Management of VEGFR-Targeted TKI for Thyroid Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Adverse Effects of Anti-VEGFR Therapy and the General Principles of Their Management in Thyroid Cancer
3. Appropriate Selection of Subjects and Optimal Timing of the Initiation of Treatment
4. Management of Individual AEs
4.1. Hypertension
4.2. Proteinuria and Renal Impairment
4.3. Hemorrhage
4.4. Fistula Formation and Gastrointestinal Perforation
4.5. Wound Healing
4.6. Cardiovascular Toxicities
4.7. Hematological Toxicity (Thrombocytopenia)
4.8. Diarrhea
4.9. Fatigue
4.10. Acute Cholecystitis
5. Other Factors for Appropriate Management of Anti-VEGFR TKIs Therapy
5.1. Patient Education and Institution Infrastructure
5.2. Alternative Schedules and Initial Dose of the Drug
5.3. Consideration of Other Systemic Drugs Not Targeting VEGF or with a Different Toxicity Profile
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brose, M.S.; Nutting, C.M.; Jarzab, B.; Elisei, R.; Siena, S.; Bastholt, L.; de la Fouchardiere, C.; Pacini, F.; Paschke, R.; Shong, Y.K.; et al. Sorafenib in Radioactive Iodine-Refractory, Locally Advanced or Metastatic Differentiated Thyroid Cancer: A Randomised, Double-Blind, Phase 3 Trial. Lancet 2014, 384, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Brose, M.; Jarzab, B.; Elisei, R.; Giannetta, L.; Bastholt, L.; Fouchardiere, C.; Pacini, F.; Paschke, R.; Nutting, C.; Shong, Y.K.; et al. Final Overall Survival Analysis of Patients with Locally Advanced or Metastatic Radioactive Iodine-Refractory Differentiated Thyroid Cancer (RAI-rDTC) Treated with Sorafenib in the Phase 3 DECISION Trial: An Exploratory Crossover Adjustment Analyses. Ann. Oncol. 2016, 27, vi329. [Google Scholar] [CrossRef] [Green Version]
- Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; et al. Lenvatinib versus Placebo in Radioiodine-Refractory Thyroid Cancer. N. Engl. J. Med. 2015, 372, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Kiyota, N.; Schlumberger, M.; Muro, K.; Ando, Y.; Takahashi, S.; Kawai, Y.; Wirth, L.; Robinson, B.; Sherman, S.; Suzuki, T.; et al. Subgroup Analysis of Japanese Patients in a Phase 3 Study of Lenvatinib in Radioiodine-Refractory Differentiated Thyroid Cancer. Cancer Sci. 2015, 106, 1714–1721. [Google Scholar] [CrossRef] [Green Version]
- Wells, S.A., Jr.; Robinson, B.G.; Gagel, R.F.; Dralle, H.; Fagin, J.A.; Santoro, M.; Baudin, E.; Elisei, R.; Jarzab, B.; Vasselli, J.R.; et al. Vandetanib in Patients with Locally Advanced or Metastatic Medullary Thyroid Cancer: A Randomized, Double-Blind Phase III Trial. J. Clin. Oncol. 2012, 30, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Kreissl, M.C.; Bastholt, L.; Elisei, R.; Haddad, R.; Hauch, O.; Jarząb, B.; Robinson, B.; Colzani, R.; Foster, M.; Weiss, R.; et al. Efficacy and Safety of Vandetanib in Progressive and Symptomatic Medullary Thyroid Cancer: Post Hoc Analysis From the ZETA Trial. J. Clin. Oncol. 2020, 38, 2773–2781. [Google Scholar] [CrossRef]
- Elisei, R.; Schlumberger, M.J.; Müller, S.P.; Schöffski, P.; Brose, M.S.; Shah, M.H.; Licitra, L.; Jarzab, B.; Medvedev, V.; Kreissl, M.C.; et al. Cabozantinib in Progressive Medullary Thyroid Cancer. J. Clin. Oncol. 2013, 31, 3639–3646. [Google Scholar] [CrossRef] [Green Version]
- Schlumberger, M.; Elisei, R.; Müller, S.; Schöffski, P.; Brose, M.; Shah, M.; Licitra, L.; Krajewska, J.; Kreissl, M.C.; Niederle, B.; et al. Overall Survival Analysis of EXAM, a Phase III Trial of Cabozantinib in Patients with Radiographically Progressive Medullary Thyroid Carcinoma. Ann. Oncol. 2017, 28, 2813–2819. [Google Scholar] [CrossRef]
- Cabanillas, M.E.; Hu, M.I.; Durand, J.-B.; Busaidy, N.L. Challenges Associated with Tyrosine Kinase Inhibitor Therapy for Metastatic Thyroid Cancer. J. Thyroid Res. 2011, 2011, 985780. [Google Scholar] [CrossRef] [Green Version]
- Paschke, L.; Lincke, T.; Mühlberg, K.S.; Jabs, W.J.; Lindner, T.H.; Paschke, R. Anti VEGF-TKI Treatment and New Renal Adverse Events Not Reported in Phase III Trials. Eur. Thyroid J. 2018, 7, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Haddad, R.I.; Schlumberger, M.; Wirth, L.J.; Sherman, E.J.; Shah, M.H.; Robinson, B.; Dutcus, C.E.; Teng, A.; Gianoukakis, A.G.; Sherman, S.I. Incidence and Timing of Common Adverse Events in Lenvatinib-Treated Patients from the SELECT Trial and Their Association with Survival Outcomes. Endocrine 2017, 56, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Brose, M.S.; Worden, F.P.; Newbold, K.L.; Guo, M.; Hurria, A. Effect of Age on the Efficacy and Safety of Lenvatinib in Radioiodine-Refractory Differentiated Thyroid Cancer in the Phase III SELECT Trial. J. Clin. Oncol. 2017, 35, 2692–2699. [Google Scholar] [CrossRef]
- Wirth, L.J.; Tahara, M.; Robinson, B.; Francis, S.; Brose, M.S.; Habra, M.A.; Newbold, K.; Kiyota, N.; Dutcus, C.E.; Mathias, E.; et al. Treatment-Emergent Hypertension and Efficacy in the Phase 3 Study of (E7080) Lenvatinib in Differentiated Cancer of the Thyroid (SELECT). Cancer 2018, 124, 2365–2372. [Google Scholar] [CrossRef] [PubMed]
