Intrahepatic Cholangiocarcinoma: A Summative Review of Biomarkers and Targeted Therapies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pathogenesis of ICC
3. Identified Targetable Mutations
4. Results of Targeted Therapies for ICC
4.1. Targeted Therapy: Isocitrate Dehydrogenase
4.2. Targeted Therapy: Fibroblast Growth Factor Receptor
4.3. Targeted Therapy: Epidermal Growth Factor Receptor
4.4. Targeted Therapy: Immune Checkpoint Inhibitors
4.5. Targeted Therapies: BRAF Mutations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cardinale, V. Intra-hepatic and extra-hepatic cholangiocarcinoma: New insight into epidemiology and risk factors. World J. Gastrointest. Oncol. 2010, 2, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Oishi, N.; Kumar, M.R.; Roessler, S.; Ji, J.; Forgues, M.; Budhu, A.; Zhao, X.; Andersen, J.B.; Ye, Q.-H.; Jia, H.-L.; et al. Transcriptomic profiling reveals hepatic stem-like gene signatures and interplay of miR-200c and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma. Hepatology 2012, 56, 1792–1803. [Google Scholar] [CrossRef]
- Khan, S.; Toledano, M.; Taylor-Robinson, S. Epidemiology, risk factors, and pathogenesis of cholangiocarcinoma. HPB 2008, 10, 77–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Cancer Society. Key Statistics for Bile Duct Cancer. 2021. Available online: https://www.cancer.org/cancer/bile-duct-cancer/about/key-statistics.html (accessed on 23 August 2021).
- Endo, I.; Gonen, M.; Yopp, A.C.; Dalal, K.M.; Zhou, Q.; Klimstra, D.; D’Angelica, M.; DeMatteo, R.P.; Fong, Y.; Schwartz, L.; et al. Intrahepatic Cholangiocarcinoma. Ann. Surg. 2008, 248, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Thomas, H.C.; Davidson, B.R.; Taylor-Robinson, S.D. Cholangiocarcinoma. Lancet 2005, 366, 1303–1314. [Google Scholar] [CrossRef]
- Nathan, H.; Pawlik, T.M.; Wolfgang, C.L.; Choti, M.A.; Cameron, J.L.; Schulick, R.D. Trends in Survival after Surgery for Cholangiocarcinoma: A 30-Year Population-Based SEER Database Analysis. J. Gastrointest. Surg. 2007, 11, 1488–1497. [Google Scholar] [CrossRef]
- Gupta, A.; Dixon, E. Epidemiology and risk factors: Intrahepatic cholangiocarcinoma. Hepatobiliary Surg. Nutr. 2017, 6, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Maithel, S.K.; Gamblin, T.C.; Kamel, I.; Corona-Villalobos, C.P.; Thomas, M.; Pawlik, T.M. Multidisciplinary approaches to intrahepatic cholangiocarcinoma. Cancer 2013, 119, 3929–3942. [Google Scholar] [CrossRef]
- Tsilimigras, D.I.; Sahara, K.; Wu, L.; Moris, D.; Bagante, F.; Guglielmi, A.; Aldrighetti, L.; Weiss, M.; Bauer, T.W.; Alexandrescu, S.; et al. Very Early Recurrence After Liver Resection for Intrahepatic Cholangiocarcinoma. JAMA Surg. 2020, 155, 823–831. [Google Scholar] [CrossRef]
- Hyder, O.; Hatzaras, I.; Sotiropoulos, G.C.; Paul, A.; Alexandrescu, S.; Marques, H.P.; Pulitano, C.; Barroso, E.; Clary, B.M.; Aldrighetti, L.; et al. Recurrence after operative management of intrahepatic cholangiocarcinoma. Surgery 2013, 153, 811–818. [Google Scholar] [CrossRef]
