The Presence of an In Situ Component on Pre-Treatment Biopsy Is Not Associated with Response to Neoadjuvant Chemotherapy for Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Patients and Tumor Characteristics
2.2. Pre-NAC DCIS
2.3. Post-NAC DCIS
2.4. Change in the DCIS Component between the Pre- and Post-NAC Biopsies
2.5. Baseline Clinical and Pathological Parameters Associated with pCR
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Treatments
4.3. Tumor Samples
4.4. Study Endpoints
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Powles, T.J.; Hickish, T.F.; Makris, A.; Ashley, S.E.; O’Brien, M.E.; Tidy, V.A.; Casey, S.; Nash, A.G.; Sacks, N.; Cosgrove, D. Randomized trial of chemoendocrine therapy started before or after surgery for treatment of primary breast cancer. J. Clin. Oncol. 1995, 13, 547–552. [Google Scholar] [CrossRef]
- Makris, A.; Powles, T.J.; Ashley, S.E.; Chang, J.; Hickish, T.; Tidy, V.A.; Nash, A.G.; Ford, H.T. A reduction in the requirements for mastectomy in a randomized trial of neoadjuvant chemoendocrine therapy in primary breast cancer. Ann. Oncol. 1998, 9, 1179–1184. [Google Scholar] [CrossRef]
- Rastogi, P.; Anderson, S.J.; Bear, H.D.; Geyer, C.E.; Kahlenberg, M.S.; Robidoux, A.; Margolese, R.G.; Hoehn, J.L.; Vogel, V.G.; Dakhil, S.R.; et al. Preoperative chemotherapy: Updates of national surgical adjuvant breast and bowel project protocols B-18 and B-27. J. Clin. Oncol. 2008, 26, 778–785. [Google Scholar] [CrossRef] [Green Version]
- Luangdilok, S.; Samarnthai, N.; Korphaisarn, K. Association between pathological complete response and outcome following neoadjuvant chemotherapy in locally advanced breast cancer patients. J. Breast Cancer 2014, 17, 376–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loibl, S.; von Minckwitz, G.; Untch, M.; Denkert, C.; German breast Group. Predictive factors for response to neoadjuvant therapy in breast cancer. Oncol. Res. Treat. 2014, 37, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Huober, J.; von Minckwitz, G.; Denkert, C.; Tesch, H.; Weiss, E.; Zahm, D.M.; Belau, A.; Khandan, F.; Hauschild, M.; Thomssen, C.; et al. Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: Overall results from the gepartrio study. Breast Cancer Res. Treat. 2010, 124, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Karatas, F.; Erdem, G.U.; Sahin, S.; Aytekin, A.; Yuce, D.; Sever, A.R.; Babacan, T.; Ates, O.; Ozisik, Y.; Altundag, K. Obesity is an independent prognostic factor of decreased pathological complete response to neoadjuvant chemotherapy in breast cancer patients. Breast 2017, 32, 237–244. [Google Scholar] [CrossRef]
- Fasching, P.A.; Heusinger, K.; Haeberle, L.; Niklos, M.; Hein, A.; Bayer, C.M.; Rauh, C.; Schulz-Wendtland, R.; Bani, M.R.; Schrauder, M.; et al. Ki67, chemotherapy response, and prognosis in breast cancer patients receiving neoadjuvant treatment. BMC Cancer 2011, 11, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, Y.; Qu, Q.; Zhang, Y.; Liu, J.; Chen, X.; Shen, K. The value of tumor infiltrating lymphocytes (TILs) for predicting response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis. PLoS ONE 2014, 9, e115103. [Google Scholar] [CrossRef]
