Clinical and Therapeutic Implications of Epstein–Barr Virus in HIV-Related Lymphomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Implications of Epstein–Barr Virus in the Different HIV-Related Lymphoma Types
2.1. Diffuse Large B-Cell Lymphoma
2.1.1. Epidemiology
2.1.2. Etiopathogenesis
2.1.3. Impact of EBV on Clinical Features and Prognosis
2.1.4. Treatment
2.2. Burkitt Lymphoma
2.2.1. Epidemiology
2.2.2. Etiopathogenesis
2.2.3. Impact of EBV on Clinical Features and Prognosis
2.2.4. Treatment
2.3. Plasmablastic Lymphoma
2.3.1. Epidemiology
2.3.2. Etiopathogenesis
2.3.3. Impact of EBV on Clinical Features and Prognosis
2.3.4. Treatment
2.4. Primary Effusion Lymphoma
2.4.1. Epidemiology
2.4.2. Etiopathogenesis
2.4.3. Clinical Features and Prognosis
2.4.4. Treatment
2.5. Hodgkin Lymphoma
2.5.1. Epidemiology
2.5.2. Etiopathogenesis
2.5.3. Impact of EBV on Clinical Features and Prognosis
2.5.4. Treatment
3. Implications of EBV Load in HIV-Related Lymphoma
4. General Recommendations for the Treatment of Lymphomas in PLWH
5. EBV-Targeted Therapies
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Horner, M.-J.; Shiels, M.S.; Pfeiffer, R.M.; Engels, E.A. Deaths Attributable to Cancer in the US Human Immunodeficiency Virus Population during 2001–2015. Clin. Infect. Dis. 2021, 72, e224–e231. [Google Scholar] [CrossRef] [PubMed]
- Poizot-Martin, I.; Lions, C.; Allavena, C.; Huleux, T.; Bani-Sadr, F.; Cheret, A.; Rey, D.; Duvivier, C.; Jacomet, C.; Ferry, T.; et al. Spectrum and Incidence Trends of AIDS- and Non–AIDS-Defining Cancers between 2010 and 2015 in the French Dat’AIDS Cohort. Cancer Epidemiol. Prev. Biomark. 2021, 30, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Vangipuram, R.; Tyring, S.K. AIDS-Associated Malignancies. In HIV/AIDS-Associated Viral Oncogenesis; Cancer Treatment and Research; Meyers, C., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–21. ISBN 978-3-030-03502-0. [Google Scholar]
- Palella, F.J.J.; Baker, R.K.; Moorman, A.C.; Chmiel, J.S.; Wood, K.C.; Brooks, J.T.; Holmberg, S.D.; Investigators, H.O.S. Mortality in the Highly Active Antiretroviral Therapy Era: Changing Causes of Death and Disease in the HIV Outpatient Study. JAIDS J. Acquir. Immune Defic. Syndr. 2006, 43, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.T.; Levine, A.M. Recent Advances in Acquired Immunodeficiency Syndrome (AIDS)-Related Lymphoma. CA Cancer J. Clin. 2005, 55, 229–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goedert, J.J.; Bower, M. Impact of Highly Effective Antiretroviral Therapy on the Risk for Hodgkin Lymphoma among People with Human Immunodeficiency Virus Infection. Curr. Opin. Oncol. 2012, 24, 531–536. [Google Scholar] [CrossRef] [Green Version]
- Powles, T.; Robinson, D.; Stebbing, J.; Shamash, J.; Nelson, M.; Gazzard, B.; Mandelia, S.; Møller, H.; Bower, M. Highly Active Antiretroviral Therapy and the Incidence of Non–AIDS-Defining Cancers in People with HIV Infection. J. Clin. Oncol. 2008, 27, 884–890. [Google Scholar] [CrossRef]
- Biggar, R.J.; Jaffe, E.S.; Goedert, J.J.; Chaturvedi, A.; Pfeiffer, R.; Engels, E.A. Hodgkin Lymphoma and Immunodeficiency in Persons with HIV/AIDS. Blood 2006, 108, 3786–3791. [Google Scholar] [CrossRef]
- Coleman, C.B.; Lang, J.; Sweet, L.A.; Smith, N.A.; Freed, B.M.; Pan, Z.; Haverkos, B.; Pelanda, R.; Rochford, R. Epstein-Barr Virus Type 2 Infects T Cells and Induces B Cell Lymphomagenesis in Humanized Mice. J. Virol. 2018, 92, e00813-18. [Google Scholar] [CrossRef] [Green Version]
- Shannon-Lowe, C.; Rickinson, A.B.; Bell, A.I. Epstein–Barr Virus-Associated Lymphomas. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160271. [Google Scholar] [CrossRef]
- Linke-Serinsöz, E.; Fend, F.; Quintanilla-Martinez, L. Human Immunodeficiency Virus (HIV) and Epstein-Barr Virus (EBV) Related Lymphomas, Pathology View Point. Semin. Diagn. Pathol. 2017, 34, 352–363. [Google Scholar] [CrossRef]
- Verma, M. Epigenetic Regulation of HIV, AIDS, and AIDS-Related Malignancies. In Cancer Epigenetics: Risk Assessment, Diagnosis, Treatment, and Prognosis; Methods in Molecular Biology; Verma, M., Ed.; Springer: New York, NY, USA, 2015; pp. 381–403. [Google Scholar]
- Mesri, E.A.; Feitelson, M.; Munger, K. Human Viral Oncogenesis: A Cancer Hallmarks Analysis. Cell Host Microbe 2014, 15, 266–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Paoli, P.; Carbone, A. Microenvironmental Abnormalities Induced by Viral Cooperation: Impact on Lymphomagenesis. Semin. Cancer Biol. 2015, 34, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Arvey, A.; Ojesina, A.I.; Pedamallu, C.S.; Ballon, G.; Jung, J.; Duke, F.; Leoncini, L.; De Falco, G.; Bressman, E.; Tam, W.; et al. The Tumor Virus Landscape of AIDS-Related Lymphomas. Blood 2015, 125, e14–e22. [Google Scholar] [CrossRef] [Green Version]
- Dolcetti, R.; Gloghini, A.; Caruso, A.; Carbone, A. A Lymphomagenic Role for HIV beyond Immune Suppression? Blood 2016, 127, 1403–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navari, M.; Etebari, M.; De Falco, G.; Ambrosio, M.R.; Gibellini, D.; Leoncini, L.; Piccaluga, P.P. The Presence of Epstein-Barr Virus Significantly Impacts the Transcriptional Profile in Immunodeficiency-Associated Burkitt Lymphoma. Front. Microbiol. 2015, 6, 556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moir, S.; Fauci, A.S. Insights into B Cells and HIV-Specific B-Cell Responses in HIV-Infected Individuals. Immunol. Rev. 2013, 254, 207–224. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.; Silverberg, M.J.; Martínez-Maza, O.; Chi, M.; Abrams, D.I.; Haque, R.; Zha, H.D.; McGuire, M.; Xu, L.; Said, J. Epstein-Barr Virus Infection and Expression of B-Cell Oncogenic Markers in HIV-Related Diffuse Large B-Cell Lymphoma. Clin. Cancer Res. 2012, 18, 4702–4712. [Google Scholar] [CrossRef] [Green Version]
- Navari, M.; Etebari, M.; Ibrahimi, M.; Leoncini, L.; Piccaluga, P.P. Pathobiologic Roles of Epstein–Barr Virus-Encoded MicroRNAs in Human Lymphomas. Int. J. Mol. Sci. 2018, 19, 1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forte, E.; Luftig, M.A. The Role of MicroRNAs in Epstein-Barr Virus Latency and Lytic Reactivation. Microbes Infect. Inst. Pasteur 2011, 13, 1156–1167. [Google Scholar] [CrossRef] [Green Version]
- Rosemarie, Q.; Sugden, B. Epstein–Barr Virus: How Its Lytic Phase Contributes to Oncogenesis. Microorganisms 2020, 8, 1824. [Google Scholar] [CrossRef]
- Pietersma, F.; Piriou, E.; Baarle, D. van Immune Surveillance of EBV-Infected B Cells and the Development of Non-Hodgkin Lymphomas in Immunocompromised Patients. Leuk. Lymphoma 2008, 49, 1028–1041. [Google Scholar] [CrossRef]
- Haas, A.; Zimmermann, K.; Oxenius, A. Antigen-Dependent and -Independent Mechanisms of T and B Cell Hyperactivation during Chronic HIV-1 Infection. J. Virol. 2011, 85, 12102–12113. [Google Scholar] [CrossRef] [Green Version]
- Muncunill, J.; Baptista, M.-J.; Hernandez-Rodríguez, Á.; Dalmau, J.; Garcia, O.; Tapia, G.; Moreno, M.; Sancho, J.-M.; Martínez-Picado, J.; Feliu, E.; et al. Plasma Epstein-Barr Virus Load as an Early Biomarker and Prognostic Factor of Human Immunodeficiency Virus–Related Lymphomas. Clin. Infect. Dis. 2019, 68, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Schommers, P.; Wyen, C.; Hentrich, M.; Gillor, D.; Zoufaly, A.; Jensen, B.; Bogner, J.R.; Thoden, J.; Wasmuth, J.C.; Fätkenheuer, G.; et al. Poor Outcome of HIV-Infected Patients with Plasmablastic Lymphoma: Results from the German AIDS-Related Lymphoma Cohort Study. AIDS 2013, 27, 842–845. [Google Scholar] [CrossRef]
- Kaulen, L.D.; Galluzzo, D.; Hui, P.; Barbiero, F.; Karschnia, P.; Huttner, A.; Fulbright, R.; Baehring, J.M. Prognostic Markers for Immunodeficiency-Associated Primary Central Nervous System Lymphoma. J. Neurooncol. 2019, 144, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Wong, J.H.Y.; Robertson, E.S. Targeted Therapies for Epstein-Barr Virus-Associated Lymphomas. Cancers 2020, 12, 2565. [Google Scholar] [CrossRef]
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J. (Eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed.; International Agency for Research on Cancer (IARC): Geneva, Switzerland, 2017; Volume 2, ISBN 978-92-832-4494-3. [Google Scholar]
- Ferreri, A.J.M.; Holdhoff, M.; Nayak, L.; Rubenstein, J.L. Evolving Treatments for Primary Central Nervous System Lymphoma. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Franca, R.A.; Travaglino, A.; Varricchio, S.; Russo, D.; Picardi, M.; Pane, F.; Pace, M.; Del Basso De Caro, M.; Mascolo, M. HIV Prevalence in Primary Central Nervous System Lymphoma: A Systematic Review and Meta-Analysis. Pathol.-Res. Pract. 2020, 216, 153192. [Google Scholar] [CrossRef]
- Engels, E.A.; Biggar, R.J.; Hall, H.I.; Cross, H.; Crutchfield, A.; Finch, J.L.; Grigg, R.; Hylton, T.; Pawlish, K.S.; McNeel, T.S.; et al. Cancer Risk in People Infected with Human Immunodeficiency Virus in the United States. Int. J. Cancer 2008, 123, 187–194. [Google Scholar] [CrossRef]
