Impact of Tumour Epstein–Barr Virus Status on Clinical Outcome in Patients with Classical Hodgkin Lymphoma (cHL): A Review of the Literature and Analysis of a Clinical Trial Cohort of Children with cHL
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. Analysis of a Clinical Trial Cohort of Children and Adolescents with cHL
Patients
2.3. Event-Free Survival and Overall Survival
2.4. EBV Detection
2.5. Statistical Methods
3. Results
3.1. Literature Review
3.2. Analysis of a Clinical Trial Cohort of Children and Adolescents with cHL
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Küppers, R.; Rajewsky, K.; Zhao, M.; Simons, G.; Laumann, R.; Fischer, R.; Hansmann, M.L. Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc. Natl. Acad. Sci. USA 1994, 91, 10962–10966. [Google Scholar] [CrossRef] [PubMed]
- Kanzler, H.; Kuppers, R.; Hansmann, M.L.; Rajewsky, K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J. Exp. Med. 1996, 184, 1495–1505. [Google Scholar] [CrossRef] [PubMed]
- Raab-Traub, N.; Flynn, K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 1986, 47, 883–889. [Google Scholar] [CrossRef]
- Lardelli, P.; Garcia del Moral, R. Clonal Epstein-Barr virus virus genome in Hodgkin’s and non-Hodgkin’s lymphoma. Blood 1990, 75, 1589–1590. [Google Scholar] [CrossRef]
- Coates, P.J.; Slavin, G.; D’Ardenne, A.J. Persistence of Epstein-Barr virus in Reed-Sternberg cells throughout the course of Hodgkin’s disease. J. Pathol. 1991, 164, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Grasser, F.A.; Murray, P.G.; Kremmer, E.; Klein, K.; Remberger, K.; Feiden, W.; Reynolds, G.; Niedobitek, G.; Young, L.S.; Mueller-Lantzsch, N. Monoclonal antibodies directed against the Epstein-Barr virus-encoded nuclear antigen 1 (EBNA1): Immunohistologic detection of EBNA1 in the malignant cells of Hodgkin’s disease. Blood 1994, 84, 3792–3798. [Google Scholar] [CrossRef]
- Frappier, L. Contributions of Epstein–Barr Nuclear Antigen 1 (EBNA1) to Cell Immortalization and Survival. Viruses 2012, 4, 1537–1547. [Google Scholar] [CrossRef] [PubMed]
- Frappier, L. EBNA1 and host factors in Epstein–Barr virus latent DNA replication. Curr. Opin. Virol. 2012, 2, 733–739. [Google Scholar] [CrossRef]
- Frappier, L. The Epstein-Barr Virus EBNA1 Protein. Scientifica 2012, 2012, 438204. [Google Scholar] [CrossRef]
- Tempera, I.; De Leo, A.; Kossenkov, A.V.; Cesaroni, M.; Song, H.; Dawany, N.; Showe, L.; Lu, F.; Wikramasinghe, P.; Lieberman, P.M. Identification of MEF2B, EBF1, and IL6R as Direct Gene Targets of Epstein-Barr Virus (EBV) Nuclear Antigen 1 Critical for EBV-Infected B-Lymphocyte Survival. J. Virol. 2015, 90, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Flavell, J.R.; Baumforth, K.R.; Wood, V.H.; Davies, G.L.; Wei, W.; Reynolds, G.M.; Morgan, S.; Boyce, A.; Kelly, G.L.; Young, L.S.; et al. Down-regulation of the TGF-beta target gene, PTPRK, by the Epstein-Barr virus encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. Blood 2008, 111, 292–301. [Google Scholar] [CrossRef]
- Wood, V.H.; O’Neil, J.D.; Wei, W.; Stewart, S.E.; Dawson, C.W.; Young, L.S. Epstein-Barr virus-encoded EBNA1 regulates cellular gene transcription and modulates the STAT1 and TGFbeta signaling pathways. Oncogene 2007, 26, 4135–4147. [Google Scholar] [CrossRef] [PubMed]
- Deacon, E.M.; Pallesen, G.; Niedobitek, G.; Crocker, J.; Brooks, L.; Rickinson, A.B.; Young, L.S. Epstein-Barr virus and Hodgkin’s disease: Transcriptional analysis of virus latency in the malignant cells. J. Exp. Med. 1993, 177, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.G.; Young, L.S.; Rowe, M.; Crocker, J. Immunohistochemical demonstration of the Epstein-Barr virus-encoded latent membrane protein in paraffin sections of Hodgkin’s disease. J. Pathol. 1992, 166, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Niedobitek, G.; Kremmer, E.; Herbst, H.; Whitehead, L.; Dawson, C.W.; Niedobitek, E.; Von Ostau, C.; Rooney, N.; Grasser, F.A.; Young, L.S. Immunohistochemical detection of the Epstein-Barr virus-encoded latent membrane protein 2A in Hodgkin’s disease and infectious mononucleosis. Blood 1997, 90, 1664–1672. [Google Scholar] [CrossRef]
- Lam, N.; Sugden, B. CD40 and its viral mimic, LMP1: Similar means to different ends. Cell Signal 2003, 15, 9–16. [Google Scholar] [CrossRef]
- Bargou, R.C.; Emmerich, F.; Krappmann, D.; Bommert, K.; Mapara, M.Y.; Arnold, W.; Royer, H.D.; Grinstein, E.; Greiner, A.; Scheidereit, C.; et al. Constitutive nuclear factor-kappaB-relA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J. Clin. Investig. 1997, 100, 2961–2969. [Google Scholar] [CrossRef]