- Wong, H.; Lau, S.; Yau, T.; Cheung, P.; Epstein, R.J. Presence of an in situ component is associated with reduced biological aggressiveness of size-matched invasive breast cancer. Br. J. Cancer 2010, 102, 1391–1396. [Google Scholar] [CrossRef] [Green Version]
- Allred, D.C.; Clark, G.M.; Tandon, A.K.; Molina, R.; Tormey, D.C.; Osborne, C.K.; Gilchrist, K.W.; Mansour, E.G.; Abeloff, M.; Eudey, L. HER-2/Neu in node-negative breast cancer: Prognostic significance of overexpression influenced by the presence of in situ carcinoma. JCO 1992, 10, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Chung, Y.R.; Kim, H.J.; Woo, J.W.; Ahn, S.; Park, S.Y. Immune microenvironment in ductal carcinoma in situ: A comparison with invasive carcinoma of the breast. Breast Cancer Res. 2020, 22, 32. [Google Scholar] [CrossRef] [PubMed]
- Beguinot, M.; Dauplat, M.-M.; Kwiatkowski, F.; Lebouedec, G.; Tixier, L.; Pomel, C.; Penault-Llorca, F.; Radosevic-Robin, N. Analysis of tumour-infiltrating lymphocytes reveals two new biologically different subgroups of breast ductal carcinoma in situ. BMC Cancer 2018, 18. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Kamma, H.; Ueno, E.; Fujiwara, M.; Satoh, H.; Hara, H.; Yashiro, T.; Aiyoshi, Y. The intraductal component of breast cancer is poorly responsive to neo-adjuvant chemotherapy. Oncol. Rep. 2002, 9, 1027–1031. [Google Scholar] [CrossRef]
- Goldberg, H.; Zandbank, J.; Kent, V.; Leonov-Polak, M.; Livoff, A.; Chernihovsky, A.; Guindy, M.; Evron, E. Chemotherapy may eradicate ductal carcinoma in situ (DCIS) but not the associated microcalcifications. Eur. J. Surg. Oncol. 2017, 43, 1415–1420. [Google Scholar] [CrossRef]
- Von Minckwitz, G.; Darb-Esfahani, S.; Loibl, S.; Huober, J.; Tesch, H.; Solbach, C.; Holms, F.; Eidtmann, H.; Dietrich, K.; Just, M.; et al. Responsiveness of adjacent ductal carcinoma in situ and changes in HER2 status after neoadjuvant chemotherapy/trastuzumab treatment in early breast cancer—Results from the GeparQuattro study (GBG 40). Breast Cancer Res. Treat. 2012, 132, 863–870. [Google Scholar] [CrossRef]
- Matsuo, K.; Fukutomi, T.; Watanabe, T.; Hasegawa, T.; Tsuda, H.; Akashi-Tanaka, S. Concordance in pathological response to neoadjuvant chemotherapy between invasive and noninvasive components of primary breast carcinomas. Breast Cancer 2002, 9, 75–81. [Google Scholar] [CrossRef]
- Doebar, S.C.; van den Broek, E.C.; Koppert, L.B.; Jager, A.; Baaijens, M.H.A.; Obdeijn, I.M.A.M.; van Deurzen, C.H.M. Extent of ductal carcinoma in situ according to breast cancer subtypes: A population-based Cohort study. Breast Cancer Res. Treat. 2016, 158, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.; Lau, S.; Leung, R.; Chiu, J.; Cheung, P.; Wong, T.T.; Liang, R.; Epstein, R.J.; Yau, T. Coexisting ductal carcinoma in situ independently predicts lower tumor aggressiveness in node-positive luminal breast cancer. Med. Oncol. 2012, 29, 1536–1542. [Google Scholar] [CrossRef]
- Van Bockstal, M.R.; Noel, F.; Guiot, Y.; Duhoux, F.P.; Mazzeo, F.; Van Marcke, C.; Fellah, L.; Ledoux, B.; Berlière, M.; Galant, C. Predictive markers for pathological complete response after neo-adjuvant chemotherapy in triple-negative breast cancer. Ann. Diagn. Pathol. 2020, 49, 151634. [Google Scholar] [CrossRef]