- Coghill, A.E.; Shiels, M.S.; Suneja, G.; Engels, E.A. Elevated Cancer-Specific Mortality Among HIV-Infected Patients in the United States. J. Clin. Oncol. 2015, 33, 2376–2383. [Google Scholar] [CrossRef]
- Baptista, M.J.; Garcia, O.; Morgades, M.; Gonzalez-Barca, E.; Miralles, P.; Lopez-Guillermo, A.; Abella, E.; Moreno, M.; Sancho, J.-M.; Feliu, E.; et al. HIV-Infection Impact on Clinical–Biological Features and Outcome of Diffuse Large B-Cell Lymphoma Treated with R-CHOP in the Combination Antiretroviral Therapy Era. AIDS 2015, 29, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Cesarman, E. Gammaherpesvirus and Lymphoprolliferative Disorders in Immunocompromised Patients. Cancer Lett. 2011, 305, 163–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shindiapina, P.; Ahmed, E.H.; Mozhenkova, A.; Abebe, T.; Baiocchi, R.A. Immunology of EBV-Related Lymphoproliferative Disease in HIV-Positive Individuals. Front. Oncol. 2020, 10, 1723. [Google Scholar] [CrossRef]
- Morton, L.M.; Kim, C.J.; Weiss, L.M.; Bhatia, K.; Cockburn, M.; Hawes, D.; Wang, S.S.; Chang, C.; Altekruse, S.F.; Engels, E.A.; et al. Molecular Characteristics of Diffuse Large B-Cell Lymphoma in Human Immunodeficiency Virus-Infected and -Uninfected Patients in the Pre-Highly Active Antiretroviral Therapy and Pre-Rituximab Era. Leuk. Lymphoma 2014, 55, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Dunleavy, K.; Little, R.F.; Pittaluga, S.; Grant, N.; Wayne, A.S.; Carrasquillo, J.A.; Steinberg, S.M.; Yarchoan, R.; Jaffe, E.S.; Wilson, W.H. The Role of Tumor Histogenesis, FDG-PET, and Short-Course EPOCH with Dose-Dense Rituximab (SC-EPOCH-RR) in HIV-Associated Diffuse Large B-Cell Lymphoma. Blood 2010, 115, 3017–3024. [Google Scholar] [CrossRef] [Green Version]
- Baptista, M.J.; Tapia, G.; Morgades, M.; Muncunill, J.; Muñoz-Marmol, A.-M.; Montoto, S.; Gribben, J.G.; Calaminici, M.; Martinez, A.; Gonzalez-Farre, B.; et al. Using the Lymph2Cx Assay for Assessing Cell-of-Origin Subtypes of HIV-Related Diffuse Large B-Cell Lymphoma. Leuk. Lymphoma 2019, 60, 1087–1091. [Google Scholar] [CrossRef]
- Besson, C.; Lancar, R.; Prevot, S.; Algarte-Genin, M.; Delobel, P.; Bonnet, F.; Meyohas, M.-C.; Partisani, M.; Oberic, L.; Gabarre, J.; et al. Outcomes for HIV-Associated Diffuse Large B-Cell Lymphoma in the Modern Combined Antiretroviral Therapy Era. AIDS 2017, 31, 2493–2501. [Google Scholar] [CrossRef]
- Diamond, C.; Taylor, T.H.; Aboumrad, T.; Anton-Culver, H. Changes in Acquired Immunodeficiency Syndrome-Related Non-Hodgkin Lymphoma in the Era of Highly Active Antiretroviral Therapy. Cancer 2006, 106, 128–135. [Google Scholar] [CrossRef]
- Matinella, A.; Lanzafame, M.; Bonometti, M.A.; Gajofatto, A.; Concia, E.; Vento, S.; Monaco, S.; Ferrari, S. Neurological Complications of HIV Infection in Pre-HAART and HAART Era: A Retrospective Study. J. Neurol. 2015, 262, 1317–1327. [Google Scholar] [CrossRef]
- González-Aguilar, A.; Soto-Hernández, J.L. The Management of Primary Central Nervous System Lymphoma Related to AIDS in the HAART Era. Curr. Opin. Oncol. 2011, 23, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Ivers, L.C.; Kim, A.Y.; Sax, P.E. Predictive Value of Polymerase Chain Reaction of Cerebrospinal Fluid for Detection of Epstein-Barr Virus to Establish the Diagnosis of HIV-Related Primary Central Nervous System Lymphoma. Clin. Infect. Dis. 2004, 38, 1629–1632. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, A.; De Luca, A.; Ammassari, A.; Antinori, A.; Ortona, L.; Larocca, L.M.; Scerrati, M. Minimally Invasive Diagnosis of Acquired Immunodeficiency Syndrome-Related Primary Central Nervous System Lymphoma. JNCI J. Natl. Cancer Inst. 1998, 90, 364–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinque, P.; Vago, L.; Dahl, H.; Brytting, M.; Terreni, M.R.; Fornara, C.; Racca, S.; Castagna, A.; Monforte, A.D.; Wahren, B.; et al. Polymerase Chain Reaction on Cerebrospinal Fluid for Diagnosis of Virus-Associated Opportunistic Diseases of the Central Nervous System in HIV-Infected Patients. AIDS 1996, 10, 951–958. [Google Scholar] [CrossRef]
- Crombie, J.L.; LaCasce, A.S. Epstein Barr Virus Associated B-Cell Lymphomas and Iatrogenic Lymphoproliferative Disorders. Front. Oncol. 2019, 9, 109. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; O’Hara, A.; Araujo, I.; Barreto, J.; Carvalho, E.; Sapucaia, J.B.; Ramos, J.C.; Luz, E.; Pedroso, C.; Manrique, M.; et al. EBV MicroRNAs in Primary Lymphomas and Targeting of CXCL-11 by Ebv-Mir-BHRF1-3. Cancer Res. 2008, 68, 1436–1442. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K.; Sekizuka, T.; Uehara, T.; Hishima, T.; Mine, S.; Fukumoto, H.; Sato, Y.; Hasegawa, H.; Kuroda, M.; Katano, H. Next–generation Sequencing of MiRNAs in Clinical Samples of Epstein–Barr Virus–associated B–cell Lymphomas. Cancer Med. 2017, 6, 605–618. [Google Scholar] [CrossRef]
- Ma, J.; Nie, K.; Redmond, D.; Liu, Y.; Elemento, O.; Knowles, D.M.; Tam, W. EBV-MiR-BHRF1-2 Targets PRDM1/Blimp1: Potential Role in EBV Lymphomagenesis. Leukemia 2016, 30, 594–604. [Google Scholar] [CrossRef] [Green Version]
- Martín-Pérez, D.; Vargiu, P.; Montes-Moreno, S.; León, E.A.; Rodríguez-Pinilla, S.M.; Lisio, L.D.; Martínez, N.; Rodríguez, R.; Mollejo, M.; Castellvi, J.; et al. Epstein-Barr Virus MicroRNAs Repress BCL6 Expression in Diffuse Large B-Cell Lymphoma. Leukemia 2012, 26, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.; Vistarop, A.G.; Huaman, F.; Narbaitz, M.; Metrebian, F.; De Matteo, E.; Preciado, M.V.; Chabay, P.A. Epstein-Barr Virus Lytic Cycle Involvement in Diffuse Large B Cell Lymphoma. Hematol. Oncol. 2018, 36, 98–103. [Google Scholar] [CrossRef]
- Liapis, K.; Clear, A.; Owen, A.; Coutinho, R.; Greaves, P.; Lee, A.M.; Montoto, S.; Calaminici, M.; Gribben, J.G. The Microenvironment of AIDS-Related Diffuse Large B-Cell Lymphoma Provides Insight into the Pathophysiology and Indicates Possible Therapeutic Strategies. Blood 2013, 122, 424–433. [Google Scholar] [CrossRef] [Green Version]
- Fiorentini, S.; Marini, E.; Caracciolo, S.; Caruso, A. Functions of the HIV-1 Matrix Protein P17. New Microbiol. 2006, 29, 1–10. [Google Scholar]
- Dolcetti, R.; Giagulli, C.; He, W.; Selleri, M.; Caccuri, F.; Eyzaguirre, L.M.; Mazzuca, P.; Corbellini, S.; Campilongo, F.; Marsico, S.; et al. Role of HIV-1 Matrix Protein P17 Variants in Lymphoma Pathogenesis. Proc. Natl. Acad. Sci. USA 2015, 112, 14331–14336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martorelli, D.; Muraro, E.; Mastorci, K.; Col, J.D.; Faè, D.A.; Furlan, C.; Giagulli, C.; Caccuri, F.; Rusnati, M.; Fiorentini, S.; et al. A Natural HIV P17 Protein Variant Up-Regulates the LMP-1 EBV Oncoprotein and Promotes the Growth of EBV-Infected B-Lymphocytes: Implications for EBV-Driven Lymphomagenesis in the HIV Setting. Int. J. Cancer 2015, 137, 1374–1385. [Google Scholar] [CrossRef]
- Gloghini, A.; Dolcetti, R.; Carbone, A. Lymphomas Occurring Specifically in HIV-Infected Patients: From Pathogenesis to Pathology. Semin. Cancer Biol. 2013, 23, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Brandsma, D.; Bromberg, J.E.C. Chapter 14—Primary CNS lymphoma in HIV infection. In Handbook of Clinical Neurology; The Neurology of HIV Infection; Brew, B.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 152, pp. 177–186. [Google Scholar] [CrossRef]
- Bibas, M.; Antinori, A. EBV and HIV-Related Lymphoma. Mediterr. J. Hematol. Infect. Dis. 2009, 1, e2009032. [Google Scholar] [CrossRef] [PubMed]
- Gasser, O.; Bihl, F.K.; Wolbers, M.; Loggi, E.; Steffen, I.; Hirsch, H.H.; Günthard, H.F.; Walker, B.D.; Brander, C.; Battegay, M.; et al. HIV Patients Developing Primary CNS Lymphoma Lack EBV-Specific CD4+ T Cell Function Irrespective of Absolute CD4+ T Cell Counts. PLOS Med. 2007, 4, e96. [Google Scholar] [CrossRef] [Green Version]
- Rios, A. HIV-Related Hematological Malignancies: A concise review. Clin. Lymphoma Myeloma Leuk. 2014, 14, S96–S103. [Google Scholar] [CrossRef]
- Maguire, A.; Chen, X.; Wisner, L.; Malasi, S.; Ramsower, C.; Kendrick, S.; Barrett, M.T.; Glinsmann–Gibson, B.; McGrath, M.; Rimsza, L.M. Enhanced DNA Repair and Genomic Stability Identify a Novel HIV–related Diffuse Large B–cell Lymphoma Signature. Int. J. Cancer 2019, 145, 3078–3088. [Google Scholar] [CrossRef]
- Chadburn, A.; Chiu, A.; Lee, J.Y.; Chen, X.; Hyjek, E.; Banham, A.H.; Noy, A.; Kaplan, L.D.; Sparano, J.A.; Bhatia, K.; et al. Immunophenotypic Analysis of AIDS-Related Diffuse Large B-Cell Lymphoma and Clinical Implications in Patients from AIDS Malignancies Consortium Clinical Trials 010 and 034. J. Clin. Oncol. 2009, 27, 5039. [Google Scholar] [CrossRef] [Green Version]
- Bayraktar, S.; Bayraktar, U.D.; Ramos, J.C.; Stefanovic, A.; Lossos, I.S. Primary CNS Lymphoma in HIV Positive and Negative Patients: Comparison of Clinical Characteristics, Outcome and Prognostic Factors. J. Neurooncol. 2011, 101, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.K.; Nolan, A.; Omuro, A.; Reid, E.G.; Wang, C.-C.; Mannis, G.; Jaglal, M.; Chavez, J.C.; Rubinstein, P.G.; Griffin, A.; et al. Long-Term Survival in AIDS-Related Primary Central Nervous System Lymphoma. Neuro-Oncology 2017, 19, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Gopal, S.; Martin, K.E.; Richards, K.L.; Eron, J.J. Clinical Presentation, Treatment, and Outcomes among 65 Patients with HIV-Associated Lymphoma Treated at the University of North Carolina, 2000–2010. AIDS Res. Hum. Retrovir. 2012, 28, 798–805. [Google Scholar] [CrossRef] [Green Version]
