Fractal and Multifractal Analysis of PET-CT Images for Therapy Assessment of Metastatic Melanoma Patients under PD-1 Inhibitors: A Feasibility Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The PET-CT Data
2.2. Clinical Evaluation and Radiological irAEs
2.3. The Fractal Dimension and the Multifractal Spectrum
3. Results
3.1. Fractal Dimensions
3.2. Multifractal Spectrum
4. Side-Effects and the Case of Colitis
5. Discussion
- The computational exemption of organs, which accumulate or excrete the tracer. This is a major weakness of the present methods, and if solved, we could expect matching evaluations in over 95% of the cases. Possible methods from the domain of artificial intelligence may soon offer a solution to this problem.
- The development of novel, more specific radiotracers which only accumulate to a markedly higher extent in the tumorous lesions rather than in the physiological tissues. Similarly to the previous case, we expect an important improvement of the matching between clinical evaluation and fractal/multifractal analysis if the non-pathological accumulation of the tracer can be excluded in one or the other way.
- The use of PET-CT images of higher resolution. Such images could offer the possibility to extract more accurate FD and MFS measures. These measures in combination with conventional measures such as SUV, metabolic tumor volume (MTV), total lesion glycolysis (TLG) as well as the use of artificial intelligence (AI) algorithms for image segmentation may help to achieve a more precise evaluation of immunotherapy treatment response in the future.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A1. Calculation of FD
Appendix A2. Calculation of MFS
Appendix A3. Calculation of the Cumulative Measure ΔD(j)
Appendix B
Appendix C
References
- Khair, D.O.; Bax, H.J.; Mele, S.; Crescioli, S.; Pellizzari, G.; Khiabany, A.; Nakamura, M.; Harris, R.J.; French, E.; Hoffmann, R.M.; et al. Combining immune checkpoint inhibitors: Established and emerging targets and strategies to improve outcomes in melanoma. Front. Immunol. 2019, 10, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodi, F.S.; O´Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Schadendorf, D.; Hodi, F.S.; Robert, C.; Weber, J.; Margolin, K.; Hamid, O.; Patt, D.; Chen, T.-T.; Berman, D.M.; Wolchok, J.D. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 2015, 33, 1889–1894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitrakopoulou-Strauss, A. Monitoring of patients with metastatic melanoma treated with immune checkpoint inhibitors using PET-CT. Cancer Immunol. Immunother. 2019, 68, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Sachpekidis, C.; Larribere, L.; Pan, L.; Haberkorn, U.; Dimitrakopoulou-Strauss, A.; Hassel, J.C. Predictive value of early 18F-FDG PET/CT studies for treatment response evaluation to ipilimumab in metastatic melanoma: Preliminary results of an ongoing study. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Anwar, H.; Sachpekidis, C.; Winkler, J.; Kopp-Schneider, A.; Haberkorn, U.; Hassel, J.C.; Dimitrakopoulou-Strauss, A. Absolute number of new lesions on 18F-FDG PET/CT is more predictive of clinical response than SUV changes in metastatic melanoma patients receiving ipilimumab. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Sachpekidis, C.; Hassel, J.C.; Kopp-Schneider, A.; Haberkorn, U.; Dimitrakopoulou-Strauss, A. Quantitative Dynamic 18F-FDG PET/CT in Survival Prediction of Metastatic Melanoma under PD-1 Inhibitors. Cancers 2021, 13, 1019. [Google Scholar] [CrossRef] [PubMed]