- Ács, B.; Zámbó, V.; Vízkeleti, L.; Szász, A.M.; Madaras, L.; Szentmártoni, G.; Tőkés, T.; Molnár, B.Á.; Molnár, I.A.; Vári-Kakas, S.; et al. Ki-67 as a controversial predictive and prognostic marker in breast cancer patients treated with neoadjuvant chemotherapy. Diagn. Pathol. 2017, 12, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, J.M.; Clark, G.M.; Osborne, C.K.; Allred, D.C. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J. Clin. Oncol. 1999, 17, 1474–1481. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. WHO Classification of Tumours of the Breast; International Agency for Research on Cancer: Lyon, France, 2012; ISBN 978-92-832-2433-4. [Google Scholar]
- Dowsett, M.; Nielsen, T.O.; A’Hern, R.; Bartlett, J.; Coombes, R.C.; Cuzick, J.; Ellis, M.; Henry, N.L.; Hugh, J.C.; Lively, T.; et al. Assessment of Ki67 in breast cancer: Recommendations from the International Ki67 in Breast Cancer Working Group. J. Natl. Cancer Inst. 2011, 103, 1656–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, A.C.; Hammond, M.E.H.; Schwartz, J.N.; Hagerty, K.L.; Allred, D.C.; Cote, R.J.; Dowsett, M.; Fitzgibbons, P.L.; Hanna, W.M.; Langer, A.; et al. American Society of Clinical Oncology/College of American Pathologists Guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch. Pathol. Lab. Med. 2007, 131, 18–43. [Google Scholar] [CrossRef] [Green Version]
Variables | Characteristics | n | % |
---|---|---|---|
Menopausal status | Postmenopausal | 426 | (37.4%) |
Premenopausal | 713 | (62.6%) | |
BMI | BMI < 19 | 68 | (6%) |
BMI: 19 to 25 | 644 | (56.4%) | |
BMI: 25 to 30 | 284 | (24.9%) | |
BMI > 30 | 146 | (12.8%) | |
Tumor size | T1 | 65 | (5.7%) |
T2 | 764 | (66.6%) | |
T3 | 318 | (27.7%) | |
Nodal status | N0 | 503 | (43.9%) |
N1–N2–N3 | 644 | (56.1%) | |
Mitotic index | ≤22 | 684 | (64.7%) |
>22 | 374 | (35.3%) | |
Histology | NST | 1022 | (89.8%) |
Other | 116 | (10.2%) | |
Subtype | Luminal | 508 | (44.2%) |
TNBC | 359 | (31.3%) | |
HER2 | 281 | (24.5%) | |
Grade | Grade I | 46 | (4.1%) |
Grade II | 411 | (36.8%) | |
Grade III | 659 | (59.1%) | |
KI67 | <20 | 168 | (30.3%) |
≥20 | 387 | (69.7%) | |
DCIS component | No | 923 | (80.4%) |
Yes | 225 | (19.6%) |
Variables | Characteristics | No DCIS Pre-NAC | DCIS Pre-NAC | p |
---|---|---|---|---|
Menopausal status | Premenopausal | 549 (60%) | 164 (73.2%) | <0.001 |
Postmenopausal | 366 (40%) | 60 (26.8%) | ||
BMI | BMI < 19 | 502 (54.6%) | 142 (63.4%) | 0.007 |
BMI: 19 to 25 | 52 (5.7%) | 16 (7.1%) | ||
BMI: 25 to 30 | 234 (25.5%) | 50 (22.3%) | ||
BMI > 30 | 130 (14.2%) | 16 (7.1%) | ||
Tumor size | T1 | 52 (5.6%) | 13 (5.8%) | 0.79 |
T2 | 619 (67.1%) | 145 (64.7%) | ||
T3 | 252 (27.3%) | 66 (29.5%) | ||
Nodal status | N0 | 407 (44.1%) | 96 (42.7%) | 0.75 |
N+ | 515 (55.9%) | 129 (57.3%) | ||
Mitotic Index | ≤22 | 530 (62.1%) | 154 (75.1%) | 0.001 |
>22 | 323 (37.9%) | 51 (24.9%) | ||
Subtype | Luminal | 400 (43.3%) | 108 (48%) | <0.001 |
TNBC | 325 (35.2%) | 34 (15.1%) | ||
HER2 | 198 (21.5%) | 83 (36.9%) | ||
Grade | Grade I–II | 346 (38.4%) | 111 (51.4%) | 0.001 |
Grade III | 554 (61.6%) | 105 (48.6%) | ||
Ki67 | ki67 < 20 | 120 (28.6%) | 48 (35.3%) | 0.17 |