- Choi, S.-B.; Kim, K.-S.; Choi, J.-Y.; Park, S.W.; Lee, W.J.; Chung, J.-B. The Prognosis and Survival Outcome of Intrahepatic Cholangiocarcinoma Following Surgical Resection: Association of Lymph Node Metastasis and Lymph Node Dissection with Survival. Ann. Surg. Oncol. 2009, 16, 3048–3056. [Google Scholar] [CrossRef]
- Yamamoto, M.; Takasaki, K.; Otsubo, T.; Katsuragawa, H.; Katagiri, S. Recurrence after surgical resection of intrahepatic cholangiocarcinoma. J. Hepatobiliary Pancreat. Sci. 2001, 8, 154–157. [Google Scholar] [CrossRef]
- Weber, S.M.; Ribero, D.; O’Reilly, E.M.; Kokudo, N.; Miyazaki, M.; Pawlik, T.M. Intrahepatic Cholangiocarcinoma: Expert consensus statement. HPB 2015, 17, 669–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagante, F.; Spolverato, G.; Merath, K.; Weiss, M.; Alexandrescu, S.; Marques, H.P.; Aldrighetti, L.; Maithel, S.K.; Pulitano, C.; Bauer, T.W.; et al. Intrahepatic cholangiocarcinoma tumor burden: A classification and regression tree model to define prognostic groups after resection. Surgery 2019, 166, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Tsilimigras, D.I.; Mehta, R.; Moris, D.; Sahara, K.; Bagante, F.; Paredes, A.Z.; Moro, A.; Guglielmi, A.; Aldrighetti, L.; Weiss, M.; et al. A Machine-Based Approach to Preoperatively Identify Patients with the Most and Least Benefit Associated with Resection for Intrahepatic Cholangiocarcinoma: An International Multi-Institutional Analysis of 1146 Patients. Ann. Surg. Oncol. 2019, 27, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Blechacz, B.; Komuta, M.; Roskams, T.; Gores, G.J. Clinical diagnosis and staging of cholangiocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 512–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aishima, S.; Fujita, N.; Mano, Y.; Kubo, Y.; Tanaka, Y.; Taketomi, A.; Shirabe, K.; Maehara, Y.; Oda, Y. Different roles of S100P Overexpression in Intrahepatic Cholangiocarcinoma. Am. J. Surg. Pathol. 2011, 35, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Cloyd, J.M.; Ejaz, A.; Pawlik, T.M. The Landmark Series: Intrahepatic Cholangiocarcinoma. Ann. Surg. Oncol. 2020, 27, 2859–2865. [Google Scholar] [CrossRef]
- Valle, J. ABC-02. CDDP + GEM vs. GEM for biliary tract cancer: OS better with CDDP + GEM. N. Engl. J. Med. 2010, 362, 1273–1281. [Google Scholar] [CrossRef] [Green Version]
- Ntanasis-Stathopoulos, I.; Tsilimigras, D.I.; Gavriatopoulou, M.; Schizas, D.; Pawlik, T.M. Cholangiocarcinoma: Investigations into pathway-targeted therapies. Expert Rev. Anticancer Ther. 2020, 20, 765–773. [Google Scholar] [CrossRef]
- Sirica, A.E. Cholangiocarcinoma: Molecular targeting strategies for chemoprevention and therapy. Hepatology 2004, 41, 5–15. [Google Scholar] [CrossRef]
- Maemura, K.; Natsugoe, S.; Takao, S. Molecular mechanism of cholangiocarcinoma carcinogenesis. J. Hepatobiliary Pancreat. Sci. 2014, 21, 754–760. [Google Scholar] [CrossRef]