- Locati, L.D.; Piovesan, A.; Durante, C.; Bregni, M.; Castagna, M.G.; Zovato, S.; Giusti, M.; Ibrahim, T.; Puxeddu, E.; Fedele, G.; et al. Real-World Efficacy and Safety of Lenvatinib: Data from a Compassionate Use in the Treatment of Radioactive Iodine-Refractory Differentiated Thyroid Cancer Patients in Italy. Eur. J. Cancer 2019, 118, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Tsang, V.H.M. Management of Treatment-Related Toxicities in Advanced Medullary Thyroid Cancer. Curr. Opin. Oncol. 2019, 31, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Lamartina, L.; Ippolito, S.; Danis, M.; Bidault, F.; Borget, I.; Berdelou, A.; Al Ghuzlan, A.; Hartl, D.; Blanchard, P.; Terroir, M.; et al. Antiangiogenic Tyrosine Kinase Inhibitors: Occurrence and Risk Factors of Hemoptysis in Refractory Thyroid Cancer. J. Clin. Endocrinol. Metab. 2016, 101, 2733–2741. [Google Scholar] [CrossRef] [Green Version]
- Hui, E.P.; Ma, B.B.Y.; King, A.D.; Mo, F.; Chan, S.L.; Kam, M.K.M.; Loong, H.H.; Ahuja, A.T.; Zee, B.C.Y.; Chan, A.T.C. Hemorrhagic Complications in a Phase II Study of Sunitinib in Patients of Nasopharyngeal Carcinoma Who Has Previously Received High-Dose Radiation. Ann. Oncol. 2011, 22, 1280–1287. [Google Scholar] [CrossRef]
- Onoda, N.; Tokumoto, M.; Noda, S.; Ohira, G.; Kashiwagi, S.; Hirakawa, K. A Case of Recurrent Anaplastic Thyroid Cancer Treated by Lenvatinib after Successful Long-Term Multimodal Therapy. Nihon Rinsho Geka Gakkai Zasshi (J. Jpn. Surg. Assoc.) 2016, 77, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Hay, I.D.; Lee, R.A.; Davidge-Pitts, C.; Reading, C.C.; Charboneau, J.W. Long-Term Outcome of Ultrasound-Guided Percutaneous Ethanol Ablation of Selected “Recurrent” Neck Nodal Metastases in 25 Patients with TNM Stages III or IVA Papillary Thyroid Carcinoma Previously Treated by Surgery and 131I Therapy. Surgery 2013, 154, 1448–1454, discussion 1454–1455. [Google Scholar] [CrossRef]
- Durante, C.; Haddy, N.; Baudin, E.; Leboulleux, S.; Hartl, D.; Travagli, J.P.; Caillou, B.; Ricard, M.; Lumbroso, J.D.; De Vathaire, F.; et al. Long-Term Outcome of 444 Patients with Distant Metastases from Papillary and Follicular Thyroid Carcinoma: Benefits and Limits of Radioiodine Therapy. J. Clin. Endocrinol. Metab. 2006, 91, 2892–2899. [Google Scholar] [CrossRef]
- Motzer, R.J.; Jonasch, E.; Boyle, S.; Carlo, M.I.; Manley, B.; Agarwal, N.; Alva, A.; Beckermann, K.; Choueiri, T.K.; Costello, B.A.; et al. NCCN Guidelines Insights: Thyroid Carcinoma, Version 1.2021. J. Natl. Compr. Canc. Netw. 2021, 19. [Google Scholar] [CrossRef]
- Ando, Y.; Elisei, R.; Schlumberger, M. Subgroup Analysis according to Differentiated Thyroid Cancer Histology in the Phase 3 (SELECT) Trial of Lenvatinib; Karger: Basel, Switzerland, 2015; pp. 1–5. [Google Scholar]
- Tahara, M.; Kiyota, N.; Hoff, A.O.; Badiu, C.; Owonikoko, T.K.; Dutcus, C.E.; Suzuki, T.; Ren, M.; Wirth, L.J. Impact of Lung Metastases on Overall Survival in the Phase 3 SELECT Study of Lenvatinib in Patients with Radioiodine-Refractory Differentiated Thyroid Cancer. Eur. J. Cancer 2021, 147, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Brose, M.S.; Smit, J.; Lin, C.-C.; Pitoia, F.; Fellous, M.; DeSanctis, Y.; Schlumberger, M.; Tori, M.; Sugitani, I. Timing of Multikinase Inhibitor Initiation in Differentiated Thyroid Cancer. Endocr. Relat. Cancer 2017, 24, 237–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smit, J.W.A.; Brose, M.S.; Pitoia, F.; Lin, C.-C.; Sugitani, I.; Alevizaki, M.; Godbert, Y.; Aller, J.; Peeters, R.P.; Pazaitou-Panayiotou, K.; et al. Interim Baseline Characteristics from RIFTOS MKI, a Global Non-Interventional Study Assessing the Use of Multikinase Inhibitors (MKIs) in the Treatment of Patients with Asymptomatic Radioactive Iodine-Refractory Differentiated Thyroid Cancer (RAI-R DTC): A European Subgroup Analysis. Ann. Oncol. 2017, 28, v155. [Google Scholar]
- Smit, J.; Brose, M.; Lin, C.-C.; Fellous, M.; Pitoia, F.; Sugitani, I.; Schlumberger, M. Baseline patient characteristics from riftos: A global noninterventional study evaluating the use of multikinase inhibitors for treatment of asymptomatic differentiated thyroid cancer refractory to radioactive iodine (RIFTOS MKI): P3-06-07. Eur. Thyroid J. 2016, 5, 163. [Google Scholar]
- Brose, M.S.; Smit, J.W.A.; Lin, C.-C.; Tori, M.; Bowles, D.W.; Worden, F.; Shen, D.H.-Y.; Huang, S.-M.; Alevizaki, M.; Peeters, R.P.; et al. 1918P Final Analysis of RIFTOS MKI, a Global, Non-Interventional Study Assessing the Use of Multikinase Inhibitors (MKIs) for the Treatment of Patients with Asymptomatic Radioactive Iodine-Refractory Differentiated Thyroid Cancer (RAI-R DTC). Ann. Oncol. 2020, 31, S1087. [Google Scholar] [CrossRef]
- Sueta, D.; Suyama, K.; Sueta, A.; Tabata, N.; Yamashita, T.; Tomiguchi, M.; Takeshita, T.; Yamamoto-Ibusuki, M.; Yamamoto, E.; Izumiya, Y.; et al. Lenvatinib, an Oral Multi-Kinases Inhibitor, -Associated Hypertension: Potential Role of Vascular Endothelial Dysfunction. Atherosclerosis 2017, 260, 116–120. [Google Scholar] [CrossRef]
- Pharmaceutical Interview Forms_Lenvatinib_ver.11. Available online: https://image.packageinsert.jp/pdf.php?mode=1&yjcode=4291039M1020 (accessed on 17 July 2021).
- Yu, S.-T.; Ge, J.-N.; Luo, J.-Y.; Wei, Z.-G.; Sun, B.-H.; Lei, S.-T. Treatment-Related Adverse Effects with TKIs in Patients with Advanced or Radioiodine Refractory Differentiated Thyroid Carcinoma: A Systematic Review and Meta-Analysis. Cancer Manag. Res. 2019, 11, 1525–1532. [Google Scholar] [CrossRef]
- Bamias, A.; Manios, E.; Karadimou, A.; Michas, F.; Lainakis, G.; Constantinidis, C.; Deliveliotis, C.; Zakopoulos, N.; Dimopoulos, M.A. The Use of 24-H Ambulatory Blood Pressure Monitoring (ABPM) during the First Cycle of Sunitinib Improves the Diagnostic Accuracy and Management of Hypertension in Patients with Advanced Renal Cancer. Eur. J. Cancer 2011, 47, 1660–1668. [Google Scholar] [CrossRef] [PubMed]
- Maitland, M.L.; Bakris, G.L.; Black, H.R.; Chen, H.X.; Durand, J.-B.; Elliott, W.J.; Ivy, S.P.; Leier, C.V.; Lindenfeld, J.; Liu, G.; et al. Initial Assessment, Surveillance, and Management of Blood Pressure in Patients Receiving Vascular Endothelial Growth Factor Signaling Pathway Inhibitors. J. Natl. Cancer Inst. 2010, 102, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Ancker, O.V.; Wehland, M.; Bauer, J.; Infanger, M.; Grimm, D. The Adverse Effect of Hypertension in the Treatment of Thyroid Cancer with Multi-Kinase Inhibitors. Int. J. Mol. Sci. 2017, 18, 625. [Google Scholar] [CrossRef] [Green Version]
- Zamorano, J.L.; Lancellotti, P.; Rodriguez Muñoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.H.; Lyon, A.R.; et al. 2016 ESC Position Paper on Cancer Treatments and Cardiovascular Toxicity Developed under the Auspices of the ESC Committee for Practice Guidelines: The Task Force for Cancer Treatments and Cardiovascular Toxicity of the European Society of Cardiology (ESC). Eur. Heart J. 2016, 37, 2768–2801. [Google Scholar] [CrossRef]
- James, P.A.; Oparil, S.; Carter, B.L.; Cushman, W.C.; Dennison-Himmelfarb, C.; Handler, J.; Lackland, D.T.; LeFevre, M.L.; MacKenzie, T.D.; Ogedegbe, O.; et al. 2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults. JAMA 2014, 311, 507. [Google Scholar] [CrossRef] [Green Version]
- Uy, A.L.; Simper, N.B.; Champeaux, A.L.; Perkins, R.M. Progressive Bevacizumab-Associated Renal Thrombotic Microangiopathy. Clin. Kidney J. 2009, 2, 36–39. [Google Scholar] [CrossRef] [Green Version]
- Bollee, G.; Patey, N.; Cazajous, G.; Robert, C.; Goujon, J.-M.; Fakhouri, F.; Bruneval, P.; Noel, L.-H.; Knebelmann, B. Thrombotic Microangiopathy Secondary to VEGF Pathway Inhibition by Sunitinib. Nephrol. Dial. Transplant. 2008, 24, 682–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eremina, V.; Jefferson, J.A.; Kowalewska, J.; Hochster, H.; Haas, M.; Weisstuch, J.; Richardson, C.; Kopp, J.B.; Kabir, M.G.; Backx, P.H.; et al. VEGF Inhibition and Renal Thrombotic Microangiopathy. N. Engl. J. Med. 2008, 358, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Izzedine, H.; Rixe, O.; Billemont, B.; Baumelou, A.; Deray, G. Angiogenesis Inhibitor Therapies: Focus on Kidney Toxicity and Hypertension. Am. J. Kidney Dis. 2007, 50, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-F.; Wang, T.; Liu, L.-H.; Guo, H.-Q. Risks of Proteinuria Associated with Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors in Cancer Patients: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e90135. [Google Scholar]
- Iwasaki, H.; Yamazaki, H.; Takasaki, H.; Suganuma, N.; Sakai, R.; Nakayama, H.; Toda, S.; Masudo, K. Renal Dysfunction in Patients with Radioactive Iodine-Refractory Thyroid Cancer Treated with Tyrosine Kinase Inhibitors: A Retrospective Study. Medicine 2019, 98, e17588. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S.; Kiyota, N.; Yamazaki, T.; Chayahara, N. Phase II Study of Lenvatinib in Patients with Differentiated, Medullary, and Anaplastic Thyroid Cancer: Final Analysis Results. J. Clin. Oncol. 2016, 35, 6088. [Google Scholar] [CrossRef]
- Masaki, C.; Sugino, K.; Kobayashi, S.; Akaishi, J.; Hames, K.Y.; Tomoda, C.; Suzuki, A.; Matsuzu, K.; Uruno, T.; Ohkuwa, K.; et al. Urinalysis by Combination of the Dipstick Test and Urine Protein–creatinine Ratio (UPCR) Assessment Can Prevent Unnecessary Lenvatinib Interruption in Patients with Thyroid Cancer. Int. J. Clin. Oncol. 2020, 25, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Izzedine, H.; Massard, C.; Spano, J.P.; Goldwasser, F.; Khayat, D.; Soria, J.C. VEGF Signalling Inhibition-Induced Proteinuria: Mechanisms, Significance and Management. Eur. J. Cancer 2010, 46, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S.; Kiyota, N.; Tahara, M. Optimal Use of Lenvatinib in the Treatment of Advanced Thyroid Cancer. Cancers Head Neck 2017, 2, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsa, V.; Heilbrun, L.; Smith, D.; Sethi, A.; Vaishampayan, U. Safety and Efficacy of Sorafenib Therapy in Patients with Metastatic Kidney Cancer with Impaired Renal Function. Clin. Genitourin. Cancer 2009, 7, E10–E15. [Google Scholar] [CrossRef] [Green Version]