ki67 ≥ 20 | 299 (71.4%) | 88 (64.7%) |
Presence or Absence of DCIS | Pre-NAC | Post-NAC | |
---|---|---|---|
Total population | No DCIS | 923 (80.4%) | 638 (55.6%) |
DCIS | 225 (19.6%) | 510 (44.4%) | |
Luminal | No DCIS | 400 (78.7%) | 237 (46.7%) |
DCIS | 108 (21.3%) | 271 (53.3%) | |
TNBC | No DCIS | 325 (90.5%) | 273 (76%) |
DCIS | 34 (9.5%) | 86 (24%) | |
HER2 | No DCIS | 198 (70.5%) | 128 (45.6%) |
DCIS | 83 (29.5%) | 153 (54.4%) |
Variable | n | pCR | % | Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI (OR) | p | OR | 95% CI (OR) | p | |||||
Menopausal | Post | 426 | 113 | 26.5 | 1 | |||||
status | Pre | 713 | 167 | 23.4 | 0.85 | 0.64–1.12 | 0.2 | – | – | |
BMI | 19–25 | 644 | 164 | 25.5 | 1 | |||||
<19 | 68 | 13 | 19.1 | 0.69 | 0.35–1.26 | 0.25 | – | – | ||
>25 | 430 | 103 | 24 | 0.92 | 0.69–1.22 | 0.57 | ||||
Tumor size | T1 | 65 | 32 | 49.2 | 1 | |||||
T2 | 764 | 186 | 24.3 | 0.33 | 0.20–0.56 | <0.0001 | – | – | ||
T3 | 318 | 65 | 20.4 | 0.26 | 0.15–0.46 | <0.0001 | – | – | ||
Nodal status | N0 | 503 | 120 | 23.9 | 1 | |||||
N1–N2–N3 | 644 | 163 | 25.3 | 1.08 | 0.82–1.42 | 0.57 | – | – | ||
Mitotic index | ≤22 | 684 | 127 | 18.6 | 1 | |||||
>22 | 374 | 133 | 35.6 | 2.42 | 1.82–3.22 | <0.0001 | – | – | ||
Histology | Non specific type (NST) | 1022 | 265 | 25.9 | 2.04 | 1.2–3.47 | 0.01 | – | – | |
Other | 116 | 17 | 14.7 | 1 | ||||||
Grade | I–II | 457 | 55 | 12 | 1 | |||||
III | 659 | 221 | 33.5 | 3.69 | 2.66–5.1 | <0.0001 | – | – | ||
Ki67 | <20 | 168 | 11 | 6.5 | 1 | 1 | ||||
≥20 | 387 | 105 | 27.1 | 5.3 | 2.77–10.2 | <0.0001 | 3 | 1.31–7.75 | 0.01 | |
DCIS | No | 923 | 237 | 25.7 | 1 | |||||
Yes | 225 | 46 | 20.4 | 0.74 | 0.52–1.06 | 0.1 | ||||
Subtype | Luminal | 508 | 32 | 6.3 | 1 | 1 | ||||
TNBC | 359 | 141 | 39.3 | 9.62 | 6.43–14.8 | <0.0001 | 5.4 | 2.68–11.3 | <0.0001 | |
HER2 | 281 | 110 | 39.1 | 9.57 | 6.29–14.9 | <0.0001 | 8.7 | 4.39–18.3 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labrosse, J.; Morel, C.; Lam, T.; Laas, E.; Feron, J.-G.; Coussy, F.; Lae, M.; Reyal, F.; Hamy, A.-S. The Presence of an In Situ Component on Pre-Treatment Biopsy Is Not Associated with Response to Neoadjuvant Chemotherapy for Breast Cancer. Cancers 2021, 13, 235. https://doi.org/10.3390/cancers13020235
Labrosse J, Morel C, Lam T, Laas E, Feron J-G, Coussy F, Lae M, Reyal F, Hamy A-S. The Presence of an In Situ Component on Pre-Treatment Biopsy Is Not Associated with Response to Neoadjuvant Chemotherapy for Breast Cancer. Cancers. 2021; 13(2):235. https://doi.org/10.3390/cancers13020235
Chicago/Turabian StyleLabrosse, Julie, Charlotte Morel, Thanh Lam, Enora Laas, Jean-Guillaume Feron, Florence Coussy, Marick Lae, Fabien Reyal, and Anne-Sophie Hamy. 2021. "The Presence of an In Situ Component on Pre-Treatment Biopsy Is Not Associated with Response to Neoadjuvant Chemotherapy for Breast Cancer" Cancers 13, no. 2: 235. https://doi.org/10.3390/cancers13020235
APA StyleLabrosse, J., Morel, C., Lam, T., Laas, E., Feron, J. -G., Coussy, F., Lae, M., Reyal, F., & Hamy, A. -S. (2021). The Presence of an In Situ Component on Pre-Treatment Biopsy Is Not Associated with Response to Neoadjuvant Chemotherapy for Breast Cancer. Cancers, 13(2), 235. https://doi.org/10.3390/cancers13020235