- Goldenberg, D.; Rosenbaum, E.; Argani, P.; Wistuba, I.I.; Sidransky, D.; Thuluvath, P.J.; Hidalgo, M.; Califano, J.; Maitra, A. The V599E BRAF mutation is uncommon in biliary tract cancers. Mod. Pathol. 2004, 17, 1386–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tannapfel, A.; Benicke, M.; Katalinic, A.; Uhlmann, D.; Köckerling, F.; Hauss, J.; Wittekind, C. Frequency of p16INK4A alterations and k-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut 2000, 47, 721–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tannapfel, A.; Sommerer, F.; Benicke, M.; Katalinic, A.; Uhlmann, D.; Witzigmann, H.; Hauss, J.; Wittekind, C. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut 2003, 52, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Ahrendt, S.; Rashid, A.; Chow, J.T.; Eisenberger, C.F.; Pitt, H.A.; Sidransky, D. p53 overexpression and K- ras gene mutations in primary sclerosing cholangitis-associated biliary tract cancer. J. Hepatobiliary Pancreat. Surg. 2000, 7, 426–431. [Google Scholar] [CrossRef]
- Furubo, S.; Harada, K.; Shimonishi, T.; Katayanagi, K.; Tsui, W.; Nakanuma, Y. Protein expression and genetic alterations of p53 and ras in intrahepatic cholangiocarcinoma. Histopathology 1999, 35, 230–240. [Google Scholar] [CrossRef]
- Gwak, G.-Y.; Yoon, J.-H.; Shin, C.M.; Ahn, Y.J.; Chung, J.K.; Kim, Y.A.; Kim, T.-Y.; Lee, H.-S. Detection of response-predicting mutations in the kinase domain of the epidermal growth factor receptor gene in cholangiocarcinomas. J. Cancer Res. Clin. Oncol. 2005, 131, 649–652. [Google Scholar] [CrossRef]
- Robertson, S.; Hyder, O.; Dodson, R.; Nayar, S.K.; Poling, J.; Beierl, K.; Eshleman, J.R.; Lin, M.-T.; Pawlik, T.M.; Anders, R.A. The frequency of KRAS and BRAF mutations in intrahepatic cholangiocarcinomas and their correlation with clinical outcome. Human Pathol. 2013, 44, 2768–2773. [Google Scholar] [CrossRef] [Green Version]
- Sia, D.; Tovar, V.; Moeini, A.; Llovet, J.M. Intrahepatic cholangiocarcinoma: Pathogenesis and rationale for molecular therapies. Oncogene 2013, 32, 4861–4870. [Google Scholar] [CrossRef] [Green Version]
- Sia, D.; Hoshida, Y.; Villanueva, A.; Roayaie, S.; Ferrer-Fabrega, J.; Tabak, B.; Peix, J.; Sole, M.; Tovar, V.; Alsinet, C.; et al. Integrative Molecular Analysis of Intrahepatic Cholangiocarcinoma Reveals 2 Classes That Have Different Outcomes. Gastroenterology 2013, 144, 829–840. [Google Scholar] [CrossRef] [Green Version]
- Johnston, P.; Grandis, J.R. STAT3 SIGNALING: Anticancer Strategies and Challenges. Mol. Interv. 2011, 11, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Rébé, C.; Végran, F.; Berger, H.; Ghiringhelli, F. STAT3 activation. JAK-STAT 2013, 2, e23010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, J.P.; Wolf-Yadlin, A.; Sevecka, M.; Grenier, J.K.; Root, D.E.; Lauffenburger, D.A.; MacBeath, G. Receptor Tyrosine Kinases Fall into Distinct Classes Based on Their Inferred Signaling Networks. Sci. Signal. 2013, 6, ra58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.; Lovly, C.M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 2018, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Roskams, T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene 2006, 25, 3818–3822. [Google Scholar] [CrossRef] [Green Version]
- Wakasa, T.; Wakasa, K.; Shutou, T.; Hai, S.; Kubo, S.; Hirohashi, K.; Umeshita, K.; Monden, M. A histopathological study on combined hepatocellular and cholangiocarcinoma: Cholangiocarcinoma component is originated from hepatocellular carcinoma. Hepatogastroenterology 2007, 54, 508–513. [Google Scholar]