- De Luca, A.; Antinori, A.; Cingolani, A.; Larocca, L.M.; Linzalone, A.; Ammassari, A.; Scerrati, M.; Roselli, R.; Tamburrini, E.; Ortona, L. Evaluation of Cerebrospinal Fluid EBV–DNA and IL–10 as Markers for in Vivo Diagnosis of AIDS–related Primary Central Nervous System Lymphoma. Br. J. Haematol. 1995, 90, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Ribera, J.-M.; Oriol, A.; Morgades, M.; González–Barca, E.; Miralles, P.; López–Guillermo, A.; Gardella, S.; López, A.; Abella, E.; García, M. Safety and Efficacy of Cyclophosphamide, Adriamycin, Vincristine, Prednisone and Rituximab in Patients with Human Immunodeficiency Virus-Associated Diffuse Large B-Cell Lymphoma: Results of a Phase II Trial. Br. J. Haematol. 2008, 140, 411–419. [Google Scholar] [CrossRef]
- Liu, Y.; Barta, S.K. Diffuse Large B-Cell Lymphoma: 2019 Update on Diagnosis, Risk Stratification, and Treatment. Am. J. Hematol. 2019, 94, 604–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, R.F.; Labopin, M.; Bader, P.; Basak, G.W.; Bonini, C.; Chabannon, C.; Corbacioglu, S.; Dreger, P.; Dufour, C.; Gennery, A.R.; et al. Indications for Haematopoietic Stem Cell Transplantation for Haematological Diseases, Solid Tumours and Immune Disorders: Current Practice in Europe, 2019. Bone Marrow Transplant. 2019, 54, 1525–1552. [Google Scholar] [CrossRef] [PubMed]
- Grommes, C.; Rubenstein, J.L.; DeAngelis, L.M.; Ferreri, A.J.M.; Batchelor, T.T. Comprehensive Approach to Diagnosis and Treatment of Newly Diagnosed Primary CNS Lymphoma. Neuro-Oncology 2019, 21, 296–305. [Google Scholar] [CrossRef]
- Han, C.H.; Batchelor, T.T. Diagnosis and Management of Primary Central Nervous System Lymphoma. Cancer 2017, 123, 4314–4324. [Google Scholar] [CrossRef]
- Miralles, P.; Navarro, J.T.; Berenguer, J.; Gómez Codina, J.; Kwon, M.; Serrano, D.; Díez-Martín, J.L.; Villà, S.; Rubio, R.; Menárguez, J.; et al. GESIDA/PETHEMA Recommendations on the Diagnosis and Treatment of Lymphomas in Patients Infected by the Human Immunodeficiency Virus. Med. Clin. 2018, 151, 39.e1–39.e17. [Google Scholar] [CrossRef]
- Graham, B.S.; Lynch, D.T. Burkitt Lymphoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- God, J.M.; Haque, A. Burkitt Lymphoma: Pathogenesis and Immune Evasion. J. Oncol. 2010, 2010, e516047. [Google Scholar] [CrossRef]
- Burkitt, D.; O’conor, G.T. Malignant Lymphoma in African Children. I. A Clinical Syndrome. Cancer 1961, 14, 258–269. [Google Scholar] [CrossRef]
- Davi, F.; Delecluse, H.J.; Guiet, P.; Gabarre, J.; Fayon, A.; Gentilhomme, O.; Felman, P.; Bayle, C.; Berger, F.; Audouin, J.; et al. Burkitt-like Lymphomas in AIDS Patients: Characterization within a Series of 103 Human Immunodeficiency Virus-Associated Non-Hodgkin’s Lymphomas. Burkitt’s Lymphoma Study Group. J. Clin. Oncol. 1998, 16, 3788–3795. [Google Scholar] [CrossRef] [PubMed]
- Lenze, D.; Leoncini, L.; Hummel, M.; Volinia, S.; Liu, C.G.; Amato, T.; De Falco, G.; Githanga, J.; Horn, H.; Nyagol, J.; et al. The Different Epidemiologic Subtypes of Burkitt Lymphoma Share a Homogenous Micro RNA Profile Distinct from Diffuse Large B-Cell Lymphoma. Leukemia 2011, 25, 1869–1876. [Google Scholar] [CrossRef] [Green Version]
- Mbulaiteye, S.M.; Pullarkat, S.T.; Nathwani, B.N.; Weiss, L.M.; Rao, N.; Emmanuel, B.; Lynch, C.F.; Hernandez, B.; Neppalli, V.; Hawes, D.; et al. Epstein-Barr Virus Patterns in U.S. Burkitt Lymphoma Tumors from the SEER Residual Tissue Repository during 1979–2009. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2014, 122, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Carbone, A.; Gloghini, A. AIDS-Related Lymphomas: From Pathogenesis to Pathology. Br. J. Haematol. 2005, 130, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Guech-Ongey, M.; Simard, E.P.; Anderson, W.F.; Engels, E.A.; Bhatia, K.; Devesa, S.S.; Mbulaiteye, S.M. AIDS-Related Burkitt Lymphoma in the United States: What Do Age and CD4 Lymphocyte Patterns Tell Us about Etiology and/or Biology? Blood 2010, 116, 5600–5604. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.T.; Karim, R.; Nathwani, B.N.; Tulpule, A.; Espina, B.; Levine, A.M. AIDS-Related Burkitt’s Lymphoma Versus Diffuse Large-Cell Lymphoma in the Pre–Highly Active Antiretroviral Therapy (HAART) and HAART Eras: Significant Differences in Survival with Standard Chemotherapy. J. Clin. Oncol. 2005, 23, 4430–4438. [Google Scholar] [CrossRef] [PubMed]
- Gopal, S.; Patel, M.R.; Yanik, E.L.; Cole, S.R.; Achenbach, C.J.; Napravnik, S.; Burkholder, G.A.; Reid, E.G.; Rodriguez, B.; Deeks, S.G.; et al. Temporal Trends in Presentation and Survival for HIV-Associated Lymphoma in the Antiretroviral Therapy Era. J. Natl. Cancer Inst. 2013, 105, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Dunleavy, K.; Wilson, W.H. How I Treat HIV-Associated Lymphoma. Blood 2012, 119, 3245–3255. [Google Scholar] [CrossRef]
- Carbone, A. Emerging Pathways in the Development of AIDS-Related Lymphomas. Lancet Oncol. 2003, 4, 22–29. [Google Scholar] [CrossRef]
- Pajic, A.; Staege, M.S.; Dudziak, D.; Schuhmacher, M.; Spitkovsky, D.; Eissner, G.; Brielmeier, M.; Polack, A.; Bornkamm, G.W. Antagonistic Effects of C-Myc and Epstein-Barr Virus Latent Genes on the Phenotype of Human B Cells. Int. J. Cancer 2001, 93, 810–816. [Google Scholar] [CrossRef]
- Humme, S.; Reisbach, G.; Feederle, R.; Delecluse, H.-J.; Bousset, K.; Hammerschmidt, W.; Schepers, A. The EBV Nuclear Antigen 1 (EBNA1) Enhances B Cell Immortalization Several Thousandfold. Proc. Natl. Acad. Sci. USA 2003, 100, 10989–10994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allday, M.J. How Does Epstein–Barr Virus (EBV) Complement the Activation of Myc in the Pathogenesis of Burkitt’s Lymphoma? Semin. Cancer Biol. 2009, 19, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Drotar, M.E.; Silva, S.; Barone, E.; Campbell, D.; Tsimbouri, P.; Jurvansu, J.; Bhatia, P.; Klein, G.; Wilson, J.B. Epstein-Barr Virus Nuclear Antigen-1 and Myc Cooperate in Lymphomagenesis. Int. J. Cancer 2003, 106, 388–395. [Google Scholar] [CrossRef]
- Zhang, T.; Ma, J.; Nie, K.; Yan, J.; Liu, Y.; Bacchi, C.E.; Queiroga, E.M.; Gualco, G.; Sample, J.T.; Orazi, A.; et al. Hypermethylation of the Tumor Suppressor Gene PRDM1/Blimp-1 Supports a Pathogenetic Role in EBV-Positive Burkitt Lymphoma. Blood Cancer J. 2014, 4, e261. [Google Scholar] [CrossRef]
- Desbien, A.L.; Kappler, J.W.; Marrack, P. The Epstein–Barr Virus Bcl-2 Homolog, BHRF1, Blocks Apoptosis by Binding to a Limited Amount of Bim. Proc. Natl. Acad. Sci. USA 2009, 106, 5663–5668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzsimmons, L.; Cartlidge, R.; Chang, C.; Sejic, N.; Galbraith, L.C.A.; Suraweera, C.D.; Croom-Carter, D.; Dewson, G.; Tierney, R.J.; Bell, A.I.; et al. EBV BCL-2 Homologue BHRF1 Drives Chemoresistance and Lymphomagenesis by Inhibiting Multiple Cellular pro-Apoptotic Proteins. Cell Death Differ. 2020, 27, 1554–1568. [Google Scholar] [CrossRef]
- Zhang, Q.; Gutsch, D.; Kenney, S. Functional and Physical Interaction between P53 and BZLF1: Implications for Epstein-Barr Virus Latency. Mol. Cell. Biol. 1994, 14, 1929–1938. [Google Scholar] [CrossRef] [Green Version]
- Ambrosio, M.R.; Navari, M.; Di Lisio, L.; Leon, E.A.; Onnis, A.; Gazaneo, S.; Mundo, L.; Ulivieri, C.; Gomez, G.; Lazzi, S.; et al. The Epstein Barr-Encoded BART-6-3p MicroRNA Affects Regulation of Cell Growth and Immuno Response in Burkitt Lymphoma. Infect. Agents Cancer 2014, 9, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Bu, Y.; Liang, Y.; Zhang, F.; Zhang, H.; Li, S. Epstein-Barr Virus (EBV)-BamHI-A Rightward Transcript (BART)-6 and Cellular MicroRNA-142 Synergistically Compromise Immune Defense of Host Cells in EBV-Positive Burkitt Lymphoma. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 4114–4120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ungerleider, N.; Bullard, W.; Kara, M.; Wang, X.; Roberts, C.; Renne, R.; Tibbetts, S.; Flemington, E.K. EBV MiRNAs Are Potent Effectors of Tumor Cell Transcriptome Remodeling in Promoting Immune Escape. PLOS Pathog. 2021, 17, e1009217. [Google Scholar] [CrossRef]
- Kitagawa, N.; Goto, M.; Kurozumi, K.; Maruo, S.; Fukayama, M.; Naoe, T.; Yasukawa, M.; Hino, K.; Suzuki, T.; Todo, S.; et al. Epstein–Barr Virus-Encoded Poly(A)− RNA Supports Burkitt’s Lymphoma Growth through Interleukin-10 Induction. EMBO J. 2000, 19, 6742–6750. [Google Scholar] [CrossRef] [Green Version]