- Goto, H.; Kiyota, N.; Otsuki, N.; Imamura, Y.; Chayahara, N.; Suto, H.; Nagatani, Y.; Toyoda, M.; Mukohara, T.; Nibu, K.-I.; et al. Successful Treatment Switch from Lenvatinib to Sorafenib in a Patient with Radioactive Iodine-Refractory Differentiated Thyroid Cancer Intolerant to Lenvatinib due to Severe Proteinuria. Auris Nasus Larynx 2018, 45, 1249–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, B.G.; Paz-Ares, L.; Krebs, A.; Vasselli, J.; Haddad, R. Vandetanib (100 Mg) in Patients with Locally Advanced or Metastatic Hereditary Medullary Thyroid Cancer. J. Clin. Endocrinol. Metab. 2010, 95, 2664–2671. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, T.S.; Wen, P.Y.; Gilbert, M.R.; Schiff, D. Management of Treatment-Associated Toxicites of Anti-Angiogenic Therapy in Patients with Brain Tumors. Neuro-Oncology 2012, 14, 1203–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machiels, J.-P.H.; Henry, S.; Zanetta, S.; Kaminsky, M.-C.; Michoux, N.; Rommel, D.; Schmitz, S.; Bompas, E.; Dillies, A.-F.; Faivre, S.; et al. Phase II Study of Sunitinib in Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck: GORTEC 2006-01. J. Clin. Oncol. 2010, 28, 21–28. [Google Scholar] [CrossRef]
- Eisai. Data on File; ClinicalTrials.gov Identifier: NCT02430714; Eisai Co Ltd.: Tokyo, Japan, 2015. [Google Scholar]
- Prescribing Information for LENVIMA (Lenvatinib). Available online: http://www.lenvima.com/pdfs/prescribing-information.pdf (accessed on 10 July 2021).
- Cabanillas, M.E.; Takahashi, S. Managing the Adverse Events Associated with Lenvatinib Therapy in Radioiodine-Refractory Differentiated Thyroid Cancer. Head Neck Tumors (HNT) 2020, 9, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Spigel, D.R.; Hainsworth, J.D.; Yardley, D.A.; Raefsky, E.; Patton, J.; Peacock, N.; Farley, C.; Burris, H.A.; Anthony Greco, F. Tracheoesophageal Fistula Formation in Patients with Lung Cancer Treated with Chemoradiation and Bevacizumab. J. Clin. Oncol. 2010, 28, 43–48. [Google Scholar] [CrossRef]
- Blevins, D.P.; Dadu, R.; Hu, M.; Baik, C.; Balachandran, D.; Ross, W.; Gunn, B.; Cabanillas, M.E. Aerodigestive Fistula Formation as a Rare Side Effect of Antiangiogenic Tyrosine Kinase Inhibitor Therapy for Thyroid Cancer. Thyroid 2014, 24, 918–922. [Google Scholar] [CrossRef] [Green Version]
- Resteghini, C.; Cavalieri, S.; Galbiati, D.; Granata, R.; Alfieri, S.; Bergamini, C.; Bossi, P.; Licitra, L.; Locati, L.D. Management of Tyrosine Kinase Inhibitors (TKI) Side Effects in Differentiated and Medullary Thyroid Cancer Patients. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 349–361. [Google Scholar] [CrossRef]
- Price, D.L.; Wong, R.J.; Randolph, G.W. Invasive Thyroid Cancer: Management of the Trachea and Esophagus. Otolaryngol. Clin. N. Am. 2008, 41, 1155–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaman, L. Management of Esophageal Perforation in Adults. Gastroenterol. Res. 2011, 3, 235. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, H.; Toda, S.; Murayama, D.; Kato, S.; Matsui, A. Relationship between Adverse Events Associated with Lenvatinib Treatment for Thyroid Cancer and Patient Prognosis. Mol. Clin. Oncol. 2021, 14, 28. [Google Scholar] [CrossRef]
- Verheul, H.M.W.; Pinedo, H.M. Possible Molecular Mechanisms Involved in the Toxicity of Angiogenesis Inhibition. Nat. Rev. Cancer 2007, 7, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Walraven, M.; Witteveen, P.O.; Lolkema, M.P.J.; van Hillegersberg, R.; Voest, E.E.; Verheul, H.M.W. Antiangiogenic Tyrosine Kinase Inhibition Related Gastrointestinal Perforations: A Case Report and Literature Review. Angiogenesis 2011, 14, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Kamba, T.; McDonald, D.M. Mechanisms of Adverse Effects of Anti-VEGF Therapy for Cancer. Br. J. Cancer 2007, 96, 1788–1795. [Google Scholar] [CrossRef]
- Date, E.; Okamoto, K.; Fumita, S.; Kaneda, H. Gastrointestinal Perforation Related to Lenvatinib, an Anti-Angiogenic Inhibitor That Targets Multiple Receptor Tyrosine Kinases, in a Patient with Metastatic Thyroid Cancer. Investig. New Drugs 2018, 36, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.L.; Sood, A.K.; Coleman, R.L. Collateral Damage: Toxic Effects of Targeted Antiangiogenic Therapies in Ovarian Cancer. Lancet Oncol. 2010, 11, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.-X.; Sun, Y.-J.; Tang, L.-N.; Shen, Z.; Yao, Y. Risk of Gastrointestinal Perforation in Cancer Patients Treated with Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors: A Systematic Review and Meta-Analysis. Crit. Rev. Oncol. /Hematol. 2014, 89, 394–403. [Google Scholar] [CrossRef]