- Job, S.; Rapoud, D.; dos Santos, A.; Gonzalez, P.; Desterke, C.; Pascal, G.; Elarouci, N.; Ayadi, M.; Adam, R.; Azoulay, D.; et al. Identification of Four Immune Subtypes Characterized by Distinct Composition and Functions of Tumor Microenvironment in Intrahepatic Cholangiocarcinoma. Hepatology 2019, 72, 965–981. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.B.; Spee, B.; Blechacz, B.R.; Avital, I.; Komuta, M.; Barbour, A.; Conner, E.A.; Gillen, M.C.; Roskams, T.; Roberts, L.; et al. Genomic and Genetic Characterization of Cholangiocarcinoma Identifies Therapeutic Targets for Tyrosine Kinase Inhibitors. Gastroenterology 2012, 142, 1021–1031.e15. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.S.; Wang, K.; Gay, L.; Al-Rohil, R.; Rand, J.V.; Jones, D.M.; Lee, H.J.; Sheehan, C.E.; Otto, G.A.; Palmer, G.; et al. New Routes to Targeted Therapy of Intrahepatic Cholangiocarcinomas Revealed by Next-Generation Sequencing. Oncologist 2014, 19, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Javle, M.; Bekaii-Saab, T.; Jain, A.; Wang, Y.; Kelley, R.K.; Wang, K.; Kang, H.C.; Catenacci, D.; Ali, S.; Krishnan, S.; et al. Biliary cancer: Utility of next-generation sequencing for clinical management. Cancer 2016, 122, 3838–3847. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, A.; Ricci, A.D.; Brandi, G. PD-L1, TMB, MSI, and Other Predictors of Response to Immune Checkpoint Inhibitors in Biliary Tract Cancer. Cancers 2021, 13, 558. [Google Scholar] [CrossRef]
- Fontugne, J.; Augustin, J.; Pujals, A.; Compagnon, P.; Rousseau, B.; Luciani, A.; Tournigand, C.; Cherqui, D.; Azoulay, D.; Pawlotsky, J.-M.; et al. PD-L1 expression in perihilar and intrahepatic cholangiocarcinoma. Oncotarget 2017, 8, 24644–24651. [Google Scholar] [CrossRef] [Green Version]
- Walter, D.; Herrmann, E.; Schnitzbauer, A.A.; Zeuzem, S.; Hansmann, M.L.; Peveling-Oberhag, J.; Hartmann, S. PD-L1 expression in extrahepatic cholangiocarcinoma. Histopathology 2017, 71, 383–392. [Google Scholar] [CrossRef]
- Goeppert, B.; Roessler, S.; Renner, M.; Singer, S.; Mehrabi, A.; Vogel, M.N.; Pathil, A.; Czink, E.; Köhler, B.; Springfeld, C.; et al. Mismatch repair deficiency is a rare but putative therapeutically relevant finding in non-liver fluke associated cholangiocarcinoma. Br. J. Cancer 2018, 120, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, A. Targeted Therapies in Advanced Cholangiocarcinoma: A Focus on FGFR Inhibitors. Medicina 2021, 57, 458. [Google Scholar] [CrossRef]
- Saha, S.K.; Parachoniak, C.A.; Ghanta, K.; Fitamant, J.; Ross, K.N.; Najem, M.S.; Gurumurthy, S.; Akbay, E.; Sia, D.; Cornella, H.; et al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature 2014, 513, 110–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou-Alfa, G.K.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.; Borad, M.J.; Bridgewater, J.; et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): A multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020, 21, 796–807. [Google Scholar] [CrossRef]