- Dutton, A.; Reynolds, G.M.; Dawson, C.W.; Young, L.S.; Murray, P.G. Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J. Pathol. 2005, 205, 498–506. [Google Scholar] [CrossRef]
- Heath, E.; Begue-Pastor, N.; Chaganti, S.; Croom-Carter, D.; Shannon-Lowe, C.; Kube, D.; Feederle, R.; Delecluse, H.-J.; Rickinson, A.B.; Bell, A.I. Epstein-Barr Virus Infection of Naïve B Cells In Vitro Frequently Selects Clones with Mutated Immunoglobulin Genotypes: Implications for Virus Biology. PLoS Pathog. 2012, 8, e1002697. [Google Scholar] [CrossRef]
- Holtick, U.; Vockerodt, M.; Pinkert, D.; Schoof, N.; Stürzenhofecker, B.; Kussebi, N.; Lauber, K.; Wesselborg, S.; Löffler, D.; Horn, F.; et al. STAT3 is essential for Hodgkin lymphoma cell proliferation and is a target of tyrphostin AG17 which confers sensitization for apoptosis. Leukemia 2005, 19, 936–944. [Google Scholar] [CrossRef]
- Caldwell, R.G.; Wilson, J.B.; Anderson, S.J.; Longnecker, R. Epstein-Barr Virus LMP2A Drives B Cell Development and Survival in the Absence of Normal B Cell Receptor Signals. Immunity 1998, 9, 405–411. [Google Scholar] [CrossRef]
- Merchant, M.; Swart, R.; Katzman, R.B.; Ikeda, M.; Ikeda, A.; Longnecker, R.; Dykstra, M.L.; Pierce, S.K. The Effects of the Epstein-Barr Virus Latent Membrane Protein 2a on B Cell Function. Int. Rev. Immunol. 2001, 20, 805–835. [Google Scholar] [CrossRef]
- Chaganti, S.; Bell, A.; Pastor, N.B.; Milner, A.E.; Drayson, M.; Gordon, J.; Rickinson, A.B. Epstein-Barr virus infection in vitro can rescue germinal center B cells with inactivated immunoglobulin genes. Blood 2005, 106, 4249–4252. [Google Scholar] [CrossRef] [PubMed]
- Bechtel, D.; Kurth, J.; Unkel, C.; Küppers, R. Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood 2005, 106, 4345–4350. [Google Scholar] [CrossRef] [PubMed]
- Mancao, C.; Altmann, M.; Jungnickel, B.; Hammerschmidt, W. Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus. Blood 2005, 106, 4339–4344. [Google Scholar] [CrossRef]
- Levine, P.H.; Berard, C.W.; Carbone, P.P.; Waggoner, D.E.; Malan, L. Elevated antibody titers to Epstein-Barr virus in Hodgkin’s disease. Cancer 1971, 7, 416–421. [Google Scholar] [CrossRef]
- Mueller, N.; Evans, A.; Harris, N.L.; Comstock, G.W.; Jellum, E.; Magnus, K.; Orentreich, N.; Polk, B.F.; Vogelman, J. Hodgkin’s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N. Engl. J. Med. 1989, 320, 689–695. [Google Scholar] [CrossRef]
- Levin, L.I.; Chang, E.T.; Ambinder, R.F.; Lennette, E.T.; Rubertone, M.V.; Mann, R.B.; Borowitz, M.; Weir, E.G.; Abbondanzo, S.L.; Mueller, N.E. Atypical prediagnosis Epstein-Barr virus serology restricted to EBV-positive Hodgkin lymphoma. Blood 2012, 120, 3750–3755. [Google Scholar] [CrossRef]
- Connelly, R.R.; Christine, B.W. A cohort study of cancer following infectious mononucleosis. Cancer Res. 1974, 34, 1172–1178. [Google Scholar]
- Rosdahl, N.; Larsen, S.O.; Clemmesen, J. Hodgkin’s Disease in Patients with Previous Infectious Mononucleosis: 30 Years’ Experience. BMJ 1974, 2, 253–256. [Google Scholar] [CrossRef]
- Hjalgrim, H.; Ekström Smedby, K.; Rostgaard, K.; Molin, D.; Hamilton-Dutoit, S.; Chang, E.T.; Ralfkiaer, E.; Sundstrom, C.; Adami, H.O.; Glimelius, B.; et al. Infectious Mononucleosis, Childhood Social Environment, and Risk of Hodgkin Lymphoma. Cancer Res. 2007, 67, 2382–2388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjalgrim, H.; Munksgaard, L.; Melbye, M. Epstein-Barr virus and Hodgkin’s lymphoma. Ugeskr. Laeger. 2002, 164, 5924–5927. [Google Scholar] [PubMed]
- Reiman, A.; Powell, J.E.; Flavell, K.J.; Grundy, R.G.; Mann, J.R.; Parkes, S.; Redfern, D.; Young, L.S.; Murray, P.G. Seasonal differences in the onset of the EBV-positive and -negative forms of paediatric Hodgkin’s lymphoma. Br. J. Cancer 2003, 89, 1200–1201. [Google Scholar] [CrossRef] [PubMed]
- Young, L.; Yap, L.-F.; Murray, P.G. Epstein–Barr virus: More than 50 years old and still providing surprises. Nat. Cancer 2016, 16, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Kushekhar, K.; Berg, A.V.D.; Nolte, I.; Hepkema, B.; Visser, L.; Diepstra, A. Genetic Associations in Classical Hodgkin Lymphoma: A Systematic Review and Insights into Susceptibility Mechanisms. Cancer Epidemiol. Biomarkers Prev. 2014, 23, 2737–2747. [Google Scholar] [CrossRef]
- Hjalgrim, H.; Rostgaard, K.; Johnson, P.C.D.; Lake, A.; Shield, L.; Little, A.-M.; Ekstrom-Smedby, K.; Adami, H.-O.; