Development of a MicroRNA Signature Predictive of Recurrence and Survival in Pancreatic Ductal Adenocarcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Patient Selection and Endpoints
2.2. MiRNA Expression Profiling
3. Results
3.1. Resectable Pancreatic Cancer
3.2. Borderline Resectable/Unresectable Pancreatic Cancer
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Kalser, M.H.; Ellenberg, S.S. Pancreatic cancer. Adjuvant combined radiation and chemotherapy following curative resection. Arch. Surg. 1985, 120, 899–903. [Google Scholar] [PubMed]
- Klinkenbijl, J.H.; Jeekel, J.; Sahmoud, T.; van Pel, R.; Couvreur, M.L.; Veenhof, C.H.; Arnaud, J.P.; Gonzalez, D.G.; de Wit, L.T.; Hennipman, A.; et al. Adjuvant radiotherapy and 5-fluorouracil after curative resection of cancer of the pancreas and periampul-lary region: Phase III trial of the EORTC gastrointestinal tract cancer cooperative group. Ann. Surg. 1999, 230, 776–782; discussion 782–784, discussion 782–784. [Google Scholar] [CrossRef] [Green Version]
- Neoptolemos, J.P.; Stocken, D.D.; Friess, H.; Bassi, C.; Dunn, J.A.; Hickey, H.; Beger, H.; Fernandez-Cruz, L.; Dervenis, C.; La-caine, F.; et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N. Engl. J. Med. 2004, 350, 1200–1210. [Google Scholar] [CrossRef] [Green Version]
- Hammel, P.; Huguet, F.; van Laethem, J.L.; Goldstein, D.; Glimelius, B.; Artru, P.; Borbath, I.; Bouche, O.; Shannon, J.; Andre, T.; et al. Effect of Chemoradiotherapy vs. Chemotherapy on Survival in Patients With Locally Advanced Pancreatic Cancer Controlled After 4 Months of Gemcitabine With or Without Erlotinib: The LAP07 Randomized Clinical Trial. JAMA 2016, 315, 1844–1853. [Google Scholar] [CrossRef]
- Katz, M.H.G.; Oncology, F.T.A.F.C.T.O.; Ou, F.-S.; Herman, J.M.; Ahmad, S.A.; Wolpin, B.; Marsh, R.; Behr, S.; Shi, Q.; Chuong, M.; et al. Alliance for clinical trials in oncology (ALLIANCE) trial A021501: Preoperative extended chemotherapy vs. chemotherapy plus hypofractionated radiation therapy for borderline resectable adenocarcinoma of the head of the pancreas. BMC Cancer 2017, 17, 1–8. [Google Scholar] [CrossRef]
- Schrag, D. Optimizing Treatment for Locally Advanced Pancreas Cancer: Progress but No Precision. JAMA 2016, 315, 1837–1838. [Google Scholar] [CrossRef] [PubMed]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E.; Dees, E.C.; Perez, E.A.; Olson, J.A.; et al. Prospective Validation of a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2015, 373, 2005–2014. [Google Scholar] [CrossRef] [PubMed]
- Den, R.B.; Yousefi, K.; Trabulsi, E.J.; Abdollah, F.; Choeurng, V.; Feng, F.Y.; Dicker, A.P.; Lallas, C.D.; Gomella, L.G.; Davicio-ni, E.; et al. Genomic classifier identifies men with adverse pathology after radical prostatectomy who benefit from adjuvant radiation therapy. J. Clin. Oncol. 2015, 33, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Yonemori, K.; Kurahara, H.; Maemura, K.; Natsugoe, S. MicroRNA in pancreatic cancer. J. Hum. Genet. 2016, 62, 33–40. [Google Scholar] [CrossRef]
- Daoud, A.Z.; Mulholland, E.; Cole, G.; McCarthy, H.O. MicroRNAs in Pancreatic Cancer: Biomarkers, prognostic, and therapeutic modulators. BMC Cancer 2019, 19, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawat, M.; Kadian, K.; Gupta, Y.; Kumar, A.; Chain, P.S.G.; Kovbasnjuk, O.; Kumar, S.; Parasher, G. MicroRNA in Pancreatic Cancer: From Biology to Thera-peutic Potential. Genes 2019, 10, 752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfe, A.R.; Wald, P.; Webb, A.; Sebastian, N.; Walston, S.; Robb, R.; Chen, W.; Vedaie, M.; Dillhoff, M.; Frankel, W.L.; et al. A microRNA-based signature predicts local-regional failure and overall survival after pancreatic cancer resection. Oncotarget 2020, 11, 913–923. [Google Scholar] [CrossRef]