- Chen, H.X.; Cleck, J.N. Adverse Effects of Anticancer Agents That Target the VEGF Pathway. Nat. Rev. Clin. Oncol. 2009, 6, 465–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitamura, M.; Hayashi, T.; Suzuki, C.; Hirano, S.; Tateya, I.; Kishimoto, Y.; Omori, K. Successful Recovery from a Subclavicular Ulcer Caused by Lenvatinib for Thyroid Cancer: A Case Report. World J. Surg. Oncol. 2017, 15, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Harshman, L.C.; James Yu, R.; Allen, G.I.; Srinivas, S.; Gill, H.S.; Chung, B.I. Surgical Outcomes and Complications Associated with Presurgical Tyrosine Kinase Inhibition for Advanced Renal Cell Carcinoma (RCC). Urol. Oncol. Semin. Orig. Investig. 2013, 31, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Feyerabend, S.; Schilling, D.; Wicke, C.; Stenzl, A. Toxic Dermatolysis, Tissue Necrosis and Impaired Wound Healing due to Sunitinib Treatment Leading to Forefoot Amputation. Urol. Int. 2009, 82, 246–248. [Google Scholar] [CrossRef]
- Chapin, B.F.; Delacroix, S.E., Jr.; Culp, S.H.; Nogueras Gonzalez, G.M.; Tannir, N.M.; Jonasch, E.; Tamboli, P.; Wood, C.G. Safety of Presurgical Targeted Therapy in the Setting of Metastatic Renal Cell Carcinoma. Eur. Urol. 2011, 60, 964–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonasch, E.; Wood, C.G.; Matin, S.F.; Tu, S.-M.; Pagliaro, L.C.; Corn, P.G.; Aparicio, A.; Tamboli, P.; Millikan, R.E.; Wang, X.; et al. Phase II Presurgical Feasibility Study of Bevacizumab in Untreated Patients with Metastatic Renal Cell Carcinoma. J. Clin. Oncol. 2009, 27, 4076–4081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powles, T.; Kayani, I.; Blank, C.; Chowdhury, S.; Horenblas, S.; Peters, J.; Shamash, J.; Sarwar, N.; Boletti, K.; Sadev, A.; et al. The Safety and Efficacy of Sunitinib before Planned Nephrectomy in Metastatic Clear Cell Renal Cancer. Ann. Oncol. 2011, 22, 1041–1047. [Google Scholar] [CrossRef]
- Silberstein, J.L.; Millard, F.; Mehrazin, R.; Kopp, R.; Bazzi, W.; DiBlasio, C.J.; Patterson, A.L.; Downs, T.M.; Yunus, F.; Kane, C.J.; et al. Feasibility and Efficacy of Neoadjuvant Sunitinib before Nephron-Sparing Surgery. BJU Int. 2010, 106, 1270–1276. [Google Scholar] [CrossRef]
- Nunes, Q.M.; Li, Y.; Sun, C.; Kinnunen, T.K.; Fernig, D.G. Fibroblast Growth Factors as Tissue Repair and Regeneration Therapeutics. PeerJ 2016, 4, e1535. [Google Scholar] [CrossRef] [Green Version]
- Toda, S.; Iwasaki, H.; Murayama, D.; Nakayama, H.; Suganuma, N.; Masudo, K. Invasive Procedures in Patients Undergoing Treatment with Lenvatinib for Thyroid Cancer. Mol. Clin. Oncol. 2021, 14, 81. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Sugino, K.; Matsuzu, K.; Masaki, C.; Akaishi, J.; Hames, K.; Tomoda, C.; Suzuki, A.; Uruno, T.; Ohkuwa, K.; et al. Rapid Disease Progression after Discontinuation of Lenvatinib in Thyroid Cancer. Medicine 2020, 99, e19408. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, M.R.; Davis, R.; Norberg, S.M.; O’Brien, S.; Sennino, B.; Nakahara, T.; Yao, V.J.; Inai, T.; Brooks, P.; Freimark, B.; et al. Rapid Vascular Regrowth in Tumors after Reversal of VEGF Inhibition. J. Clin. Investig. 2006, 116, 2610–2621. [Google Scholar] [CrossRef] [Green Version]
- Hasinoff, B.B. The Cardiotoxicity and Myocyte Damage Caused by Small Molecule Anticancer Tyrosine Kinase Inhibitors Is Correlated with Lack of Target Specificity. Toxicol. Appl. Pharmacol. 2010, 244, 190–195. [Google Scholar] [CrossRef]
- Shah, R. Cardiovascular Safety of Tyrosine Kinase Inhibitors: Putting Their “QT-Phobia” in Perspective. ADMET DMPK 2016, 4, 212–231. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Ping, L.; Yan, H.; Yang, X.; He, Q.; Xu, Z.; Luo, P. Cardiovascular Toxicity Induced by Anti-VEGF/VEGFR Agents: A Special Focus on Definitions, Diagnoses, Mechanisms and Management. Expert Opin. Drug Metab. Toxicol. 2020, 16, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Tocchetti, C.G.; Gallucci, G.; Coppola, C.; Piscopo, G.; Cipresso, C.; Maurea, C.; Giudice, A.; Iaffaioli, R.V.; Arra, C.; Maurea, N. The Emerging Issue of Cardiac Dysfunction Induced by Antineoplastic Angiogenesis Inhibitors. Eur. J. Heart Fail. 2013, 15, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Van Marcke, C.; Ledoux, B.; Petit, B.; Seront, E. Rapid and Fatal Acute Heart Failure Induced by Pazopanib. BMJ Case Rep. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Eisai. Eisai Announces Publication of Post Hoc Analysis Data of Lenvima® (Lenvatinib) from Phase 3 Select Trial in Certain Patients with Differentiated Thyroid Cancer in the European Journal of Cancer. Available online: https://eisai.mediaroom.com/2021-04-29-Eisai-Announces-Publication-of-Post-Hoc-Analysis-Data-of-LENVIMA-R-lenvatinib-from-Phase-3-SELECT-Trial-in-Certain-Patients-with-Differentiated-Thyroid-Cancer-in-the-European-Journal-of-Cancer (accessed on 16 August 2021).