- Nanbo, A.; Inoue, K.; Adachi-Takasawa, K.; Takada, K. Epstein–Barr Virus RNA Confers Resistance to Interferon-α-Induced Apoptosis in Burkitt’s Lymphoma. EMBO J. 2002, 21, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Pannone, G.; Zamparese, R.; Pace, M.; Pedicillo, M.C.; Cagiano, S.; Somma, P.; Errico, M.E.; Donofrio, V.; Franco, R.; De Chiara, A.; et al. The Role of EBV in the Pathogenesis of Burkitt’s Lymphoma: An Italian Hospital Based Survey. Infect. Agents Cancer 2014, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Casulo, C.; Friedberg, J.W. Burkitt Lymphoma- a Rare but Challenging Lymphoma. Best Pract. Res. Clin. Haematol. 2018, 31, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.A.; Lozanski, G.; Byrd, J.C. Adult Burkitt Leukemia and Lymphoma. Blood 2004, 104, 3009–3020. [Google Scholar] [CrossRef]
- Blinder, V.S.; Chadburn, A.; Furman, R.R.; Mathew, S.; Leonard, J.P. Review: Improving Outcomes for Patients with Burkitt Lymphoma and HIV. AIDS Patient Care STDs 2008, 22, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Ribera, J.-M.; García, O.; Grande, C.; Esteve, J.; Oriol, A.; Bergua, J.; González-Campos, J.; Vall-llovera, F.; Tormo, M.; Hernández-Rivas, J.-M.; et al. Dose-Intensive Chemotherapy Including Rituximab in Burkitt’s Leukemia or Lymphoma Regardless of Human Immunodeficiency Virus Infection Status. Cancer 2013, 119, 1660–1668. [Google Scholar] [CrossRef]
- Oriol, A.; Ribera, J.-M.; Esteve, J.; Sanz, M.-A.; Brunet, S.; Garcia-Boyero, R.; Fernández-Abellán, P.; Martí, J.-M.; Abella, E.; Sánchez-Delgado, M.; et al. Lack of Influence of Human Immunodeficiency Virus Infection Status in the Response to Therapy and Survival of Adult Patients with Mature B-Cell Lymphoma or Leukemia. Results of the PETHEMA-LAL3/97 Study. Haematologica 2003, 88, 445–453. [Google Scholar]
- Barnes, J.A.; LaCasce, A.S.; Feng, Y.; Toomey, C.E.; Neuberg, D.; Michaelson, J.S.; Hochberg, E.P.; Abramson, J.S. Evaluation of the Addition of Rituximab to CODOX-M/IVAC for Burkitt’s Lymphoma: A Retrospective Analysis. Ann. Oncol. 2011, 22, 1859–1864. [Google Scholar] [CrossRef]
- Dunleavy, K.; Pittaluga, S.; Shovlin, M.; Steinberg, S.M.; Cole, D.; Grant, C.; Widemann, B.; Staudt, L.M.; Jaffe, E.S.; Little, R.F.; et al. Low-Intensity Therapy in Adults with Burkitt’s Lymphoma. N. Engl. J. Med. 2013, 369, 1915–1925. [Google Scholar] [CrossRef] [Green Version]
- Florindez, J.A.; Alderuccio, J.P.; Reis, I.M.; Lossos, I.S. Survival Analysis in Treated Plasmablastic Lymphoma Patients: A Population-Based Study. Am. J. Hematol. 2020, 95, 1344–1351. [Google Scholar] [CrossRef]
- Castillo, J.J.; Winer, E.S.; Stachurski, D.; Perez, K.; Jabbour, M.; Milani, C.; Colvin, G.; Butera, J.N. Clinical and Pathological Differences between Human Immunodeficiency Virus-Positive and Human Immunodeficiency Virus-Negative Patients with Plasmablastic Lymphoma. Leuk. Lymphoma 2010, 51, 2047–2053. [Google Scholar] [CrossRef]
- Tchernonog, E.; Faurie, P.; Coppo, P.; Monjanel, H.; Bonnet, A.; Génin, M.A.; Mercier, M.; Dupuis, J.; Bijou, F.; Herbaux, C.; et al. Clinical Characteristics and Prognostic Factors of Plasmablastic Lymphoma Patients: Analysis of 135 Patients from the LYSA Group. Ann. Oncol. 2017, 28, 843–848. [Google Scholar] [CrossRef]
- Delecluse, H.J.; Anagnostopoulos, I.; Dallenbach, F.; Hummel, M.; Marafioti, T.; Schneider, U.; Huhn, D.; Schmidt-Westhausen, A.; Reichart, P.A.; Gross, U.; et al. Plasmablastic Lymphomas of the Oral Cavity: A New Entity Associated with the Human Immunodeficiency Virus Infection. Blood 1997, 89, 1413–1420. [Google Scholar] [CrossRef]
- Carbone, A. AIDS-Related Non-Hodgkin’s Lymphomas: From Pathology and Molecular Pathogenesis to Treatment. Hum. Pathol. 2002, 33, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Álvarez, R.; Sancho, J.-M.; Ribera, J.-M. Plasmablastic Lymphoma. Med. Clín. Engl. Ed. 2016, 147, 399–404. [Google Scholar] [CrossRef]
- Castillo, J.J.; Bibas, M.; Miranda, R.N. The Biology and Treatment of Plasmablastic Lymphoma. Blood 2015, 125, 2323–2330. [Google Scholar] [CrossRef] [Green Version]
- Morscio, J.; Dierickx, D.; Nijs, J.; Verhoef, G.; Bittoun, E.; Vanoeteren, X.; Wlodarska, I.; Sagaert, X.; Tousseyn, T. Clinicopathologic Comparison of Plasmablastic Lymphoma in HIV-Positive, Immunocompetent, and Posttransplant Patients: Single-Center Series of 25 Cases and Meta-Analysis of 277 Reported Cases. Am. J. Surg. Pathol. 2014, 38, 875–886. [Google Scholar] [CrossRef] [PubMed]
- Teruya-Feldstein, J.; Chiao, E.; Filippa, D.A.; Lin, O.; Comenzo, R.; Coleman, M.; Portlock, C.; Noy, A. CD20-Negative Large-Cell Lymphoma with Plasmablastic Features: A Clinically Heterogenous Spectrum in Both HIV-Positive and -Negative Patients. Ann. Oncol. 2004, 15, 1673–1679. [Google Scholar] [CrossRef]
- Ramis-Zaldivar, J.E.; Gonzalez-Farre, B.; Nicolae, A.; Pack, S.; Clot, G.; Nadeu, F.; Mottok, A.; Horn, H.; Song, J.Y.; Fu, K.; et al. MAP-Kinase and JAK-STAT Pathways Dysregulation in Plasmablastic Lymphoma. Haematologica 2020, 106, 2682–2693. [Google Scholar] [CrossRef] [PubMed]
- Frontzek, F.; Staiger, A.M.; Zapukhlyak, M.; Xu, W.; Bonzheim, I.; Borgmann, V.; Sander, P.; Baptista, M.J.; Heming, J.-N.; Berning, P.; et al. Molecular and Functional Profiling Identifies Therapeutically Targetable Vulnerabilities in Plasmablastic Lymphoma. Nat. Commun. 2021, 12, 5183. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Reyero, J.; Magunacelaya, N.M.; de Villambrosia, S.G.; Loghavi, S.; Mediavilla, A.G.; Tonda, R.; Beltran, S.; Gut, M.; Gonzalez, A.P.; D’Ámore, E.; et al. Genetic Lesions in MYC and STAT3 Drive Oncogenic Transcription Factor Overexpression in Plasmablastic Lymphoma. Haematologica 2020, 106, 1120–1128. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Filip, I.; Gomez, K.; Engelbrecht, D.; Meer, S.; Lalloo, P.N.; Patel, P.; Perner, Y.; Zhao, J.; Wang, J.; et al. Genomic Characterization of HIV-Associated Plasmablastic Lymphoma Identifies Pervasive Mutations in the JAK–STAT Pathway. Blood Cancer Discov. 2020, 1, 112–125. [Google Scholar] [CrossRef]
- Lopez, A.; Abrisqueta, P. Plasmablastic Lymphoma: Current Perspectives. Blood Lymphat. Cancer Targets Ther. 2018, 8, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Valera, A.; Balagué, O.; Colomo, L.; Martínez, A.; Delabie, J.; Taddesse-Heath, L.; Jaffe, E.S.; Campo, E. IG/MYC Rearrangements Are the Main Cytogenetic Alteration in Plasmablastic Lymphomas. Am. J. Surg. Pathol. 2010, 34, 1686–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montes-Moreno, S.; Martinez-Magunacelaya, N.; Zecchini-Barrese, T.; Villambrosía, S.G.; de Linares, E.; Ranchal, T.; Rodriguez-Pinilla, M.; Batlle, A.; Cereceda-Company, L.; Revert-Arce, J.B.; et al. Plasmablastic Lymphoma Phenotype Is Determined by Genetic Alterations in MYC and PRDM1. Mod. Pathol. 2017, 30, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Schommers, P.; Gillor, D.; Hentrich, M.; Wyen, C.; Wolf, T.; Oette, M.; Zoufaly, A.; Wasmuth, J.-C.; Bogner, J.R.; Müller, M.; et al. Incidence and Risk Factors for Relapses in HIV-Associated Non-Hodgkin Lymphoma as Observed in the German HIV-Related Lymphoma Cohort Study. Haematologica 2018, 103, 857–864. [Google Scholar] [CrossRef]
- Loghavi, S.; Alayed, K.; Aladily, T.N.; Zuo, Z.; Ng, S.-B.; Tang, G.; Hu, S.; Yin, C.C.; Miranda, R.N.; Medeiros, L.J.; et al. Stage, Age, and EBV Status Impact Outcomes of Plasmablastic Lymphoma Patients: A Clinicopathologic Analysis of 61 Patients. J. Hematol. Oncol. 2015, 8, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Wong, K.; Calame, K. Repression of C-Myc Transcription by Blimp-1, an Inducer of Terminal B Cell Differentiation. Science 1997, 276, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, A.L.; Lin, K.-I.; Kuo, T.C.; Yu, X.; Hurt, E.M.; Rosenwald, A.; Giltnane, J.M.; Yang, L.; Zhao, H.; Calame, K.; et al. Blimp-1 Orchestrates Plasma Cell Differentiation by Extinguishing the Mature B Cell Gene Expression Program. Immunity 2002, 17, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Ambrosio, M.R.; Mundo, L.; Gazaneo, S.; Picciolini, M.; Vara, P.S.; Sayed, S.; Ginori, A.; Lo Bello, G.; Del Porro, L.; Navari, M.; et al. MicroRNAs Sequencing Unveils Distinct Molecular Subgroups of Plasmablastic Lymphoma. Oncotarget 2017, 8, 107356–107373. [Google Scholar] [CrossRef] [Green Version]
- Gravelle, P.; Péricart, S.; Tosolini, M.; Fabiani, B.; Coppo, P.; Amara, N.; Traverse-Gléhen, A.; Van Acker, N.; Brousset, P.; Fournie, J.-J.; et al. EBV Infection Determines the Immune Hallmarks of Plasmablastic Lymphoma. Oncoimmunology 2018, 7, e1486950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, J.; Pantanowitz, L.; Dezube, B.J. HIV-Associated Plasmablastic Lymphoma: Lessons Learned from 112 Published Cases. Am. J. Hematol. 2008, 83, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.J.; Furman, M.; Beltrán, B.E.; Bibas, M.; Bower, M.; Chen, W.; Díez-Martín, J.L.; Liu, J.J.; Miranda, R.N.; Montoto, S.; et al. Human Immunodeficiency Virus-Associated Plasmablastic Lymphoma. Cancer 2012, 118, 5270–5277. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.J.; Winer, E.S.; Stachurski, D.; Perez, K.; Jabbour, M.; Milani, C.; Colvin, G.; Butera, J.N. Prognostic Factors in Chemotherapy-Treated Patients with HIV-Associated Plasmablastic Lymphoma. Oncologist 2010, 15, 293–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koizumi, Y.; Uehira, T.; Ota, Y.; Ogawa, Y.; Yajima, K.; Tanuma, J.; Yotsumoto, M.; Hagiwara, S.; Ikegaya, S.; Watanabe, D.; et al. Clinical and Pathological Aspects of Human Immunodeficiency Virus-Associated Plasmablastic Lymphoma: Analysis of 24 Cases. Int. J. Hematol. 2016, 104, 669–681. [Google Scholar] [CrossRef]