- Eisenhauer, E.; Therasse, P.; Bogaerts, J.; Schwartz, L.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Pettit, C.; Webb, A.; Walston, S.; Chatterjee, M.; Chen, W.; Frankel, W.; Croce, C.; Williams, T.M. MicroRNA molecular profiling identifies potential signaling pathways conferring resistance to chemoradiation in locally-advanced rectal adenocarcinoma. Oncotarget 2018, 9, 28951–28964. [Google Scholar] [CrossRef]
- Hasan, S.; Jacob, R.; Manne, U.; Paluri, R. Advances in pancreatic cancer biomarkers. Oncol. Rev. 2019, 13, 410. [Google Scholar] [CrossRef] [Green Version]
- Bloomston, M.; Frankel, W.L.; Petrocca, F.; Volinia, S.; Alder, H.; Hagan, J.P.; Liu, C.G.; Bhatt, D.; Taccioli, C.; Croce, C.M. Mi-croRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007, 297, 1901–1908. [Google Scholar] [CrossRef] [Green Version]
- Takiuchi, D.; Eguchi, H.; Nagano, H.; Iwagami, Y.; Tomimaru, Y.; Wada, H.; Kawamoto, K.; Kobayashi, S.; Marubashi, S.; Tanemura, M.; et al. Involvement of microRNA-181b in the gemcitabine resistance of pancreatic cancer cells. Pancreatology 2013, 13, 517–523. [Google Scholar] [CrossRef]
- Liu, Y.-S.; Lin, H.-Y.; Lai, S.-W.; Huang, C.-Y.; Huang, B.-R.; Chen, P.-Y.; Wei, K.-C.; Lu, D.-Y. MiR-181b modulates EGFR-dependent VCAM-1 expression and monocyte adhesion in glioblastoma. Oncogene 2017, 36, 5006–5022. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.X.; Chen, L.P.; Ji, M.L. Upregulation of microRNA-181b inhibits CCL18-induced breast cancer cell metastasis and invasion via the NF-kappaB signaling pathway. Oncol Lett. 2016, 12, 4411–4418. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, X.; Meng, Q.; Jing, H.; Lu, H.; Yang, Y.; Cai, L.; Zhao, Y. MiR-181b regulates cisplatin chemosensitivity and me-tastasis by targeting TGFβR1/Smad signaling pathway in NSCLC. Sci. Rep. 2015, 5, 17618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, J.; Shen, L.; Yang, L.; Huang, X.; Lu, Q.; Cui, Y.; Zheng, X.; Zhao, X.; Zhang, D.; Huang, R.; et al. TGFβ1 Promotes Gem-citabine Resistance through Regulating the LncRNA-LET/NF90/miR-145 Signaling Axis in Bladder Cancer. Theranostics 2017, 7, 3053–3067. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Xie, L.-F.; Xiao, T.-Z.; Qiu, M.-Y.; Wang, W.-L. MiR-181d inhibits cell proliferation and metastasis through PI3K/AKT pathway in gastric cancer. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8861–8869. [Google Scholar]
- Conway, J.R.; Herrmann, D.; Evans, T.J.; Morton, J.; Timpson, P. Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine. Gut 2018, 68, 742–758. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-N.; Xu, F.; Zhang, P.; Wang, P.; Wei, Y.-N.; Wu, C.; Cheng, S.-J. MicroRNA-575 regulates development of gastric cancer by targeting PTEN. Biomed. Pharmacother. 2019, 113, 108716. [Google Scholar] [CrossRef]
- Qin, Y.; Mi, W.; Huang, C.; Li, J.; Zhang, Y.; Fu, Y. Downregulation of miR-575 Inhibits the Tumorigenesis of Gallbladder Cancer via Targeting p27 Kip1. Onco. Targets Ther. 2020, 13, 3667–3676. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Tang, Z.; Chen, K.; Liu, Y.; Yu, G.; Chen, Q.; Dang, H.; Chen, F.; Ling, J.; Zhu, L.; et al. Long noncoding RNA MIR31HG inhibits hepatocellular carcinoma proliferation and metastasis by sponging microRNA-575 to modulate ST7L expression. J. Exp. Clin. Cancer Res. 2018, 37, 1–16. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Pancreatic Cancer (Version 1.2020). Available online: https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf (accessed on 19 May 2020).