- Sachpekidis, C.; Kopp-Schneider, A.; Pan, L.; Papamichail, D.; Haberkorn, U.; Hassel, J.C.; Dimitrakopoulou-Strauss, A. Interim [18F]FDG PET/CT can predict response to anti-PD-1 treatment in metastatic melanoma. Eur. J. Nucl. Med. Mol. Imaging 2020, 48, 1932–1943. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Emmett, L.; Lo, S.; Liu, V.; Kapoor, R.; Carlino, M.S.; Guminski, A.D.; Long, G.V.; Menzies, A.M. FDG-PET response and outcome from anti-PD-1 therapy in metastatic melanoma. Ann. Oncol. 2018, 29, 2115–2120. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Teng, R.; Schöder, H.; Humm, J.L.; Ni, A.; Michaud, L.; Nakajima, R.; Yamashita, R.; Wolchok, J.D.; Weber, W.A. 18F-FDG PET/CT for Monitoring of Ipilimumab Therapy in Patients with Metastatic Melanoma. J. Nucl. Med. 2019, 60, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Iravani, A.; Osman, M.M.; Weppler, A.M.; Wallace, R.; Galligan, A.; Lasocki, A.; Hunter, M.O.; Akhurst, T.; Hofman, M.S.; Lau, P.K.H.; et al. FDG PET/CT for tumoral and systemic immune response monitoring of advanced melanoma during first-line combination ipilimumab and nivolumab treatment. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2776–2786. [Google Scholar] [CrossRef]
- Dimitrakopoulou-Strauss, A.; Pan, L.; Sachpekidis, C. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: General considerations, current clinical applications, and future perspectives. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 21–39. [Google Scholar] [CrossRef]
- Mandelbrot, B. Fractal Geometry of Nature, 1st ed.; W.H. Freemanand Company: New York, NY, USA, 1982. [Google Scholar]
- Feder, J. Fractals; Plenum: New York, NY, USA, 1988. [Google Scholar]
- Breki, C.M.; Dimitrakopoulou-Strauss, A.; Hassel, J.; Theoharis, T.; Sachpekidis, C.; Pan, L.; Provata, A. Fractal and multifractal analysis of PET/CT images of metastatic melanoma before and after treatment with ipilimumab. EJNMMI Res. 2016, 6, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weibel, E.R. Fractal structures in biological systems. In Fractals in Biology and Medicine; Losa, G., Merlini, D., Nonnenmacher, T.F., Weibel, E.R., Eds.; Birkhäuser-Verlag: Basel, Germany, 2005; Volume IV, pp. 3–16. [Google Scholar]
- Huang, W.; Yen, R.T.; McLaurine, M.; Bledsoe, G. Morphometry of the humanpulmonary vasculature. J. Appl. Physiol. 1996, 81, 2123–2133. [Google Scholar] [CrossRef] [PubMed]
- Helmberger, M.; Pienn, M.; Urschler, M.; Kullnig, P.; Stollberger, R.; Kovacs, G.; Olschewski, A.; Olschewski, H.; Bálint, Z. Quantification of tortuosity and fractal dimension of the lung vessels in pulmonary hypertension patients. PLoS ONE 2014, 9, e87515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil-García, J.; Gimeno-Domínguez, M.; Murillo-Ferroll, N.L. The arterial pattern and fractal dimension of the dog kidney. Histol. Histopathol. 1992, 7, 563–574. [Google Scholar] [PubMed]
- Yamaguchi, H.; Wyckoff, J.; Condeelis, J. Cell migration in tumour. Curr. Opin. Cell Biol. 2005, 17, 559–564. [Google Scholar] [CrossRef] [PubMed]
Patients | Age/Sex | Study | Medication | PET-irAEs and Causes of Non-Specific Tracer Uptake | PET-CT Evaluation (PERCIMT) |
---|---|---|---|---|---|
P1 | 56/F | Baseline | Ipilimumab/Nivolumab | ||
Interim | thyroiditis | PMD | |||
Final | colitis | PMD | |||
P2 | 48/F | Baseline | Ipilimumab/Nivolumab | ||
Interim | radiopharmaceutical uptake in the injection site | SMD | |||
Final | radiopharmaceutical uptake in the injection site | CMR | |||
P3 | 60/F | Baseline | Ipilimumab/Nivolumab | ||
Interim | radiopharmaceutical uptake in the injection site | PMR | |||