- Laurent, C.; Fabiani, B.; Do, C.; Tchernonog, E.; Cartron, G.; Gravelle, P.; Amara, N.; Malot, S.; Palisoc, M.M.; Copie-Bergman, C.; et al. Immune-Checkpoint Expression in Epstein-Barr Virus Positive and Negative Plasmablastic Lymphoma: A Clinical and Pathological Study in 82 Patients. Haematologica 2016, 101, 976–984. [Google Scholar] [CrossRef] [Green Version]
- Castillo, J.J.; Guerrero–Garcia, T.; Baldini, F.; Tchernonog, E.; Cartron, G.; Ninkovic, S.; Cwynarski, K.; Dierickx, D.; Tousseyn, T.; Lansigan, F.; et al. Bortezomib plus EPOCH Is Effective as Frontline Treatment in Patients with Plasmablastic Lymphoma. Br. J. Haematol. 2019, 184, 679–682. [Google Scholar] [CrossRef] [Green Version]
- Al-Malki, M.M.; Castillo, J.J.; Sloan, J.M.; Re, A. Hematopoietic Cell Transplantation for Plasmablastic Lymphoma: A Review. Biol. Blood Marrow Transplant. 2014, 20, 1877–1884. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, C.; Re, A.; Ungari, M.; Peli, A.; Casari, S.; Castelnuovo, F.; Fisogni, S.; Lonardi, S.; Pellegrini, V.; Petullà, M.; et al. Plasmablastic Lymphoma among Human Immunodeficiency Virus-Positive Patients: Results of a Single Center’s Experience. Leuk. Lymphoma 2015, 56, 267–269. [Google Scholar] [CrossRef]
- Boulanger, E.; Gérard, L.; Gabarre, J.; Molina, J.-M.; Rapp, C.; Abino, J.-F.; Cadranel, J.; Chevret, S.; Oksenhendler, E. Prognostic Factors and Outcome of Human Herpesvirus 8–Associated Primary Effusion Lymphoma in Patients with AIDS. J. Clin. Oncol. 2005, 23, 4372–4380. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Pan, Z.; Chen, W.; Shi, Y.; Wang, W.; Yuan, J.; Wang, E.; Zhang, S.; Kurt, H.; Mai, B.; et al. Primary Effusion Lymphoma: A Clinicopathological Study of 70 Cases. Cancers 2021, 13, 878. [Google Scholar] [CrossRef] [PubMed]
- Chadburn, A.; Hyjek, E.; Mathew, S.; Cesarman, E.; Said, J.; Knowles, D.M. KSHV-Positive Solid Lymphomas Represent an Extra-Cavitary Variant of Primary Effusion Lymphoma. Am. J. Surg. Pathol. 2004, 28, 1401–1416. [Google Scholar] [CrossRef]
- Narkhede, M.; Arora, S.; Ujjani, C. Primary Effusion Lymphoma: Current Perspectives. OncoTargets Ther. 2018, 11, 3747–3754. [Google Scholar] [CrossRef] [Green Version]
- Antar, A.; El Hajj, H.; Jabbour, M.; Khalifeh, I.; EL-Merhi, F.; Mahfouz, R.; Bazarbachi, A. Primary Effusion Lymphoma in an Elderly Patient Effectively Treated by Lenalidomide: Case Report and Review of Literature. Blood Cancer J. 2014, 4, e190. [Google Scholar] [CrossRef] [Green Version]
- Shimada, K.; Hayakawa, F.; Kiyoi, H. Biology and Management of Primary Effusion Lymphoma. Blood 2018, 132, 1879–1888. [Google Scholar] [CrossRef] [Green Version]
- Jenner, R.G.; Maillard, K.; Cattini, N.; Weiss, R.A.; Boshoff, C.; Wooster, R.; Kellam, P. Kaposi’s Sarcoma-Associated Herpesvirus-Infected Primary Effusion Lymphoma Has a Plasma Cell Gene Expression Profile. Proc. Natl. Acad. Sci. USA 2003, 100, 10399–10404. [Google Scholar] [CrossRef] [Green Version]
- Asou, H.; Said, J.W.; Yang, R.; Munker, R.; Park, D.J.; Kamada, N.; Koeffler, H.P. Mechanisms of Growth Control of Kaposi’s Sarcoma–Associated Herpes Virus–Associated Primary Effusion Lymphoma Cells. Blood 1998, 91, 2475–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Eby, M.T.; Rathore, N.; Sinha, S.K.; Kumar, A.; Chaudhary, P.M. The Human Herpes Virus 8-Encoded Viral FLICE Inhibitory Protein Physically Associates with and Persistently Activates the IκB Kinase Complex. J. Biol. Chem. 2002, 277, 13745–13751. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.; Sin, S.-H.; Damania, B.; Dittmer, D.P. Tumor Suppressor Genes FHIT and WWOX Are Deleted in Primary Effusion Lymphoma (PEL) Cell Lines. Blood 2011, 118, e32–e39. [Google Scholar] [CrossRef] [Green Version]
- Horenstein, M.G.; Nador, R.G.; Chadburn, A.; Hyjek, E.M.; Inghirami, G.; Knowles, D.M.; Cesarman, E. Epstein-Barr Virus Latent Gene Expression in Primary Effusion Lymphomas Containing Kaposi’s Sarcoma–Associated Herpesvirus/Human Herpesvirus-8. Blood 1997, 90, 1186–1191. [Google Scholar] [CrossRef] [Green Version]
- Cesarman, E.; Chang, Y.; Moore, P.S.; Said, J.W.; Knowles, D.M. Kaposi’s Sarcoma-Associated Herpesvirus-like DNA Sequences in AIDS-Related Body-Cavity-Based Lymphomas. N. Engl. J. Med. 1995, 332, 1186–1191. [Google Scholar] [CrossRef]
- Cai, X.; Schäfer, A.; Lu, S.; Bilello, J.P.; Desrosiers, R.C.; Edwards, R.; Raab-Traub, N.; Cullen, B.R. Epstein–Barr Virus MicroRNAs Are Evolutionarily Conserved and Differentially Expressed. PLoS Pathog. 2006, 2, e23. [Google Scholar] [CrossRef] [Green Version]
- Gloghini, A.; Volpi, C.C.; Gualeni, A.V.; Dolcetti, R.; Bongarzone, I.; Paoli, P.D.; Carbone, A. Multiple Viral Infections in Primary Effusion Lymphoma: A Model of Viral Cooperation in Lymphomagenesis. Expert Rev. Hematol. 2017, 10, 505–514. [Google Scholar] [CrossRef]
- McHugh, D.; Caduff, N.; Barros, M.H.M.; Rämer, P.C.; Raykova, A.; Murer, A.; Landtwing, V.; Quast, I.; Styles, C.T.; Spohn, M.; et al. Persistent KSHV Infection Increases EBV-Associated Tumor Formation In Vivo via Enhanced EBV Lytic Gene Expression. Cell Host Microbe 2017, 22, 61–73.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigi, R.; Landis, J.T.; An, H.; Caro-Vegas, C.; Raab-Traub, N.; Dittmer, D.P. Epstein-Barr Virus Enhances Genome Maintenance of Kaposi Sarcoma-Associated Herpesvirus. Proc. Natl. Acad. Sci. USA 2018, 115, E11379–E11387. [Google Scholar] [CrossRef] [Green Version]
- Olszewski, A.J.; Fallah, J.; Castillo, J.J. Human Immunodeficiency Virus-Associated Lymphomas in the Antiretroviral Therapy Era: Analysis of the National Cancer Data Base. Cancer 2016, 122, 2689–2697. [Google Scholar] [CrossRef] [PubMed]
- El–Fattah, M.A. Clinical Characteristics and Survival Outcome of Primary Effusion Lymphoma: A Review of 105 Patients. Hematol. Oncol. 2017, 35, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Simonelli, C.; Spina, M.; Cinelli, R.; Talamini, R.; Tedeschi, R.; Gloghini, A.; Vaccher, E.; Carbone, A.; Tirelli, U. Clinical Features and Outcome of Primary Effusion Lymphoma in HIV-Infected Patients: A Single-Institution Study. J. Clin. Oncol. 2003, 21, 3948–3954. [Google Scholar] [CrossRef]
- Castillo, J.J.; Shum, H.; Lahijani, M.; Winer, E.S.; Butera, J.N. Prognosis in Primary Effusion Lymphoma Is Associated with the Number of Body Cavities Involved. Leuk. Lymphoma 2012, 53, 2378–2382. [Google Scholar] [CrossRef]
- Guillet, S.; Gérard, L.; Meignin, V.; Agbalika, F.; Cuccini, W.; Denis, B.; Katlama, C.; Galicier, L.; Oksenhendler, E. Classic and Extracavitary Primary Effusion Lymphoma in 51 HIV-Infected Patients from a Single Institution. Am. J. Hematol. 2016, 91, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Hocqueloux, L.; Agbalika, F.; Oksenhendler, E.; Molina, J.-M. Long-Term Remission of an AIDS-Related Primary Effusion Lymphoma with Antiviral Therapy. AIDS 2001, 15, 280–282. [Google Scholar] [CrossRef]
- Lurain, K.; Polizzotto, M.N.; Aleman, K.; Bhutani, M.; Wyvill, K.M.; Gonçalves, P.H.; Ramaswami, R.; Marshall, V.A.; Miley, W.; Steinberg, S.M.; et al. Viral, Immunologic, and Clinical Features of Primary Effusion Lymphoma. Blood 2019, 133, 1753–1761. [Google Scholar] [CrossRef] [Green Version]
- Jessamy, K.; Ojevwe, F.O.; Doobay, R.; Naous, R.; Yu, J.; Lemke, S.M. Primary Effusion Lymphoma: Is Dose-Adjusted-EPOCH Worthwhile Therapy? Case Rep. Oncol. 2016, 9, 273–279. [Google Scholar] [CrossRef]