- Plana, J.C.; Galderisi, M.; Barac, A.; Ewer, M.S.; Ky, B.; Scherrer-Crosbie, M.; Ganame, J.; Sebag, I.A.; Agler, D.A.; Badano, L.P.; et al. Expert Consensus for Multimodality Imaging Evaluation of Adult Patients during and after Cancer Therapy: A Report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 1063–1093. [Google Scholar] [CrossRef] [PubMed]
- Lenihan, D.J.; Kowey, P.R. Overview and Management of Cardiac Adverse Events Associated with Tyrosine Kinase Inhibitors. Oncologist 2013, 18, 900–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouhayar, E.; Durand, J.-B.; Cortes, J. Cardiovascular Toxicity of Tyrosine Kinase Inhibitors. Expert Opin. Drug Saf. 2013, 12, 687–696. [Google Scholar] [CrossRef]
- Zarbin, M.A. Anti-VEGF Agents and the Risk of Arteriothrombotic Events. Asia Pac. J. Ophthalmol. 2018, 7, 63–67. [Google Scholar]
- Spivak, J.L. Polycythemia Vera: Myths, Mechanisms, and Management. Blood 2002, 100, 4272–4290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, B.Y.Y.; Wei, K.; Rudge, J.S.; Hoffman, J.; Holash, J.; Park, S.-K.; Yuan, J.; Hefner, C.; Chartier, C.; Lee, J.-S.; et al. VEGF Modulates Erythropoiesis through Regulation of Adult Hepatic Erythropoietin Synthesis. Nat. Med. 2006, 12, 793–800. [Google Scholar] [CrossRef]
- Bai, Y.; Li, J.-Y.; Li, J.; Zhang, B.; Liu, Y.-H.; Zhang, B.-Y.; Jing, J. Risk of Venous and Arterial Thromboembolic Events Associated with Tyrosine Kinase Inhibitors in Advanced Thyroid Cancer: A Meta-Analysis and Systematic Review. Oncotarget 2019, 10, 4205–4212. [Google Scholar] [CrossRef] [PubMed]
- Strevel, E.L.; Ing, D.J.; Siu, L.L. Molecularly Targeted Oncology Therapeutics and Prolongation of the QT Interval. J. Clin. Oncol. 2007, 25, 3362–3371. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Wu, C.-Y.C.; Jiang, Y.-P.; Ballou, L.M.; Clausen, C.; Cohen, I.S.; Lin, R.Z. Suppression of Phosphoinositide 3-Kinase Signaling and Alteration of Multiple Ion Currents in Drug-Induced Long QT Syndrome. Sci. Transl. Med. 2012, 4, 131ra50. [Google Scholar] [CrossRef] [Green Version]
- Shumaker, R.C.; Zhou, M.; Ren, M.; Fan, J.; Martinez, G.; Aluri, J.; Darpo, B. Effect of Lenvatinib (E7080) on the QTc Interval: Results from a Thorough QT Study in Healthy Volunteers. Cancer Chemother. Pharmacol. 2014, 73, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Ghatalia, P.; Je, Y.; Kaymakcalan, M.D.; Sonpavde, G.; Choueiri, T.K. QTc Interval Prolongation with Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors. Br. J. Cancer 2015, 112, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Grande, E.; Kreissl, M.C.; Filetti, S.; Newbold, K.; Reinisch, W.; Robert, C.; Schlumberger, M.; Tolstrup, L.K.; Zamorano, J.L.; Capdevila, J. Vandetanib in Advanced Medullary Thyroid Cancer: Review of Adverse Event Management Strategies. Adv. Ther. 2013, 30, 945–966. [Google Scholar] [CrossRef] [Green Version]
- Abu Rmilah, A.A.; Lin, G.; Begna, K.H.; Friedman, P.A.; Herrmann, J. Risk of QTc Prolongation among Cancer Patients Treated with Tyrosine Kinase Inhibitors. Int. J. Cancer 2020, 147, 3160–3167. [Google Scholar] [CrossRef]
- Yang, J.-G.; Wang, L.-L.; Ma, D.-C. Effects of Vascular Endothelial Growth Factors and Their Receptors on Megakaryocytes and Platelets and Related Diseases. Br. J. Haematol. 2018, 180, 321–334. [Google Scholar] [CrossRef]