Final | thyroiditis, colitis, bone marrow activation | PMR | |||
P4 | 52/M | Baseline | Pembrolizumab | muscle uptake | |
Interim | arthritis, muscle uptake | SMD | |||
Final | arthritis | SMD | |||
P5 | 46/F | Baseline | Ipilimumab/Nivolumab | radiopharmaceutical uptake in the injection site | |
Interim | duodenitis, muscle uptake | SMD | |||
Final | duodenitis, colitis | PMD | |||
P6 | 68/M | Baseline | Pembrolizumab | ||
Interim | SMD | ||||
Final | PMR | ||||
P7 | 44/F | Baseline | Ipilimumab/Nivolumab | ||
Interim | colitis, bone marrow activation | PMR | |||
Final | bone marrow activation | PMR | |||
P8 | 50/F | Baseline | Ipilimumab/Nivolumab | laryngeal uptake | |
Interim | bone marrow activation | SMD | |||
Final | arthritis, bone marrow activation, radiopharmaceutical uptake in the injection site, muscle uptake | CMR | |||
P9 | 55/F | Baseline | Nivolumab | bone marrow activation | |
Interim | bone marrow activation | SMD | |||
Final | bone marrow activation | SMD | |||
P10 | 54/M | Baseline | Ipilimumab/Nivolumab | ||
Interim | PMR | ||||
Final | PMR | ||||
P11 | 20/F | Baseline | Ipilimumab/Nivolumab | bone marrow activation | |
Interim | PMD | ||||
Final | PMD | ||||
P12 | 84/F | Baseline | Pembrolizumab | ||
Interim | SMD | ||||
Final | muscle uptake | SMD | |||
P13 | 53/F | Baseline | Nivolumab | bone marrow activation | |
Interim | SMD | ||||
Final | SMD | ||||
P14 | 52/M | Baseline | Pembrolizumab | laryngeal uptake | |
Interim | laryngeal uptake | PMR | |||
Final | laryngeal uptake, radiopharmaceutical uptake in the injection site | PMR | |||
P15 | 52/M | Baseline | Pembrolizumab | ||
Interim | SMD | ||||
Final | signs of colitis in descending colon | SMD | |||
P16 | 71/F | Baseline | Ipilimumab/Nivolumab | colon uptake | |
Interim | colitis, sarcoid-like mediastinal lymphadenopathy | PMD | |||
Final | colitis | PMD | |||
P17 | 34/F | Baseline | Ipilimumab/Nivolumab | ||
Interim | bone marrow activation, colitis, muscle uptake | CMR | |||
Final | brown fat activation | CMR | |||
P18 | 78/M | Baseline | Pembrolizumab | radiopharmaceutical uptake in the injection site | |
Interim | arthritis | PMD | |||
Final | PMD | ||||
P19 | 59/M | Baseline | Ipilimumab/Nivolumab | ||
Interim | sarcoid-like mediastinal lymphadenopathy, muscle uptake | PMR | |||
Final | sarcoid-like mediastinal lymphadenopathy | PMR | |||
HEALTHY CONTROLS | |||||
H1 | 49/M | - | muscle uptake | ||
H2 | 63/M | - | radiopharmaceutical uptake in the injection site | ||
H3 | 39/M | - | - | ||
H4 | 61/M | - | - | ||
H5 | 52/M | - | - | ||
H6 | 63/M | - | muscle uptake | ||
H7 | 69/M | - | - | ||
H8 | 60/M | - | - |
Patients | Study | FD | Side Effects | Clinical Outcome | Matching |
---|---|---|---|---|---|
P1 | Baseline | 2.546 | |||
Interim | 2.459 | thyroiditis | PMD | YES | |
Final | 2.558 | colitis | PMD | NO | |
P2 | Baseline | 2.523 | |||
Interim | 2.515 | radiopharmaceutical uptake in the injection site | SMD | YES | |
Final | 2.476 | radiopharmaceutical uptake in the injection site | CMR | NO | |
P3 | Baseline | 2.537 | |||
Interim | 2.557 | radiopharmaceutical uptake in the injection site | PMR | YES | |
Final | 2.527 | thyroiditis, colitis, bone marrow activation | PMR | NO | |
P4 | Baseline | 2.566 | muscle uptake | ||
Interim | 2.543 | arthritis, muscle uptake | SMD | YES | |
Final | 2.543 | arthritis | SMD | YES | |
P5 | Baseline | 2.487 | radiopharmaceutical uptake in the injection site | ||
Interim | 2.497 | duodenitis, muscle uptake | SMD | YES | |
Final | 2.448 | duodenitis, colitis | PMD | YES | |
P6 | Baseline | 2.519 | |||
Interim | 2.530 | SMD | YES | ||