- Won, J.-H.; Han, S.-H.; Bae, S.-B.; Kim, C.-K.; Lee, N.-S.; Lee, K.-T.; Park, S.-K.; Hong, D.-S.; Lee, D.-W.; Park, H.-S. Successful Eradication of Relapsed Primary Effusion Lymphoma with High-Dose Chemotherapy and Autologous Stem Cell Transplantation in a Patient Seronegative for Human Immunodeficiency Virus. Int. J. Hematol. 2006, 83, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Bryant, A.; Milliken, S. Successful Reduced-Intensity Conditioning Allogeneic HSCT for HIV-Related Primary Effusion Lymphoma. Biol. Blood Marrow Transplant. 2008, 14, 601–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xicoy, B.; Ribera, J.-M.; Miralles, P.; Berenguer, J.; Rubio, R.; Mahillo, B.; Valencia, M.-E.; Abella, E.; López-Guillermo, A.; Sureda, A.; et al. Results of Treatment with Doxorubicin, Bleomycin, Vinblastine and Dacarbazine and Highly Active Antiretroviral Therapy in Advanced Stage, Human Immunodeficiency Virus-Related Hodgkin’s Lymphoma. Haematologica 2007, 92, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Díez-Martín, J.L.; Balsalobre, P.; Re, A.; Michieli, M.; Ribera, J.M.; Canals, C.; Conde, E.; Rosselet, A.; Gabriel, I.; Varela, R.; et al. Comparable Survival between HIV+ and HIV- Non-Hodgkin and Hodgkin Lymphoma Patients Undergoing Autologous Peripheral Blood Stem Cell Transplantation. Blood 2009, 113, 6011–6014. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, M.; Parsons, C.; Cole, J. Characterization of HIV-Associated Hodgkin’s Lymphoma in HIV-Infected Patients: A Single-Center Experience. J. Int. Assoc. Physicians AIDS Care Chic. Ill 2002 2012, 11, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Shiels, M.S.; Koritzinsky, E.; Clarke, C.A.; Suneja, G.; Morton, L.M.; Engels, E.A. Prevalence of HIV Infection among U.S. Hodgkin Lymphoma Cases. Cancer Epidemiol. Biomark. Prev. 2014, 23, 274–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifford, G.M.; Polesel, J.; Rickenbach, M.; Dal Maso, L.; Keiser, O.; Kofler, A.; Rapiti, E.; Levi, F.; Jundt, G.; Fisch, T.; et al. Cancer Risk in the Swiss HIV Cohort Study: Associations with Immunodeficiency, Smoking, and Highly Active Antiretroviral Therapy. J. Natl. Cancer Inst. 2005, 97, 425–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Re, A.; Cattaneo, C.; Rossi, G. Hiv and Lymphoma: From Epidemiology to Clinical Management. Mediterr. J. Hematol. Infect. Dis. 2019, 11, e2019004. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, C.; Hentrich, M.; Gillor, D.; Behrens, G.; Jensen, B.; Stoehr, A.; Esser, S.; Lunzen, J. van Krznaric, I.; Müller, M.; et al. Hodgkin Lymphoma Is as Common as Non-Hodgkin Lymphoma in HIV-Positive Patients with Sustained Viral Suppression and Limited Immune Deficiency: A Prospective Cohort Study. HIV Med. 2015, 16, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Lanoy, E.; Rosenberg, P.S.; Fily, F.; Lascaux, A.-S.; Martinez, V.; Partisani, M.; Poizot-Martin, I.; Rouveix, E.; Engels, E.A.; Costagliola, D.; et al. HIV-Associated Hodgkin Lymphoma during the First Months on Combination Antiretroviral Therapy. Blood 2011, 118, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Bohlius, J.; Schmidlin, K.; Boué, F.; Fätkenheuer, G.; May, M.; Caro-Murillo, A.M.; Mocroft, A.; Bonnet, F.; Clifford, G.; Paparizos, V.; et al. HIV-1–Related Hodgkin Lymphoma in the Era of Combination Antiretroviral Therapy: Incidence and Evolution of CD4+ T-Cell Lymphocytes. Blood 2011, 117, 6100–6108. [Google Scholar] [CrossRef] [Green Version]
- Dolcetti, R.; Boiocchi, M.; Gloghini, A.; Carbone, A. Pathogenetic and Histogenetic Features of HIV-Associated Hodgkin’s Disease. Eur. J. Cancer 2001, 37, 1276–1287. [Google Scholar] [CrossRef]
- Rapezzi, D.; Ugolini, D.; Ferraris, A.M.; Racchi, O.; Gaetani, G.F. Histological Subtypes of Hodgkin’s Disease in the Setting of HIV Infection. Ann. Hematol. 2001, 80, 340–344. [Google Scholar] [CrossRef]
- Küppers, R.; Rajewsky, K.; Zhao, M.; Simons, G.; Laumann, R.; Fischer, R.; Hansmann, M.L. Hodgkin Disease: Hodgkin and Reed-Sternberg Cells Picked from Histological Sections Show Clonal Immunoglobulin Gene Rearrangements and Appear to Be Derived from B Cells at Various Stages of Development. Proc. Natl. Acad. Sci. USA 1994, 91, 10962–10966. [Google Scholar] [CrossRef] [Green Version]
- Weniger, M.A.; Küppers, R. Molecular Biology of Hodgkin Lymphoma. Leukemia 2021, 35, 968–981. [Google Scholar] [CrossRef]
- Chang, K.; Albujar, P.; Chen, Y.; Johnson, R.; Weiss, L. High Prevalence of Epstein-Barr Virus in the Reed-Sternberg Cells of Hodgkin’s Disease Occurring in Peru. Blood 1993, 81, 496–501. [Google Scholar] [CrossRef]
- Audouin, J.; Diebold, J.; Pallesen, G. Frequent Expression of Epstein-Barr Virus Latent Membrane Protein-1 in Tumour Cells of Hodgkin’s Disease in HIV-Positive Patients. J. Pathol. 1992, 167, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Naresh, K.N.; Johnson, J.; Srinivas, V.; Soman, C.S.; Saikia, T.; Advani, S.H.; Badwe, R.A.; Dinshaw, K.A.; Muckaden, M.; Magrath, I.; et al. Epstein-Barr Virus Association in Classical Hodgkin’s Disease Provides Survival Advantage to Patients and Correlates with Higher Expression of Proliferation Markers in Reed-Sternberg Cells. Ann. Oncol. 2000, 11, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Young, L.S.; Murray, P.G. Epstein–Barr Virus and Oncogenesis: From Latent Genes to Tumours. Oncogene 2003, 22, 5108–5121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldwell, R.G.; Wilson, J.B.; Anderson, S.J.; Longnecker, R. Epstein-Barr Virus LMP2A Drives B Cell Development and Survival in the Absence of Normal B Cell Receptor Signals. Immunity 1998, 9, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Portis, T.; Dyck, P.; Longnecker, R. Epstein-Barr Virus (EBV) LMP2A Induces Alterations in Gene Transcription Similar to Those Observed in Reed-Sternberg Cells of Hodgkin Lymphoma. Blood 2003, 102, 4166–4178. [Google Scholar] [CrossRef]
- Cen, O.; Longnecker, R. Latent Membrane Protein 2 (LMP2). Curr. Top. Microbiol. Immunol. 2015, 391, 151–180. [Google Scholar] [CrossRef]
- Kieser, A.; Sterz, K.R. The Latent Membrane Protein 1 (LMP1). Curr. Top. Microbiol. Immunol. 2015, 391, 119–149. [Google Scholar] [CrossRef]
- Kilger, E.; Kieser, A.; Baumann, M.; Hammerschmidt, W. Epstein-Barr Virus-Mediated B-Cell Proliferation Is Dependent upon Latent Membrane Protein 1, Which Simulates an Activated CD40 Receptor. EMBO J. 1998, 17, 1700–1709. [Google Scholar] [CrossRef] [Green Version]
- Green, M.R.; Rodig, S.; Juszczynski, P.; Ouyang, J.; Sinha, P.; O’Donnell, E.; Neuberg, D.; Shipp, M.A. Constitutive AP-1 Activity and EBV Infection Induce PD-L1 in Hodgkin Lymphomas and Post-Transplant Lymphoproliferative Disorders: Implications for Targeted Therapy. Clin. Cancer Res. 2012, 18, 1611–1618. [Google Scholar] [CrossRef] [Green Version]
- Armand, P. Immune Checkpoint Blockade in Hematologic Malignancies. Blood 2015, 125, 3393–3400. [Google Scholar] [CrossRef]
- Carbone, A.; Gloghini, A.; Caruso, A.; Paoli, P.D.; Dolcetti, R. The Impact of EBV and HIV Infection on the Microenvironmental Niche Underlying Hodgkin Lymphoma Pathogenesis. Int. J. Cancer 2017, 140, 1233–1245. [Google Scholar] [CrossRef]
- Wu, R.; Sattarzadeh, A.; Rutgers, B.; Diepstra, A.; van den Berg, A.; Visser, L. The Microenvironment of Classical Hodgkin Lymphoma: Heterogeneity by Epstein–Barr Virus Presence and Location within the Tumor. Blood Cancer J. 2016, 6, e417. [Google Scholar] [CrossRef] [PubMed]
- Dukers, D.F.; Meij, P.; Vervoort, M.B.H.J.; Vos, W.; Scheper, R.J.; Meijer, C.J.L.M.; Bloemena, E.; Middeldorp, J.M. Direct Immunosuppressive Effects of EBV-Encoded Latent Membrane Protein 1. J. Immunol. 2000, 165, 663–670. [Google Scholar] [CrossRef]
- Hartmann, S.; Jakobus, C.; Rengstl, B.; Döring, C.; Newrzela, S.; Brodt, H.-R.; Wolf, T.; Hansmann, M.-L. Spindle-Shaped CD163+ Rosetting Macrophages Replace CD4+ T-Cells in HIV-Related Classical Hodgkin Lymphoma. Mod. Pathol. 2013, 26, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, H.; Yamakawa, N.; Imadome, K.-I.; Yahata, T.; Kotaki, R.; Ogata, J.; Kakizaki, M.; Fujita, K.; Lu, J.; Yokoyama, K.; et al. Role of Exosomes as a Proinflammatory Mediator in the Development of EBV-Associated Lymphoma. Blood 2018, 131, 2552–2567. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.D.R.; Fisher, M.S.I.; Chu, W.S.; Nelson, A.; Abbondanzo, S.L. HIV-Associated Hodgkin Lymphoma: A Clinicopathologic and Immunophenotypic Study of 45 Cases. Am. J. Clin. Pathol. 2004, 121, 727–738. [Google Scholar] [CrossRef]
- Olszewski, A.J.; Castillo, J.J. Outcomes of HIV-Associated Hodgkin Lymphoma in the Era of Antiretroviral Therapy. AIDS 2016, 30, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Westmoreland, K.D.; Stanley, C.C.; Montgomery, N.D.; Kaimila, B.; Kasonkanji, E.; El-Mallawany, N.K.; Wasswa, P.; Mtete, I.; Butia, M.; Itimu, S.; et al. Hodgkin Lymphoma, HIV, and Epstein–Barr Virus in Malawi: Longitudinal Results from the Kamuzu Central Hospital Lymphoma Study. Pediatr. Blood Cancer 2017, 64, e26302. [Google Scholar] [CrossRef] [Green Version]
- Hentrich, M.; Berger, M.; Wyen, C.; Siehl, J.; Rockstroh, J.K.; Müller, M.; Fätkenheuer, G.; Seidel, E.; Nickelsen, M.; Wolf, T.; et al. Stage-Adapted Treatment of HIV-Associated Hodgkin Lymphoma: Results of a Prospective Multicenter Study. J. Clin. Oncol. 2012, 30, 4117–4123. [Google Scholar] [CrossRef]
- Hartmann, P.; Rehwald, U.; Salzberger, B.; Franzen, C.; Sieber, M.; Wöhrmann, A.; Diehl, V. BEACOPP Therapeutic Regimen for Patients with Hodgkin’s Disease and HIV Infection. Ann. Oncol. 2003, 14, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Molina, A.; Zaia, J.; Smith, D.; Vasquez, D.; Kogut, N.; Falk, P.M.; Rosenthal, J.; Alvarnas, J.; Forman, S.J. Durable Remissions with Autologous Stem Cell Transplantation for High-Risk HIV-Associated Lymphomas. Blood 2005, 105, 874–878. [Google Scholar] [CrossRef]
- Spitzer, T.R.; Ambinder, R.F.; Lee, J.Y.; Kaplan, L.D.; Wachsman, W.; Straus, D.J.; Aboulafia, D.M.; Scadden, D.T. Dose-Reduced Busulfan, Cyclophosphamide, and Autologous Stem Cell Transplantation for Human Immunodeficiency Virus–Associated Lymphoma: AIDS Malignancy Consortium Study 020. Biol. Blood Marrow Transplant. 2008, 14, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tisi, M.C.; Cupelli, E.; Santangelo, R.; Maiolo, E.; Alma, E.; Giachelia, M.; Martini, M.; Bellesi, S.; D’Alò, F.; Voso, M.T.; et al. Whole Blood EBV-DNA Predicts Outcome in Diffuse Large B-Cell Lymphoma. Leuk. Lymphoma 2016, 57, 628–634. [Google Scholar] [CrossRef]