- Abrams, R.A.; Lowy, A.M.; O’Reilly, E.M.; Wolff, R.A.; Picozzi, V.J.; Pisters, P.W.T. Combined Modality Treatment of Resec-table and Borderline Resectable Pancreas Cancer: Expert Consensus Statement. Ann. Surg. Oncol. 2009, 16, 1751–1756. [Google Scholar] [CrossRef]
- Miller, R.C.; Iott, M.J.; Corsini, M.M. Review of Adjuvant Radiochemotherapy for Resected Pancreatic Cancer and Results from Mayo Clinic for the 5th JUCTS Symposium. Int. J. Radiat. Oncol. 2009, 75, 364–368. [Google Scholar] [CrossRef]
- Merchant, N.B.; Rymer, J.; Koehler, E.A.; Ayers, G.D.; Castellanos, J.; Kooby, D.A.; Weber, S.H.; Cho, C.S.; Schmidt, C.M.; Na-keeb, A.; et al. Adjuvant chemoradiation therapy for pancreatic adenocarcinoma: Who really benefits? J. Am. Coll. Surg. 2009, 208, 829–838, discussion 838–841. [Google Scholar] [CrossRef] [Green Version]
- Hallemeier, C.L.; Botros, M.; Corsini, M.M.; Haddock, M.G.; Gunderson, L.L.; Miller, R.C. Preoperative CA 19-9 Level Is an Important Prognostic Factor in Patients With Pancreatic Adenocarcinoma Treated With Surgical Resection and Adjuvant Concurrent Chemoradiotherapy. Am. J. Clin. Oncol. 2011, 34, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Butturini, G.; Stocken, D.D.; Wente, M.N.; Jeekel, H.; Klinkenbijl, J.H.G.; Bakkevold, K.E.; Takada, T.; Amano, H.; Dervenis, C.; Bassi, C.; et al. Influence of Resection Margins and Treatment on Survival in Patients With Pancreatic Cancer: Meta-analysis of Randomized Controlled Trials. Arch. Surg. 2008, 143, 75–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, A.C.; Garcia, M., Jr.; Hoffman, J.P.; Regine, W.F.; Abrams, R.A.; Safran, H.; Konski, A.; Benson, A.B., 3rd; MacDonald, J.; Willett, C.G. Postresection CA 19-9 predicts overall survival in patients with pancreatic cancer treated with adjuvant chemora-diation: A prospective validation by RTOG 9704. J. Clin. Oncol. 2008, 26, 5918–5922. [Google Scholar] [CrossRef] [Green Version]
- Aung, K.L.; Fischer, S.E.; Denroche, R.E.; Jang, G.-H.; Dodd, A.; Creighton, S.; Southwood, B.; Liang, S.-B.; Chadwick, D.; Zhang, A.; et al. Genomics-Driven Precision Medicine for Advanced Pancreatic Cancer: Early Results from the COMPASS Trial. Clin. Cancer Res. 2017, 24, 1344–1354. [Google Scholar] [CrossRef] [Green Version]
- Connor, A.A.; Denroche, R.E.; Jang, G.H.; Timms, L.; Kalimuthu, S.N.; Selander, I.; McPherson, T.; Wilson, G.W.; Chan-Seng-Yue, M.A.; Borozan, I.; et al. Association of Distinct Mutational Signatures With Correlates of Increased Immune Ac-tivity in Pancreatic Ductal Adenocarcinoma. JAMA Oncol. 2017, 3, 774–783. [Google Scholar] [CrossRef]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.; Raoul, J.