Final | 2.503 | PMR | NO | ||
P7 | Baseline | 2.542 | |||
Interim | 2.544 | colitis, bone marrow activation | PMR | YES | |
Final | 2.562 | bone marrow activation | PMR | YES | |
P8 | Baseline | 2.544 | laryngeal uptake | ||
Interim | 2.399 | bone marrow activation | SMD | NO | |
Final | 2.476 | arthritis, bone marrow activation, radiopharmaceutical uptake in the injection site, muscle uptake | CMR | NO | |
P9 | Baseline | 2.524 | bone marrow activation | ||
Interim | 2.507 | bone marrow activation | SMD | YES | |
Final | 2.528 | bone marrow activation | SMD | YES | |
P10 | Baseline | 2.534 | |||
Interim | 2.562 | PMR | YES | ||
Final | 2.574 | PMR | YES | ||
P11 | Baseline | 2.499 | bone marrow activation | ||
Interim | 2.398 | PMD | YES | ||
Final | 2.474 | PMD | YES | ||
P12 | Baseline | 2.513 | |||
Interim | 2.480 | SMD | NO | ||
Final | 2.537 | muscle uptake | SMD | YES | |
P13 | Baseline | 2.603 | bone marrow activation | ||
Interim | 2.596 | SMD | YES | ||
Final | 2.590 | SMD | YES | ||
P14 | Baseline | 2.554 | laryngeal uptake | ||
Interim | 2.518 | laryngeal uptake | PMR | NO | |
Final | 2.557 | laryngeal uptake, radiopharmaceutical uptake in the injection site | PMR | YES | |
P15 | Baseline | 2.556 | |||
Interim | 2.604 | SMD | NO | ||
Final | 2.567 | signs of colitis in descending colon | SMD | YES | |
P16 | Baseline | 2.398 | colon uptake | ||
Interim | 2.511 | colitis, sarcoid-like mediastinal lymphadenopathy | PMD | NO | |
Final | 2.574 | colitis | PMD | NO | |
P17 | Baseline | 2.473 | |||
Interim | 2.518 | bone marrow activation, colitis, muscle uptake | CMR | YES | |
Final | 2.515 | brown fat activation | CMR | YES | |
P18 | Baseline | 2.541 | radiopharmaceutical uptake in the injection site | ||
Interim | 2.523 | arthritis hip | PMD | YES | |
Final | 2.539 | PMD | YES | ||
P19 | Baseline | 2.549 | |||
Interim | 2.572 | sarcoid-like mediastinal lymphadenopathy, muscle uptake | PMR | YES | |
Final | 2.580 | sarcoid-like mediastinal lymphadenopathy | PMR | YES | |
HEALTHY CONTROLS | |||||
H1 | 2.544 | muscle uptake | |||
H2 | 2.614 | radiopharmaceutical uptake in the injection site | |||
H3 | 2.623 | - | |||
H4 | 2.496 | - | |||
H5 | 2.646 | - | |||
H6 | 2.518 | muscle uptake | |||
H7 | 2.581 | - | |||
H8 | 2.589 | - |
Patients | Study | <MFS>/ΔD(j) | Side Effects | Clinical Outcome | Matching |
---|---|---|---|---|---|
P1 | Baseline | 2.389 | |||
Interim | 2.178/−0.211 | thyroiditis | PMD | YES | |
Final | 2.460/0.071 | colitis | PMD | NO | |
P2 | Baseline | 2.314 | |||
Interim | 2.281/−0.033 | radiopharmaceutical uptake in the injection site | SMD | YES | |
Final | 2.523/0.210 | radiopharmaceutical uptake in the injection site | CMR | YES | |
P3 | Baseline | 2.341 | |||
Interim | 2.358/0.017 | radiopharmaceutical uptake in the injection site | PMR | YES | |
Final | 2.295/−0.046 | thyroiditis, colitis, bone marrow activation | PMR | NO | |
P4 | Baseline | 2.472 | muscle uptake | ||
Interim | 2.463/−0.009 | arthritis, muscle uptake | SMD | YES | |
Final | 2.428/−0.044 | arthritis | SMD | YES | |
P5 | Baseline | 2.248 | radiopharmaceutical uptake in the injection site | ||
Interim | 2.485/0.237 | duodenitis, muscle uptake | SMD | NO | |
Final | 2.202/−0.047 | duodenitis, colitis | PMD | YES | |
P6 | Baseline | 2.450 | |||
Interim | 2.399/−0.051 | SMD | YES | ||
Final | 2.252/−0.198 | PMR | NO | ||
P7 | Baseline | 2.309 | |||
Interim | 2.460/0.151 | colitis, bone marrow activation | PMR | YES | |
Final | 2.484/0.176 | bone marrow activation | PMR | YES | |
P8 | Baseline | 2.306 | laryngeal uptake | ||