- Okamoto, A.; Yanada, M.; Miura, H.; Inaguma, Y.; Tokuda, M.; Morishima, S.; Kanie, T.; Yamamoto, Y.; Mizuta, S.; Akatsuka, Y.; et al. Prognostic Significance of Epstein–Barr Virus DNA Detection in Pretreatment Serum in Diffuse Large B–cell Lymphoma. Cancer Sci. 2015, 106, 1576–1581. [Google Scholar] [CrossRef]
- Kanakry, J.A.; Li, H.; Gellert, L.L.; Lemas, M.V.; Hsieh, W.; Hong, F.; Tan, K.L.; Gascoyne, R.D.; Gordon, L.I.; Fisher, R.I.; et al. Plasma Epstein-Barr Virus DNA Predicts Outcome in Advanced Hodgkin Lymphoma: Correlative Analysis from a Large North American Cooperative Group Trial. Blood 2013, 121, 3547–3553. [Google Scholar] [CrossRef] [Green Version]
- Kanakry, J.A.; Hegde, A.M.; Durand, C.M.; Massie, A.B.; Greer, A.E.; Ambinder, R.F.; Valsamakis, A. The Clinical Significance of EBV DNA in the Plasma and Peripheral Blood Mononuclear Cells of Patients with or without EBV Diseases. Blood 2016, 127, 2007–2017. [Google Scholar] [CrossRef]
- Kanakry, J.; Ambinder, R. The Biology and Clinical Utility of EBV Monitoring in Blood. In Epstein Barr Virus Volume 2: One Herpes Virus: Many Diseases; Current Topics in Microbiology and Immunology; Münz, C., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 475–499. [Google Scholar]
- Lu, T.-X.; Liang, J.-H.; Miao, Y.; Fan, L.; Wang, L.; Qu, X.-Y.; Cao, L.; Gong, Q.-X.; Wang, Z.; Zhang, Z.-H.; et al. Epstein-Barr Virus Positive Diffuse Large B-Cell Lymphoma Predict Poor Outcome, Regardless of the Age. Sci. Rep. 2015, 5, 12168. [Google Scholar] [CrossRef]
- Gandhi, M.K.; Lambley, E.; Burrows, J.; Dua, U.; Elliott, S.; Shaw, P.J.; Prince, H.M.; Wolf, M.; Clarke, K.; Underhill, C.; et al. Plasma Epstein-Barr Virus (EBV) DNA Is a Biomarker for EBV-Positive Hodgkin’s Lymphoma. Clin. Cancer Res. 2006, 12, 460–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, A.; Armstrong, A.A.; MacKenzie, J.; Shield, L.; Khan, G.; Lake, A.; Proctor, S.; Taylor, P.; Clements, G.B.; Jarrett, R.F. Detection of Epstein-Barr Virus (EBV) Genomes in the Serum of Patients with EBV-Associated Hodgkin’s Disease. Int. J. Cancer 1999, 84, 442–448. [Google Scholar] [CrossRef]
- Hohaus, S.; Santangelo, R.; Giachelia, M.; Vannata, B.; Massini, G.; Cuccaro, A.; Martini, M.; Cesarini, V.; Cenci, T.; D’Alo, F.; et al. The Viral Load of Epstein–Barr Virus (EBV) DNA in Peripheral Blood Predicts for Biological and Clinical Characteristics in Hodgkin Lymphoma. Clin. Cancer Res. 2011, 17, 2885–2892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martelius, T.; Anttila, V.-J.; Nihtinen, A.; Lappalainen, M.; Aalto, S.M.; Hedman, K. Clinical Characteristics, Outcome and the Role of Viral Load in Nontransplant Patients with Epstein--Barr Viraemia. Clin. Microbiol. Infect. 2010, 16, 657–662. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, N.D.; Randall, C.; Painschab, M.; Seguin, R.; Kaimila, B.; Kasonkanji, E.; Zuze, T.; Krysiak, R.; Sanders, M.K.; Elliott, A.; et al. High Pretreatment Plasma Epstein–Barr Virus (EBV) DNA Level Is a Poor Prognostic Marker in HIV–associated, EBV–negative Diffuse Large B–cell Lymphoma in Malawi. Cancer Med. 2019, 9, 552–561. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.-T.; Hernández, Á.; Rodríguez-Manzano, J.; Mate, J.-L.; Grau, J.; Morgades, M.; Martró, E.; Tural, C.; Ribera, J.-M.; Matas, L. Plasma Epstein-Barr viral load measurement as a diagnostic marker of lymphoma in HIV-infected patients. Med. Clínica 2010, 135, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Baptista, M.J.; Hernandez-Rodriguez, A.; Martinez-Caceres, E.; Morgades, M.; Martinez-Picado, J.; Sirera, G.; Sancho, J.-M.; Feliu, E.; Ribera, J.-M.; Navarro, J.-T. Epstein-Barr Viral Loads and Serum Free Light Chains Levels Are Potential Follow-up Markers of HIV-Related Lymphomas. Leuk. Lymphoma 2017, 58, 211–213. [Google Scholar] [CrossRef]
- Tanaka, P.Y.; Ohshima, K.; Matsuoka, M.; Sabino, E.C.; Ferreira, S.C.; Nishya, A.S.; de Oliveira Costa, R.; Calore, E.E.; Perez, N.M.; Pereira, J. Epstein–Barr Viral Load Is Associated to Response in AIDS-Related Lymphomas. Indian J. Hematol. Blood Transfus. 2014, 30, 191–194. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Kim, S.C.; Chima, C.O.; Israel, B.F.; Lawless, K.M.; Eagan, P.A.; Elmore, S.; Moore, D.T.; Schichman, S.A.; Swinnen, L.J.; et al. Epstein–Barr Viral Load as a Marker of Lymphoma in AIDS Patients. J. Med. Virol. 2005, 75, 59–69. [Google Scholar] [CrossRef]
- Amiel, C.; LeGoff, J.; Lescure, F.X.; Coste-Burel, M.; Deback, C.; Fafi-Kremer, S.; Gueudin, M.; Lafon, M.-E.; Leruez-Ville, M.; Mengelle, C.; et al. Epstein-Barr Virus Load in Whole Blood Correlates with HIV Surrogate Markers and Lymphoma: A French National Cross-Sectional Study. JAIDS J. Acquir. Immune Defic. Syndr. 2009, 50, 427–429. [Google Scholar] [CrossRef]
- Leruez-Ville, M.; Seng, R.; Morand, P.; Boufassa, F.; Boue, F.; Deveau, C.; Rouzioux, C.; Goujard, C.; Seigneurin, J.M.; Meyer, L. Blood Epstein–Barr Virus DNA Load and Risk of Progression to AIDS-Related Systemic B Lymphoma. HIV Med. 2012, 13, 479–487. [Google Scholar] [CrossRef] [PubMed]
- van Baarle, D.; Wolthers, K.C.; Hovenkamp, E.; Niesters, H.G.M.; Osterhaus, A.D.M.E.; Miedema, F.; van Oers, M.H.J. Absolute Level of Epstein-Barr Virus DNA in Human Immunodeficiency Virus Type 1 Infection Is Not Predictive of AIDS-Related Non-Hodgkin Lymphoma. J. Infect. Dis. 2002, 186, 405–409. [Google Scholar] [CrossRef] [Green Version]
- Lupo, J.; Germi, R.; Lancar, R.; Algarte-Genin, M.; Hendel-Chavez, H.; Taoufik, Y.; Mounier, N.; Partisani, M.; Bonnet, F.; Meyohas, M.-C.; et al. Prospective Evaluation of Blood Epstein–Barr Virus DNA Load and Antibody Profile in HIV-Related Non-Hodgkin Lymphomas. AIDS 2021, 35, 861–868. [Google Scholar] [CrossRef]
- Ul-Haq, I.; Dalla Pria, A.; Suardi, E.; Pinato, D.J.; Froeling, F.; Forni, J.; Randell, P.; Bower, M. Blood Epstein–Barr Virus DNA Does Not Predict Outcome in Advanced HIV-Associated Hodgkin Lymphoma. Med. Oncol. 2018, 35, 53. [Google Scholar] [CrossRef] [Green Version]
- Lupo, J.; Germi, R.; Lancar, R.; Algarte-Genin, M.; Hendel-Chavez, H.; Taoufik, Y.; Mounier, N.; Partisani, M.; Bonnet, F.; Meyohas, M.-C.; et al. Epstein–Barr Virus Biomarkers Have No Prognostic Value in HIV-Related Hodgkin Lymphoma in the Modern Combined Antiretroviral Therapy Era. AIDS 2019, 33, 993–1000. [Google Scholar] [CrossRef]
- Barta, S.K.; Xue, X.; Wang, D.; Tamari, R.; Lee, J.Y.; Mounier, N.; Kaplan, L.D.; Ribera, J.-M.; Spina, M.; Tirelli, U.; et al. Treatment Factors Affecting Outcomes in HIV-Associated Non-Hodgkin Lymphomas: A Pooled Analysis of 1546 Patients. Blood 2013, 122, 3251–3262. [Google Scholar] [CrossRef] [Green Version]
- Little, R.F.; Dunleavy, K. Update on the Treatment of HIV-Associated Hematologic Malignancies. Hematology 2013, 2013, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.H.; Torres, H.A.; Mulanovich, V. Management of HIV Infection in Patients with Cancer Receiving Chemotherapy. Clin. Infect. Dis. 2014, 59, 106–114. [Google Scholar] [CrossRef]
- Noy, A. Optimizing Treatment of HIV-Associated Lymphoma. Blood 2019, 134, 1385–1394. [Google Scholar] [CrossRef]
- Hill, Q.A.; Owen, R.G. CNS Prophylaxis in Lymphoma: Who to Target and What Therapy to Use. Blood Rev. 2006, 20, 319–332. [Google Scholar] [CrossRef]
- Sancho, J.-M.; Ribera, J.-M. Recaída en el sistema nervioso central en el linfoma B difuso de célula grande: Factores de riesgo. Med. Clín. 2016, 146, 74–80. [Google Scholar] [CrossRef]
- Fletcher, C.D.; Kahl, B.S. Central Nervous System Involvement in Diffuse Large B-Cell Lymphoma: An Analysis of Risks and Prevention Strategies in the Post-Rituximab Era. Leuk. Lymphoma 2014, 55, 2228–2240. [Google Scholar] [CrossRef]
- Mazhar, D.; Stebbing, J.; Bower, M. Non-Hodgkin’s Lymphoma and the CNS: Prophylaxis and Therapy in Immunocompetent and HIV-Positive Individuals. Expert Rev. Anticancer. Ther. 2006, 6, 335–341. [Google Scholar] [CrossRef]
- Smith, T.J.; Khatcheressian, J.; Lyman, G.H.; Ozer, H.; Armitage, J.O.; Balducci, L.; Bennett, C.L.; Cantor, S.B.; Crawford, J.; Cross, S.J.; et al. 2006 Update of Recommendations for the Use of White Blood Cell Growth Factors: An Evidence-Based Clinical Practice Guideline. J. Clin. Oncol. 2006, 24, 3187–3205. [Google Scholar] [CrossRef] [Green Version]
- Re, A.; Cattaneo, C.; Montoto, S. Treatment Management of Haematological Malignancies in People Living with HIV. Lancet Haematol. 2020, 7, e679–e689. [Google Scholar] [CrossRef]
- Bower, M.; Palfreeman, A.; Alfa-Wali, M.; Bunker, C.; Burns, F.; Churchill, D.; Collins, S.; Cwynarski, K.; Edwards, S.; Fields, P.; et al. British HIV Association Guidelines for HIV-Associated Malignancies 2014. HIV Med. 2014, 15 (Suppl. 2), 1–92. [Google Scholar] [CrossRef]