- Butt, M.I.; Bakhsh, A.M.K.; Nadri, Q.J. Lenvatinib-Induced Multiorgan Adverse Events in Hurthle Cell Thyroid Cancer: A Case Report. World J. Clin. Oncol. 2021, 12, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.Y.; Chan, G.C.F.; Qiao, L.; Lian, Q.; Meng, F.Y.; Luo, X.Q.; Khachigian, L.M.; Ma, M.; Deng, R.; Chen, J.L.; et al. Platelet-Derived Growth Factor Enhances Platelet Recovery in a Murine Model of Radiation-Induced Thrombocytopenia and Reduces Apoptosis in Megakaryocytes via Its Receptors and the PI3-k/Akt Pathway. Haematologica 2010, 95, 1745–1753. [Google Scholar] [CrossRef] [Green Version]
- Avraham, H.; Price, D.J. Regulation of Megakaryocytopoiesis and Platelet Production by Tyrosine Kinases and Tyrosine Phosphatases. Methods 1999, 17, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Schutz, F.A.B.; Je, Y.; Choueiri, T.K. Hematologic Toxicities in Cancer Patients Treated with the Multi-Tyrosine Kinase Sorafenib: A Meta-Analysis of Clinical Trials. Crit. Rev. Oncol./Hematol. 2011, 80, 291–300. [Google Scholar] [CrossRef]
- Zhu, C.; Ma, X.; Hu, Y.; Guo, L.; Chen, B.; Shen, K.; Xiao, Y. Safety and Efficacy Profile of Lenvatinib in Cancer Therapy: A Systematic Review and Meta-Analysis. Oncotarget 2016, 7, 44545–44557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Nicum, S.; Reichardt, P.; Croitoru, K.; Illek, B.; Schmidinger, M.; Rogers, C.; Whalen, C.; Jayson, G.C. Assessment and Management of Diarrhea Following VEGF Receptor TKI Treatment in Patients with Ovarian Cancer. Gynecol. Oncol. 2018, 150, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Schmidinger, M. Understanding and Managing Toxicities of Vascular Endothelial Growth Factor (VEGF) Inhibitors. EJC Suppl. 2013, 11, 172–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hescot, S.; Vignaux, O.; Goldwasser, F. Pancreatic Atrophy—A New Late Toxic Effect of Sorafenib. N. Eng. J. Med. 2013, 369, 1475–1476. [Google Scholar] [CrossRef]
- Ahmadieh, H.; Salti, I. Tyrosine Kinase Inhibitors Induced Thyroid Dysfunction: A Review of Its Incidence, Pathophysiology, Clinical Relevance, and Treatment. BioMed Res. Int. 2013, 2013, 725410. [Google Scholar] [CrossRef] [Green Version]
- Sanda, M.; Tamai, H.; Deguchi, H.; Mori, Y.; Moribata, K.; Shingaki, N.; Ueda, K.; Inoue, I.; Maekita, T.; Iguchi, M.; et al. Acalculous Cholecystitis in a Patient with Hepatocellular Carcinoma on Sorafenib. ISRN Gastroenterol. 2011, 2011, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aihara, Y.; Yoshiji, H.; Yamazaki, M.; Ikenaka, Y.; Noguchi, R.; Morioka, C.; Kaji, K.; Tastumi, H.; Nakanishi, K.; Nakamura, M.; et al. A Case of Severe Acalculous Cholecystitis Associated with Sorafenib Treatment for Advanced Hepatocellular Carcinoma. World J. Gastrointest. Oncol. 2012, 4, 115–118. [Google Scholar] [CrossRef]
- De Lopes, G.L.; Lima, C.M.R. Emphysematous Cholecystitis in a Patient with Gastrointestinal Stromal Tumor Treated with Sunitinib. Pharmacotherapy 2007, 27, 775–777. [Google Scholar] [CrossRef]
- Gomez-Abuin, G.; Karam, A.A.; Mezzadri, N.A.; Bas, C.A. Acalculous Cholecystitis in a Patient with Metastatic Renal Cell Carcinoma Treated with Sunitinib. Clin. Genitourin. Cancer 2009, 7, 62–63. [Google Scholar] [CrossRef]
- Da Fonseca, L.G.; Barroso-Sousa, R.; Sabbaga, J.; Hoff, P.M. Acute Acalculous Cholecystitis in a Patient with Metastatic Renal Cell Carcinoma Treated with Sunitinib. Clin. Pract. 2014, 4, 24–26. [Google Scholar] [CrossRef] [Green Version]
- Nakano, K.; Suzuki, K.; Morita, T. Life-Threatening Acute Acalculous Cholecystitis in a Patient with Renal Cell Carcinoma Treated by Sunitinib: A Case Report. J. Med. Case Rep. 2012, 6, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pharmaceuticals and Medical Devices Agency of Japan. Summary of Investigation Results—Lenvatinib Mesylate. Available online: http://www.pmda.go.jp/files/000222160.pdf (accessed on 10 July 2021).