Interim | 2.154/−0.152 | bone marrow activation | SMD | NO | |
Final | 2.242/−0.064 | arthritis, bone marrow activation, radiopharmaceutical uptake in the injection site, muscle uptake | CMR | NO | |
P9 | Baseline | 2.425 | bone marrow activation | ||
Interim | 2.353/−0.072 | bone marrow activation | SMD | YES | |
Final | 2.305/−0.120 | bone marrow activation | SMD | YES | |
P10 | Baseline | 2.273 | |||
Interim | 2.470/0.1907 | PMR | YES | ||
Final | 2.384/0.111 | PMR | YES | ||
P11 | Baseline | 2.259 | bone marrow activation | ||
Interim | 2.145/−0.115 | PMD | YES | ||
Final | 2.237/−0.023 | PMD | YES | ||
P12 | Baseline | 2.242 | |||
Interim | 2.243/0.001 | SMD | YES | ||
Final | 2.266/0.024 | muscle uptake | SMD | YES | |
P13 | Baseline | 2.394 | bone marrow activation | ||
Interim | 2.466/0.072 | SMD | YES | ||
Final | 2.461/0.067 | SMD | YES | ||
P14 | Baseline | 2.302 | laryngeal uptake | ||
Interim | 2.511/0.209 | laryngeal uptake | PMR | YES | |
Final | 2.310/0.008 | laryngeal uptake, radiopharmaceutical uptake in the injection site | PMR | YES | |
P15 | Baseline | 2.233 | |||
Interim | 2.376/0.143 | SMD | NO | ||
Final | 2.253/0.020 | signs of colitis in descending colon | SMD | YES | |
P16 | Baseline | 2.155 | colon uptake | ||
Interim | 2.261/0.106 | colitis, sarcoid-like mediastinal lymphadenopathy | PMD | NO | |
Final | 2.378/0.223 | colitis | PMD | NO | |
P17 | Baseline | 2.192 | |||
Interim | 2.496/0.303 | bone marrow activation, colitis, muscle uptake | CMR | YES | |
Final | 2.390/0.198 | brown fat activation | CMR | YES | |
P18 | Baseline | 2.346 | radiopharmaceutical uptake in the injection site | ||
Interim | 2.269/−0.077 | arthritis hip | PMD | YES | |
Final | 2.413/0.066 | PMD | NO | ||
P19 | Baseline | 2.266 | |||
Interim | 2.487/0.221 | sarcoid-like mediastinal lymphadenopathy, muscle uptake | PMR | YES | |
Final | 2.346/0.080 | sarcoid-like mediastinal lymphadenopathy | PMR | YES | |
HEALTHY CONTROLS | |||||
H1 | 2.560 | muscle uptake | |||
H2 | 2.365 | radiopharmaceutical uptake in the injection site | |||
H3 | 2.442 | - | |||
H4 | 2.322 | - | |||
H5 | 2.538 | - | |||
H6 | 2.207 | muscle uptake | |||
H7 | 2.336 | - | |||
H8 | 2.479 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmou, A.; Sachpekidis, C.; Pan, L.; Matsopoulos, G.K.; Hassel, J.C.; Dimitrakopoulou-Strauss, A.; Provata, A. Fractal and Multifractal Analysis of PET-CT Images for Therapy Assessment of Metastatic Melanoma Patients under PD-1 Inhibitors: A Feasibility Study. Cancers 2021, 13, 5170. https://doi.org/10.3390/cancers13205170
Kosmou A, Sachpekidis C, Pan L, Matsopoulos GK, Hassel JC, Dimitrakopoulou-Strauss A, Provata A. Fractal and Multifractal Analysis of PET-CT Images for Therapy Assessment of Metastatic Melanoma Patients under PD-1 Inhibitors: A Feasibility Study. Cancers. 2021; 13(20):5170. https://doi.org/10.3390/cancers13205170
Chicago/Turabian StyleKosmou, Anastasia, Christos Sachpekidis, Leyun Pan, George K. Matsopoulos, Jessica C. Hassel, Antonia Dimitrakopoulou-Strauss, and Astero Provata. 2021. "Fractal and Multifractal Analysis of PET-CT Images for Therapy Assessment of Metastatic Melanoma Patients under PD-1 Inhibitors: A Feasibility Study" Cancers 13, no. 20: 5170. https://doi.org/10.3390/cancers13205170
APA StyleKosmou, A., Sachpekidis, C., Pan, L., Matsopoulos, G. K., Hassel, J. C., Dimitrakopoulou-Strauss, A., & Provata, A. (2021). Fractal and Multifractal Analysis of PET-CT Images for Therapy Assessment of Metastatic Melanoma Patients under PD-1 Inhibitors: A Feasibility Study. Cancers, 13(20), 5170. https://doi.org/10.3390/cancers13205170