- Reid, E.; Suneja, G.; Ambinder, R.F.; Ard, K.; Baiocchi, R.; Barta, S.K.; Carchman, E.; Cohen, A.; Gupta, N.; Johung, K.L.; et al. Cancer in People Living with HIV, Version 1.2018, NCCN Clinical Practice Guidelines in Oncology. JNCCN J. Natl. Compr. Cancer Netw. 2018, 16, 986–1017. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.-T.; Moltó, J.; Tapia, G.; Ribera, J.-M. Hodgkin Lymphoma in People Living with HIV. Cancers 2021, 13, 4366. [Google Scholar] [CrossRef]
- Thompson, S.; Messick, T.; Schultz, D.C.; Reichman, M.; Lieberman, P.M. Development of a High-Throughput Screen for Inhibitors of Epstein-Barr Virus EBNA1. J. Biomol. Screen. 2010, 15, 1107–1115. [Google Scholar] [CrossRef] [Green Version]
- Messick, T.E.; Smith, G.R.; Soldan, S.S.; McDonnell, M.E.; Deakyne, J.S.; Malecka, K.A.; Tolvinski, L.; van den Heuvel, A.P.J.; Gu, B.-W.; Cassel, J.A.; et al. Structure-Based Design of Small-Molecule Inhibitors of EBNA1 DNA Binding Blocks Epstein-Barr Virus Latent Infection and Tumor Growth. Sci. Transl. Med. 2019, 11, eaau5612. [Google Scholar] [CrossRef]
- Israel, B.F.; Gulley, M.; Elmore, S.; Ferrini, S.; Feng, W.; Kenney, S.C. Anti-CD70 Antibodies: A Potential Treatment for EBV CD70-Expressing Lymphomas. Mol. Cancer Ther. 2005, 4, 2037–2044. [Google Scholar] [CrossRef] [Green Version]
- Schaft, N.; Lankiewicz, B.; Drexhage, J.; Berrevoets, C.; Moss, D.J.; Levitsky, V.; Bonneville, M.; Lee, S.P.; McMichael, A.J.; Gratama, J.-W.; et al. T Cell Re-Targeting to EBV Antigens Following TCR Gene Transfer: CD28-Containing Receptors Mediate Enhanced Antigen-Specific IFNgamma Production. Int. Immunol. 2006, 18, 591–601. [Google Scholar] [CrossRef]
- Shen, R.R.; Pham, C.D.; Wu, M.; Munson, D.J.; Aftab, B.T. CD19 Chimeric Antigen Receptor (CAR) Engineered Epstein-Barr Virus (EBV) Specific T Cells—An off-the-Shelf, Allogeneic CAR T-Cell Immunotherapy Platform. Cytotherapy 2019, 21, S11. [Google Scholar] [CrossRef]
- Quan, L.; Chen, X.; Liu, A.; Zhang, Y.; Guo, X.; Yan, S.; Liu, Y. PD-1 Blockade Can Restore Functions of T-Cells in Epstein-Barr Virus-Positive Diffuse Large B-Cell Lymphoma In Vitro. PLoS ONE 2015, 10, e0136476. [Google Scholar] [CrossRef]
- Kim, S.-J.; Hyeon, J.; Cho, I.; Ko, Y.H.; Kim, W.S. Comparison of Efficacy of Pembrolizumab between Epstein-Barr Virus‒Positive and ‒Negative Relapsed or Refractory Non-Hodgkin Lymphomas. Cancer Res. Treat. 2019, 51, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.-I.; Kim, U.-H.; Shin, A.-R.; Won, J.-N.; Lee, H.-J.; Sohn, H.-J.; Kim, T.-G. A Novel Epstein-Barr Virus-Latent Membrane Protein-1-Specific T-Cell Receptor for TCR Gene Therapy. Br. J. Cancer 2018, 118, 534–545. [Google Scholar] [CrossRef] [Green Version]
- van Zyl, D.G.; Mautner, J.; Delecluse, H.-J. Progress in EBV Vaccines. Front. Oncol. 2019, 9, 104. [Google Scholar] [CrossRef] [Green Version]
- Aboulafia, D.M.; Ratner, L.; Miles, S.A.; Harrington, W.J. AIDS Associated Malignancies Clinical Trials Consortium Antiviral and Immunomodulatory Treatment for AIDS-Related Primary Central Nervous System Lymphoma: AIDS Malignancies Consortium Pilot Study 019. Clin. Lymphoma Myeloma 2006, 6, 399–402. [Google Scholar] [CrossRef]
- Raez, L.; Cabral, L.; Cai, J.P.; Landy, H.; Sfakianakis, G.; Byrne, G.E.; Hurley, J.; Scerpella, E.; Jayaweera, D.; Harrington, W.J. Treatment of AIDS-Related Primary Central Nervous System Lymphoma with Zidovudine, Ganciclovir, and Interleukin 2. AIDS Res. Hum. Retrovir. 1999, 15, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Bossolasco, S.; Falk, K.I.; Ponzoni, M.; Ceserani, N.; Crippa, F.; Lazzarin, A.; Linde, A.; Cinque, P. Ganciclovir Is Associated with Low or Undetectable Epstein-Barr Virus DNA Load in Cerebrospinal Fluid of Patients with HIV-Related Primary Central Nervous System Lymphoma. Clin. Infect. Dis. 2006, 42, e21–e25. [Google Scholar] [CrossRef] [Green Version]
- Faller, D.V.; Mentzer, S.J.; Perrine, S.P. Induction of the Epstein–Barr Virus Thymidine Kinase Gene with Concomitant Nucleoside Antivirals as a Therapeutic Strategy for Epstein–Barr Virus–Associated Malignancies. Curr. Opin. Oncol. 2001, 13, 360–367. [Google Scholar] [CrossRef]
- Perrine, S.P.; Hermine, O.; Small, T.; Suarez, F.; O’Reilly, R.; Boulad, F.; Fingeroth, J.; Askin, M.; Levy, A.; Mentzer, S.J.; et al. A Phase 1/2 Trial of Arginine Butyrate and Ganciclovir in Patients with Epstein-Barr Virus–Associated Lymphoid Malignancies. Blood 2007, 109, 2571–2578. [Google Scholar] [CrossRef] [Green Version]
- Faller, D.V.; Ghosh, S.; Feldman, T.; Lerner, A.; Smith, J.; Goy, A.; Berenson, R.; Perrine, S. Short-Term Exposure to Arginine Butyrate, in Combination with Ganciclovir, Is as Effective as Continuous Exposure for Virus-Targeted Therapy of EBV-Positive Lymphomas. Blood 2009, 114, 4754. [Google Scholar] [CrossRef]
- O’Connor, O.A.; Heaney, M.L.; Schwartz, L.; Richardson, S.; Willim, R.; MacGregor-Cortelli, B.; Curly, T.; Moskowitz, C.; Portlock, C.; Horwitz, S.; et al. Clinical Experience with Intravenous and Oral Formulations of the Novel Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid in Patients with Advanced Hematologic Malignancies. J. Clin. Oncol. 2006, 24, 166–173. [Google Scholar] [CrossRef]
- Crump, M.; Coiffier, B.; Jacobsen, E.D.; Sun, L.; Ricker, J.L.; Xie, H.; Frankel, S.R.; Randolph, S.S.; Cheson, B.D. Oral Vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) in Relapsed Diffuse Large B-Cell Lymphoma (DLBCL): Final Results of a Phase II Trial. J. Clin. Oncol. 2007, 25, 18511. [Google Scholar] [CrossRef]
- Armand, P.; Shipp, M.A.; Ribrag, V.; Michot, J.-M.; Zinzani, P.L.; Kuruvilla, J.; Snyder, E.S.; Ricart, A.D.; Balakumaran, A.; Rose, S.; et al. Programmed Death-1 Blockade with Pembrolizumab in Patients with Classical Hodgkin Lymphoma After Brentuximab Vedotin Failure. J. Clin. Oncol. 2016, 34, 3733–3739. [Google Scholar] [CrossRef] [PubMed]
- Bollard, C.M.; Gottschalk, S.; Torrano, V.; Diouf, O.; Ku, S.; Hazrat, Y.; Carrum, G.; Ramos, C.; Fayad, L.; Shpall, E.J.; et al. Sustained Complete Responses in Patients with Lymphoma Receiving Autologous Cytotoxic T Lymphocytes Targeting Epstein-Barr Virus Latent Membrane Proteins. J. Clin. Oncol. 2014, 392, 798–808. [Google Scholar] [CrossRef]
- Icheva, V.; Kayser, S.; Wolff, D.; Tuve, S.; Kyzirakos, C.; Bethge, W.; Greil, J.; Albert, M.H.; Schwinger, W.; Nathrath, M.; et al. Adoptive Transfer of Epstein-Barr Virus (EBV) Nuclear Antigen 1–Specific T Cells As Treatment for EBV Reactivation and Lymphoproliferative Disorders After Allogeneic Stem-Cell Transplantation. J. Clin. Oncol. 2013, 31, 39–48. [Google Scholar] [CrossRef] [PubMed]
Lymphoma | EBV Frequency | EBV Latency Type | CD4+ Lymphocyte Counts (Cells/µL) |
---|---|---|---|
DLBCL | 30–50% | I/II/III | 100–223 |
PCNSL | 80–100% | III | <50 |
BL | 30–60% | I | 200–270 |
PBL | 75–100% | I | 63–165 |
PEL | 70–100% | I | 98–133 |
HL | 90–100% | II | 150–200 |
(A) Chemotherapeutic Treatment in HIV-Related Lymphomas | ||
---|---|---|
Lymphoma | 1st Line | 2nd Line |
DLBCL | R-CHOP | R-ESHAP, R-ICE, R-GEMOX; followed by ASCT |
PCNSL | HD-MTX | ASCT, Radiotherapy |
BL | CODOX-M/IVAC Burkimab Hyper-CVAD DA-EPOCH-R | R-DHAP, R-DHAX, R-GDP, R-GDP, R-GEMOX |
PBL | CODOX- M/IVAC Hyper-CVAD DA-EPOCH-R Bortezomib | THP-COP, ESHAP, ICE and ASCT |
PEL | DA-EPOCH CHOP | ASCT, radiotherapy, bortezomib |
HL | ABVD BEACOPP | ESHAP, DHAP, ICE; followed by ASCT |
(B) EBV-Targeted Therapies | ||
Preclinical Studies | ||
Small molecule inhibitors | • Targeting host factors and signaling pathways • Targeting EBV antigens | |
Immunotherapy | • PD-1/PD-L1 antibodies • Monoclonal antibodies • EBVST • T-cell receptor-modified T-cell therapy • CAR-T | |
Clinical Trials | ||
Antiretroviral drugs | • GCV and AZT in combination with immunomodulatory IL-2 and cART in EBV+ HIV-related PCNSL | |
Induction of lytic infection from latency state |
• Arginine butyrate in combination with GCV in refractory EBV-related lymphomas • Inhibition of histone deacetylase (HDAC), such as SAHA in HL and NHL | |
Inhibition of PD-1/PD-L1 | • Prembrolizumab in IC-HL | |
EBVST | • LMP1/LMP2- or LMP2-specific CTLs administered in EBV-related NHL or HL • EBNA-specific CTL in patients with EBV-related PTLD after SCT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdu-Bou, M.; Tapia, G.; Hernandez-Rodriguez, A.; Navarro, J.-T. Clinical and Therapeutic Implications of Epstein–Barr Virus in HIV-Related Lymphomas. Cancers 2021, 13, 5534. https://doi.org/10.3390/cancers13215534
Verdu-Bou M, Tapia G, Hernandez-Rodriguez A, Navarro J-T. Clinical and Therapeutic Implications of Epstein–Barr Virus in HIV-Related Lymphomas. Cancers. 2021; 13(21):5534. https://doi.org/10.3390/cancers13215534
Chicago/Turabian StyleVerdu-Bou, Miriam, Gustavo Tapia, Agueda Hernandez-Rodriguez, and Jose-Tomas Navarro. 2021. "Clinical and Therapeutic Implications of Epstein–Barr Virus in HIV-Related Lymphomas" Cancers 13, no. 21: 5534. https://doi.org/10.3390/cancers13215534
APA StyleVerdu-Bou, M., Tapia, G., Hernandez-Rodriguez, A., & Navarro, J. -T. (2021). Clinical and Therapeutic Implications of Epstein–Barr Virus in HIV-Related Lymphomas. Cancers, 13(21), 5534. https://doi.org/10.3390/cancers13215534