- Lamarca, A.; Barriuso, J.; McNamara, M.G.; Valle, J.W. Molecular targeted therapies: Ready for “prime time” in biliary tract cancer. J. Hepatol. 2020, 73, 170–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javle, M.; Lowery, M.; Shroff, R.T.; Weiss, K.H.; Springfeld, C.; Borad, M.J.; Ramanathan, R.K.; Goyal, L.; Sadeghi, S.; Macarulla, T.; et al. Phase II Study of BGJ398 in Patients With FGFR-Altered Advanced Cholangiocarcinoma. J. Clin. Oncol. 2018, 36, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Goyal, L.; Kongpetch, S.; Crolley, V.E.; Bridgewater, J. Targeting FGFR inhibition in cholangiocarcinoma. Cancer Treat. Rev. 2021, 95, 102170. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al-Rajabi, R.; Paulson, A.S.; Borad, M.J.; Gallinson, D.; Murphy, A.G.; et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. Lancet Oncol. 2020, 21, 671–684. [Google Scholar] [CrossRef]
- Javle, M.M.; Roychowdhury, S.; Kelley, R.K.; Sadeghi, S.; Macarulla, T.; Waldschmidt, D.T.; Goyal, L.; Borbath, I.; El-Khoueiry, A.B.; Yong, W.-P.; et al. Final results from a phase II study of infigratinib (BGJ398), an FGFR-selective tyrosine kinase inhibitor, in patients with previously treated advanced cholangiocarcinoma harboring an FGFR2 gene fusion or rearrangement. J. Clin. Oncol. 2021, 39, 265. [Google Scholar] [CrossRef]
- Javle, M.; Roychowdhury, S.; Kelley, R.K.; Sadeghi, S.; Macarulla, T.; Weiss, K.H.; Waldschmidt, D.-T.; Goyal, L.; Borbath, I.; El-Khoueiry, A.; et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: Mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol. Hepatol. 2021, 6, 803–815. [Google Scholar] [CrossRef]
- Yoshikawa, D.; Ojima, H.; Iwasaki, M.; Hiraoka, N.; Kosuge, T.; Kasai, S.; Hirohashi, S.; Shibata, T. Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br. J. Cancer 2007, 98, 418–425. [Google Scholar] [CrossRef]
- Raymond, E.; Faivre, S.; Armand, J.P. Epidermal Growth Factor Receptor Tyrosine Kinase as a Target for Anticancer Therapy. Drugs 2000, 60, 15–23. [Google Scholar] [CrossRef]
- Harding, J.; Cleary, J.; Shapiro, G.; Braña, I.; Moreno, V.; Quinn, D.; Borad, M.; Loi, S.; Spanggaard, I.; Stemmer, S.; et al. Treating HER2-mutant advanced biliary tract cancer with neratinib: Benefits of HER2-directed targeted therapy in the phase 2 SUMMIT ‘basket’ trial. Ann. Oncol. 2019, 30, iv127. [Google Scholar] [CrossRef]
- Ueno, M.; Ikeda, M.; Morizane, C.; Kobayashi, S.; Ohno, I.; Kondo, S.; Okano, N.; Kimura, K.; Asada, S.; Namba, Y.; et al. Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: A non-randomised, multicentre, open-label, phase 1 study. Lancet Gastroenterol. Hepatol. 2019, 4, 611–621. [Google Scholar] [CrossRef]
- Kim, R.D.; Chung, V.; Alese, O.B.; El-Rayes, B.F.; Li, D.; Al-Toubah, T.E.; Schell, M.J.; Zhou, J.-M.; Mahipal, A.; Kim, B.H.; et al. A Phase 2 Multi-institutional Study of Nivolumab for Patients with Advanced Refractory Biliary Tract Cancer. JAMA Oncol. 2020, 6, 888–894. [Google Scholar] [CrossRef]
- Ioka, T.; Ueno, M.; Oh, D.-Y.; Fujiwara, Y.; Chen, J.-S.; Doki, Y.; Mizuno, N.; Park, K.; Asagi, A.; Hayama, M.; et al. Evaluation of safety and tolerability of durvalumab (D) with or without tremelimumab (T) in patients (pts) with biliary tract cancer (BTC). J. Clin. Oncol. 2019, 37, 387. [Google Scholar] [CrossRef]