-L.; Choné, L.; Francois, E.; Artru, P.; Biagi, J.J.; et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2018, 379, 2395–2406. [Google Scholar] [CrossRef] [PubMed]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E.; Dees, E.C.; Goetz, M.P.; Olson, J.A.; et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2018, 379, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Parulekar, W.R.; Berrang, T.; Kong, I.; Rakovitch, E.; Theberge, V.; Gelmon, K.A.; Chia, S.K.L.; Bellon, J.R.; Jagsi, R.; Ho, A.Y.; et al. Cctg MA.39 tailor RT: A randomized trial of regional radiotherapy in biomarker low-risk node-positive breast cancer (NCT03488693). J. Clin. Oncol. 2019, 37, TPS602. [Google Scholar] [CrossRef]
- Group, G.T.S. Treatment of locally unresectable carcinoma of the pancreas: Comparison of combined-modality therapy (chem-otherapy plus radiotherapy) to chemotherapy alone. Gastrointestinal Tumor Study Group. J. Natl. Cancer Inst. 1988, 80, 751–755. [Google Scholar]
- Sr, P.J.L.; Feng, Y.; Cardenes, H.; Wagner, L.; Brell, J.M.; Cella, D.; Flynn, P.; Ramanathan, R.K.; Crane, C.H.; Alberts, S.R.; et al. Gemcitabine Alone Versus Gemcitabine Plus Radiotherapy in Patients With Locally Advanced Pancreatic Cancer: An Eastern Cooperative Oncology Group Trial. J. Clin. Oncol. 2011, 29, 4105–4112. [Google Scholar]
- Hazel, J.J.; Thirlwell, M.P.; Huggins, M.; Maksymiuk, A.; MacFarlane, J.K. Multi-drug chemotherapy with and without radiation for carcinoma of the stomach and pancreas: A prospective randomized trial. J. Can. Assoc. Radiol. 1981, 32, 164–165. [Google Scholar] [PubMed]
- Klaassen, D.J.; MacIntyre, J.M.; Catton, G.E.; Engstrom, P.F.; Moertel, C.G. Treatment of locally unresectable cancer of the stomach and pancreas: A randomized comparison of 5-fluorouracil alone with radiation plus concurrent and maintenance 5-fluorouracil--an Eastern Cooperative Oncology Group study. J. Clin. Oncol. 1985, 3, 373–378. [Google Scholar] [CrossRef]
- Chauffert, B.; Mornex, F.; Bonnetain, F.; Rougier, P.; Mariette, C.; Bouché, O.; Bosset, J.F.; Aparicio, T.; Mineur, L.; Azzedine, A.; et al. Phase III trial comparing intensive induction chemoradiotherapy (60 Gy, infusional 5-FU and intermittent cisplatin) followed by maintenance gemcitabine with gemcitabine alone for locally advanced unresectable pancreatic cancer. Definitive results of the 2000–01 FFCD/SFRO study. Ann. Oncol. 2008, 19, 1592–1599. [Google Scholar] [PubMed]
- Versteijne, E.; Suker, M.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; Creemers, G.M.; van Dam, R.M.; et al. Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Border-line Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III PREOPANC Trial. J. Clin. Oncol. 2020, 38, 1763–1773. [Google Scholar] [CrossRef] [PubMed]
Variable | Training Cohort | Validation Cohort | ||||