- Nervo, A.; Ragni, A.; Gallo, M.; Ferraris, A.; Fonio, P.; Piovesan, A.; Arvat, E. Symptomatic Biliary Disorders During Lenvatinib Treatment for Thyroid Cancer: An Underestimated Problem. Thyroid 2020, 30, 229–236. [Google Scholar] [CrossRef]
- Tahara, M.; Brose, M.S.; Wirth, L.J.; Suzuki, T.; Miyagishi, H.; Fujino, K.; Dutcus, C.E.; Gianoukakis, A. Impact of Dose Interruption on the Efficacy of Lenvatinib in a Phase 3 Study in Patients with Radioiodine-Refractory Differentiated Thyroid Cancer. Eur. J. Cancer 2019, 106, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Matsuyama, C.; Ueda, Y.; Suzuki, S.; Fujisawa, T.; Ito, K.; Enokida, T.; Okano, S.; Tahara, M. Planned Drug Holidays during Treatment with Lenvatinib for Radioiodine-Refractory Differentiated Thyroid Cancer (RR-DTC): A Retrospective Study. Ann. Oncol. 2021, 32, S300. [Google Scholar] [CrossRef]
- Tahara, M.; Takami, H.; Ito, Y.; Okamoto, T.; Sugitani, I.; Sugino, K.; Takahashi, S.; Takeyama, H.; Tsutsui, H.; Hara, H.; et al. Planned Drug Holiday in a Cohort Study Exploring the Effect of Lenvatinib on Differentiated Thyroid Cancer. J. Clin. Oncol. 2021, 39, 6070. [Google Scholar] [CrossRef]
- Shumaker, R.; Aluri, J.; Fan, J.; Martinez, G.; Pentikis, H.; Ren, M. Influence of Hepatic Impairment on Lenvatinib Pharmacokinetics Following Single-Dose Oral Administration. J. Clin. Pharmacol. 2015, 55, 317–327. [Google Scholar] [CrossRef]
- Brose, M.S.; Panaseykin, Y.; Konda, B.; de la Fouchardiere, C.; Hughes, B.G.M.; Gianoukakis, A.G.; Park, Y.J.; Romanov, I.; Krzyzanowska, M.K.; Binder, T.; et al. 426P A Multicenter, Randomized, Double-Blind, Phase II Study of Lenvatinib (LEN) in Patients (pts) with Radioiodine-Refractory Differentiated Thyroid Cancer (RR-DTC) to Evaluate the Safety and Efficacy of a Daily Oral Starting Dose of 18 Mg vs 24 Mg. Ann. Oncol. 2020, 31, S1409. [Google Scholar] [CrossRef]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; Cabanillas, M.E.; Urbanowitz, G.; et al. Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. J. Clin. Oncol. 2018, 36, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.H.; Wei, L.; Wirth, L.J.; Daniels, G.A.; De Souza, J.A.; Timmers, C.D.; Sexton, J.L.; Beshara, M.; Nichols, D.; Snyder, N.; et al. Results of Randomized Phase II Trial of Dabrafenib versus Dabrafenib plus Trametinib in BRAF-Mutated Papillary Thyroid Carcinoma. J. Clin. Orthod. 2017, 35, 6022. [Google Scholar] [CrossRef]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in Patients with Advanced or Metastatic NTRK Fusion-Positive Solid Tumours: Integrated Analysis of Three Phase 1–2 Trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboulleux, S.; et al. Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N. Engl. J. Med. 2020, 383, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Hu, M.I.; Wirth, L.J.; Schuler, M.; Mansfield, A.S.; Curigliano, G.; Brose, M.S.; Zhu, V.W.; Leboulleux, S.; Bowles, D.W.; et al. Pralsetinib for Patients with Advanced or Metastatic RET-Altered Thyroid Cancer (ARROW): A Multi-Cohort, Open-Label, Registrational, Phase 1/2 Study. Lancet Diabetes Endocrinol. 2021, 9, 491–501. [Google Scholar] [CrossRef]
Drug (Study) | Type of Cancer | No. of Patients | % of Selected Adverse Events {≥Grade 3} (Placebo) | |||||
Hypertension | Proteinuria | Renal Impairment/Failure | Hemorrhage | Fistula Formation | Wound Complication | |||
Sorafenib [1,2] (DECISION) | DTC | 419 | 40.6% {9.7%} (12.4% {2.4%}) | NR | NR | NR | NR | NR |
Lenvatinib [3,4] (SELECT) | DTC | 392 | 67.8% {42%} (9.2% {2.3%}) | 31.0% {10.0%} (1.5% {0%}) | 4.2% (1.9%) | NR (1 case of Gr5 probably treatment-related hemorrhagic stroke) | GI fistula: 1.5% {0.8%} | Wound dehiscence: NR {0.4%} |
Vandetanib [5,6] (ZETA) | MTC | 331 | 32% {9%} (16% {0%}) | NR | NR | NR | NR | NR |
Cabozantinib [7,8] (EXAM) | MTC | 330 | 32.7% {8.4%} (4.6% {0.9%}) | 1.9% {0.9%} (0% {0%}) | NR | 25.2% {3.3%, 1 case of Gr5 treatment- related hemorrhage (15.6% {0.9%}) | GI fistula: 0.9% {0.5%} (0% {0%}) Non-GI fistula: 3.7% {1.9%} (0% {0%}) | 1.9% {0.9%} (0.9% {0%}) |
Drug (Study) | Type of Cancer | No. of Patients | % of Selected Adverse Events {≥grade 3} (Placebo) | |||||
Heart Failure | Thrombosis | ECG QT Prolonged | Thrombocytopenia | Diarrhea | Fatigue | |||
Sorafenib [1,2] (DECISION) | DTC | 419 | NR | NR | NR | NR | 68.6% {5.8%} (15.3% {1%}) | 49.8% {5.8%} (25.4% {1.4%}) |
Lenvatinib [3,4] (SELECT) | DTC | 392 | 7% {2%} | ATE: 5.4% {2.7%} VTE: 5.4% {3.8%} PE: 2.7% {2.7%} | 8% {1.5%} | 8.8% {1.5%} (1.5% {0%}) | 59.4% {8.0%} (8.4% {0%}) | 59.0% {9.2%} (27.5% {2.3%}) |
Vandetanib [5,6] (ZETA) | MTC | 331 | NR | NR | 14% {8%} (1% {1%}) | NR | 56% {11%} (26% {2%}) | 24% {6%} (23% {1%}) |
Cabozantinib [7,8] (EXAM) | MTC | 330 | NR {1 case of Gr5 treatment-related cardiopulmonary failure} | ATE:2.3% {0.9%} (0% {0%}) VTE:5.6% {3.7%} (2.8% {1.8%}) | 0% | 35% {0%} (4% {3%}) | 63.1% {15.9%} (33% {1.8%}) | 40.7% {9.3%} (28.4% {2.8%}) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enokida, T.; Tahara, M. Management of VEGFR-Targeted TKI for Thyroid Cancer. Cancers 2021, 13, 5536. https://doi.org/10.3390/cancers13215536
Enokida T, Tahara M. Management of VEGFR-Targeted TKI for Thyroid Cancer. Cancers. 2021; 13(21):5536. https://doi.org/10.3390/cancers13215536
Chicago/Turabian StyleEnokida, Tomohiro, and Makoto Tahara. 2021. "Management of VEGFR-Targeted TKI for Thyroid Cancer" Cancers 13, no. 21: 5536. https://doi.org/10.3390/cancers13215536
APA StyleEnokida, T., & Tahara, M. (2021). Management of VEGFR-Targeted TKI for Thyroid Cancer. Cancers, 13(21), 5536. https://doi.org/10.3390/cancers13215536