- Yoo, C.; Oh, D.-Y.; Choi, H.J.; Kudo, M.; Ueno, M.; Kondo, S.; Chen, L.-T.; Osada, M.; Helwig, C.; Dussault, I.; et al. Phase I study of bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with pretreated biliary tract cancer. J. Immunother. Cancer 2019, 8, e000564. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Kamgar, M.; Mahipal, A. Targeted Therapies in Advanced Biliary Tract Cancer: An Evolving Paradigm. Cancers 2020, 12, 2039. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002, 12, 9–18. [Google Scholar] [CrossRef]
- Rizzo, A.; Di Federico, A.; Ricci, A.D.; Frega, G.; Palloni, A.; Pagani, R.; Tavolari, S.; Di Marco, M.; Brandi, G. Targeting BRAF-Mutant Biliary Tract Cancer: Recent Advances and Future Challenges. Cancer Control 2020, 27, 1073274820983013. [Google Scholar] [CrossRef] [PubMed]
NCT No. | Phase | Setting | Arm A | Arm B | Agent Description | Primary Outcomes |
---|---|---|---|---|---|---|
01752920 | I/II | Advanced solid tumor with FGFR alteration | Derazantinib | FGFR inhibitor | NAE | |
02150967 | II | Advanced cholangiocarcinoma, FGFR2 gene mutation | BGJ398 | BGJ398: FGFR inhibitor | ORR | |
02465060 | Advanced solid tumors, lymphomas or multiple myeloma | Multiple genetic-alteration-specific drugs | Diverse mechanisms | ORR | ||
02924396 | II | Advanced cholangiocarcinoma | Pemigatinib | FGFR2 inhibitor | ORR | |
03230318 | II | ICC or HCC with FGFR gene fusions | Derazantinib | FGFR inhibitor | ORR, PFS at 3 months | |
03656536 | II | Advanced bile duct cancer | Pemigatinib | Gemcitabine + cisplatin | Pemigatinib: FGFR inhibitor | PFS |
03773302 | III | Advanced cholangiocarcinoma with FGFR2 gene mutation | BGJ398 | Gemcitabine + cisplatin | BGJ398: FGFR inhibitor | PFS |
04093362 | III | Advanced cholangiocarcinoma with FGFR2 rearrangements | TAS-120/Futibatinib | Gemcitabine + cisplatin | TAS-120: FGFR inhibitor | PFS |
0421168 | II | Advanced biliary tract cancer | Toripalimab + Lenvatinib | Toripalimab: Recombinant anti-human PDI IgG4Lenvatinib: angiogenesis inhibitor that targets multiple tyrosine kinases including FGFR | ORR | |
04238715 | II | Advanced cholangiocarcinoma with FGFR2 gene fusion | E7090 | FGFR2 inhibitor | ORR | |
04256980 | II | Advanced cholangiocarcinoma including those with FGFR2 rearrangements | Pemigatinib | FGFR2 inhibitor | ORR | |
04353375 | II | Advanced ICC with FGFR2 fusion | HMPL-453 | FGFR inhibitor | ORR at 6 months | |
04526106 | I | Advanced solid tumor with FGFR2 amplification, mutation, rearrangement, translocation, activation | RLY-4008 | FGFR2 inhibitor | MTD, NAE | |
04919642 | II | Advanced cholangiocarcinoma with FGFR mutation | TT-00420 | Multi-kinase inhibitor including FGFR | ORR | |
05039892 | II | Advanced bile duct cancer with FGFR2 mutation | 3D185 | FGFR inhibitor | ORR | |
03212274 | II/III | Advanced solid neoplasms with IDH1/2 mutation | Olaparib | PARP inhibitor | ORR | |
04521686 | II/III | Advanced solid neoplasms with IDH1/2 mutation | LY3410738 | mIDH1 inhibitor | ORR | |
03878095 | II/III | Advanced solid neoplasm with IDH1/2 mutation | Olaparib + Ceralasertib | ATR inhibitor | ORR |
NCT No. | Phase | Setting | Arm A | Arm B | Agent Description | Primary Outcomes |
---|---|---|---|---|---|---|