---|---|---|---|---|---|---|
Low Risk (n = 45) | High Risk (n = 45) | p | Low Risk (n = 46) | High Risk (n = 47) | p | |
Age (years) | ||||||
<60 ≥60 | 15 (33.3%) 30 (66.7%) | 12 (26.7%) 33 (73.3%) | 0.65 | 15 (32.6%) 31 (67.4%) | 13 (27.7%) 34 (72.3%) | 0.60 |
Sex | ||||||
Male Female | 24 (53.3%) 21 (46.7%) | 27 (60.0%) 18 (40.0%) | 0.67 | 25 (54.3%) 21 (45.7%) | 28 (59.6%) 19 (40.4%) | 0.61 |
Pathologic T stage | ||||||
1–2 3–4 | 12 (26.7%) 33 (73.3%) | 4 (8.9%) 41 (91.1%) | 0.05 | 8 (17.4%) 38 (82.6%) | 4 (8.5%) 43 (91.5%) | 0.20 |
Pathologic N stage | ||||||
0 1 | 14 (31.1%) 31 (68.9%) | 9 (20.0%) 36 (80.0%) | 0.33 | 17 (37.0%) 29 (63.0%) | 8 (17.0%) 39 (83.0%) | 0.03 |
Margins | ||||||
Negative Positive | 35 (77.8%) 10 (22.2%) | 17 (37.8%) 28 (62.2%) | <0.001 | 37 (80.4%) 9 (19.6%) | 16 (34.0%) 31 (66.0%) | <0.001 |
Grade | ||||||
1–2 3 | 19 (42.2%) 26 (57.8%) | 28 (62.2%) 17 (37.8%) | 0.09 | 18 (39.1%) 28 (60.9%) | 27 (57.4%) 20 (42.6%) | 0.08 |
Post-op CA 19–9 | ||||||
≤90 >90 Unavailable | 30 (66.7%) 7 (15.6%) 8 (17.8%) | 24 (21.0%) 16 (35.6%) 16 (35.6%) | 1.00 | 27 (58.7%) 3 (6.5%) 16 (34.8%) | 27 (57.4%) 9 (19.1%) 11 (23.4%) | 0.12 |
Locoregional recurrence | ||||||
No Yes | 36 (80.0%) 9 (20.0%) | 18 (40.0%) 27 (60.0%) | <0.001 | 32 (69.6%) 14 (30.4%) | 23 (48.9%) 24 (51.1%) | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebastian, N.T.; Webb, A.; Merrell, K.W.; Koay, E.J.; Wolfe, A.R.; Zhang, L.; Wilhite, T.J.; Elganainy, D.; Robb, R.; Chen, W.; et al. Development of a MicroRNA Signature Predictive of Recurrence and Survival in Pancreatic Ductal Adenocarcinoma. Cancers 2021, 13, 5168. https://doi.org/10.3390/cancers13205168
Sebastian NT, Webb A, Merrell KW, Koay EJ, Wolfe AR, Zhang L, Wilhite TJ, Elganainy D, Robb R, Chen W, et al. Development of a MicroRNA Signature Predictive of Recurrence and Survival in Pancreatic Ductal Adenocarcinoma. Cancers. 2021; 13(20):5168. https://doi.org/10.3390/cancers13205168
Chicago/Turabian StyleSebastian, Nikhil T., Amy Webb, Kenneth W. Merrell, Eugene J. Koay, Adam R. Wolfe, Lizhi Zhang, Tyler J. Wilhite, Dalia Elganainy, Ryan Robb, Wei Chen, and et al. 2021. "Development of a MicroRNA Signature Predictive of Recurrence and Survival in Pancreatic Ductal Adenocarcinoma" Cancers 13, no. 20: 5168. https://doi.org/10.3390/cancers13205168
APA StyleSebastian, N. T., Webb, A., Merrell, K. W., Koay, E. J., Wolfe, A. R., Zhang, L., Wilhite, T. J., Elganainy, D., Robb, R., Chen, W., Cloyd, J., Dillhoff, M., Tsung, A., Abushahin, L., Noonan, A., & Williams, T. M. (2021). Development of a MicroRNA Signature Predictive of Recurrence and Survival in Pancreatic Ductal Adenocarcinoma. Cancers, 13(20), 5168. https://doi.org/10.3390/cancers13205168