sethi, A.; Nagda, S.; Emami, B.; Harkenrider, M.M. Local control dependence on consecutive vs. nonconsecutive fractionation in lung stereotactic body radiation therapy. Radiother. Oncol. 2016, 121, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Johansson, B.; Olsén, J.S.; Karlsson, L.; Lundin, E.; Lennernäs, B. High-dose-rate brachytherapy as monotherapy for low- and intermediate-risk prostate cancer: Long-term experience of Swedish single-center. J. Contemp. Brachytherapy 2021, 13, 245–253. [Google Scholar] [CrossRef]
- Stavrev, P.; Balabanova, A.; Genova, B.; Stavreva, N.; Ruggieri, R.; Nahum, A.E.; Parvanova, V. Analysis of a cohort of prostate patients treated with HDR mono-brachytherapy. Phys. Eng. Sci. Med. 2021, 44, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Zaider, M.; Minerbo, G.N. Tumour control probability: A formulation applicable to any temporal protocol of dose delivery. Phys. Med. Biol. 2000, 45, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Kendal, W.S. A closed-form description of tumour control with fractionated radiotherapy and repopulation. Int. J. Radiat. Biol. 1998, 73, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Stavreva, N.A.; Stavrev, P.V.; Warkentin, B.; Fallone, B.G. Investigating the effect of cell repopulation on the tumor response to fractionated external radiotherapy. Med Phys. 2003, 30, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, R.; Stavrev, P.; Naccarato, S.; Stavreva, N.; Alongi, F.; Nahum, A.E. Optimal dose and fraction number in SBRT of lung tumours: A radiobiological analysis. Phys. Med. 2017, 44, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Carlson, D.J.; Stewart, R.D.; Semenenko, V.A. Effects of oxygen on intrinsic radiation sensitivity: A test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parametersa). Med. Phys. 2006, 33, 3105–3115. [Google Scholar] [CrossRef] [PubMed]
- Porter, E.H. The statistics of dose/cure relationships for irradiated tumours. Part II. Br. J. Radiol. 1980, 53, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Porter, E.H. The statistics of dose/cure relationships for irradiated tumours. Part I. Br. J. Radiol. 1980, 53, 210–227. [Google Scholar] [CrossRef] [PubMed]
- Stavrev, P.; Stavreva, N.; Ruggieri, R.; Nahum, A.E. On differences in radiosensitivity estimation: TCP experiments versus survival curves. A theoretical study. Phys. Med. Biol. 2015, 60, N293. [Google Scholar] [CrossRef]
- Stavreva, N.; Stavrev, P.; Balabanova, A.; Nahum, A.; Ruggieri, R.; Pressyanov, D. Modelling the effect of spread in radiosensitivity parameters and repopulation rate on the probability of tumour control. Phys. Med. 2019, 63, 79–86. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavrev, P.; Stavreva, N.; Genova, B.; Ruggieri, R.; Alongi, F.; Nahum, A.E.; Pressyanov, D. The Impact of Different Timing Schedules on Prostate HDR-Mono-Brachytherapy. A TCP Modeling Investigation. Cancers 2021, 13, 4899. https://doi.org/10.3390/cancers13194899
Stavrev P, Stavreva N, Genova B, Ruggieri R, Alongi F, Nahum AE, Pressyanov D. The Impact of Different Timing Schedules on Prostate HDR-Mono-Brachytherapy. A TCP Modeling Investigation. Cancers. 2021; 13(19):4899. https://doi.org/10.3390/cancers13194899
Chicago/Turabian StyleStavrev, Pavel, Nadejda Stavreva, Boriana Genova, Ruggero Ruggieri, Filippo Alongi, Alan E. Nahum, and Dobromir Pressyanov. 2021. "The Impact of Different Timing Schedules on Prostate HDR-Mono-Brachytherapy. A TCP Modeling Investigation" Cancers 13, no. 19: 4899. https://doi.org/10.3390/cancers13194899
APA StyleStavrev, P., Stavreva, N., Genova, B., Ruggieri, R., Alongi, F., Nahum, A. E., & Pressyanov, D. (2021). The Impact of Different Timing Schedules on Prostate HDR-Mono-Brachytherapy. A TCP Modeling Investigation. Cancers, 13(19), 4899. https://doi.org/10.3390/cancers13194899