04066491 | II/III | First line | Bintrafusp alfa (M7824) plus CisGem | Placebo + CisGem | Bintrafusp alfa: bifunctional fusion protein composed by PD-L1 antibody fused with 2 extracellular domains of TGF-B receptor | DLTs, OS |
03875235 | III | First line | Durvalumab + CisGem | Placebo + CisGem | Durvalumab: PD-L1 inhibitor | OS |
03260712 | II | First line | Pembrolizumab + CisGem | Pembrolizumab: PD-L1 antibody | PFS at 6 months | |
04300959 | II | First line | Anlotinib + tremelimumab + CisGem | CisGem | Anlotinib: TKI inhibiting PDGFR, FGFR, VEGFR, c-KIT kinase Sintilimab: PD-L1 inhibitor | OS at 12 months |
03046862 | II | First line | Durvalumab + tremelimumab + CisGem | Durvalumab: PD-L1 inhibitor Tremelimumab: anti-CTLA-4 agent | ||
03796429 | II | First line | Toripalimab + S-1 + Gem | Toripalimab: PD-1 antibody | PFS, OS | |
04172402 | II | First line | Nivolumab + S-1 + Gem | Nivolumab: PD-1 antibody | ORR | |
04027764 | II | First line | Toripalimab + S-1 + albumin + paclitaxel | Toripalimab: PD-1 antibody | ORR | |
03478488 | III | First line | KN035 + GEMOX | GEMOX | KN035: PD-L1 inhibitor | OS |
04191343 | II | First line | Toripalimab + GEMOX | Toripalimab: PD-1 antibody | ORR | |
04003636 | III | First line | Pembrolizumab + CisGem | Placebo + CisGem | Pembrolizumab: PD-L1 antibody | PFS, OS |
03937895 | I/II | First or later line | Pembrolizumab + allogenic NK cell (SMT-NK) | Pembrolizumab: PD-L1 antibody SMT-NK: allogenic natural killer cell | DLTs, ORR | |
03639935 | II | Maintenance after platinum-based first line | Nivolumab + Rucaparib | Nivolumab: PD-1 antibody Rucaparib: PARP inhibitor | PFS at 4 months | |
03785873 | I/II | Second line | Nivolumab + 5-FU + Nallri | Nivolumab: PD-1 antibody | DLTs, PFS | |
04298021 | II | Second line | AZD6738 + Durvalumab | AZD6738 + Olaparib | AZD6738: ATR and ATM inhibitor Durvalumab: PD-L1 inhibitor Olaparib: PARP inhibitor | DCR |
03110328 | II | Second line | Pembrolizumab | Pembrolizumab: PD-L1 antibody | PFS, OS | |
04211168 | II | Second line | Toripalimab + Lenvatinib | Toripalimab: PD-L antibody Lenvatinib: TKI | ORR, AEs | |
03797326 | II | Second line | Pembrolizumab + Lenvatinib | Pembrolizumab: PD-L1 antibody Lenvatinib: TKI | ||
04010071 | II | Second line | Toripalimab + axitinib | Toripalimab: PD-1 antibody Axitinib: TKI | ORR, PFS | |
03704480 | II | Second line | Durvalumab + tremelimumab | Durvalumab + tremelimumab + paclitaxel | Durvalumab: PD-L1 inhibitor Tremelimumab: anti-CTLA-4 agent | PFS |
04003636 | III | First line | Pembrolizumab + CisGem | Placebo + CisGem | Pembrolizumab: PD-1 antibody | PFS, OS |
03937895 | I/II | First or later line | Pembrolizumab + allogenic NK cell (SMT-NK) | Pembrolizumab: PD-1 antibody SMT-NK: allogenic natural killer | DLTs, ORR | |
03999658 | II | Second or later line | STI-3031 | St3031: PD-L1 inhibitor | ORR | |
03475953 | I/II | Second or later line | Avelumab + regorafenib | Avelumab: PD-L1 inhibitor Regorafenib: TKI | RP2D | |
03801083 | II | Second or later line | TILs | TILs: tumor-infiltrating Lymphocytes | ORR | |
04057365 | II | Second or later line | Nivolumab + DKN-01 | Nivolumab: PD-1 antibody DKN-01: humanized monoclonal antibody against DKK1 protein | ORR | |
04298008 | II | Third line | AZD6738 + Durvalumab | AZD6738: ATR and ATM inhibitor Durvalumab: PD-L1 inhibitor | DCR |
Phase | Setting | Immune Check Point Inhibitor | Agent Description | Outcomes |
---|---|---|---|---|
Ib [58] | Second line or later | Pembrolizumab | Pembrolizumab: PD-1 inhibitor | mPFS 1.8 months mOS 5.7 months ORR 13% SD rate 17% |
II [58] | Second line or later | Pembrolizumab | Pembrolizumab: PD-1 inhibitor | mPFS 2.0 months mOS 7.4 months ORR 5.8% |
II [59] | Second line or later | Nivolumab | Nivolumab: PD-1 inhibitor | mPFS 1.4 months mOS 5.2 months PR rate 3% |
II [60] | Second line or later | Nivolumab | Nivolumab: PD-1 inhibitor | mPFS 3.7 months mOS 14.2 months ORR 20% DCR 50% |
II [61] | Second line or later | Durvalumab | Durvalumab: PD-L1 inhibitor | mPFS 1.5 months mOS 8.1 months PR rate 4.2% |
I [62] | Second line or later | M7824 | M7824: PD-L1 inhibitor | mOS 12.7 months ORR 02% |
NCT No. | Phase | Setting | Arm A | Arm B | Agent Description | Primary Outcomes |
---|---|---|---|---|---|---|
04190328 | I | Second or later line; BRAF-mutant solid tumors, including BTC | ABM-1310 | ABM-1310: BRAF inhibitor | MTD/RP2D | |
04249843 | I | Second or later line; BRAF-mutant solid tumors, including BTC | BGB-3245 | BGB-3245: BRAF inhibitor | DLT MTD/RP2D | |
03839342 | II | Second or later line; BRAF-mutant solid tumors, including BTC | Binimetinib + encorafenib | Binimetinib: BRAF inhibitor Encorafenib: BRAF inhibitor | ORR | |
01989585 | I/II | Second or later line; BRAF-mutant solid tumors, including BTC | Dabrafenib + trametinib | Dabrafenib + trametinib + navitoclax | Dabrafenib: BRAF inhibitor Trametinib: BRAF inhibitor Navitoclax: Bcl-2 inhibitor | MTD CR rate |
04418167 | I | Second or later line; BRAF-mutant solid tumors, including BTC with MAPK pathway mutations | JSI-I 187 | JSI-I 187 + dabrafenib | JSI-I 187: ERK inhibitor Dabrafenib: BRAF inhibitor | AEs |
03272464 | I | Second or later line; BRAF-mutant solid tumors, including BTC | Dabrefenib + trametinib + itacitinib | Dabrafenib: BRAF inhibitor Trametinib: BRAF inhibitor Icatinib: JAK I inhibitor | MTD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acher, A.W.; Paro, A.; Elfadaly, A.; Tsilimigras, D.; Pawlik, T.M. Intrahepatic Cholangiocarcinoma: A Summative Review of Biomarkers and Targeted Therapies. Cancers 2021, 13, 5169. https://doi.org/10.3390/cancers13205169
Acher AW, Paro A, Elfadaly A, Tsilimigras D, Pawlik TM. Intrahepatic Cholangiocarcinoma: A Summative Review of Biomarkers and Targeted Therapies. Cancers. 2021; 13(20):5169. https://doi.org/10.3390/cancers13205169
Chicago/Turabian StyleAcher, Alexandra W., Alessandro Paro, Ahmed Elfadaly, Diamantis Tsilimigras, and Timothy M. Pawlik. 2021. "Intrahepatic Cholangiocarcinoma: A Summative Review of Biomarkers and Targeted Therapies" Cancers 13, no. 20: 5169. https://doi.org/10.3390/cancers13205169
APA StyleAcher, A. W., Paro, A., Elfadaly, A., Tsilimigras, D., & Pawlik, T. M. (2021). Intrahepatic Cholangiocarcinoma: A Summative Review of Biomarkers and Targeted Therapies. Cancers, 13(20), 5169. https://doi.org/10.3390/cancers13205169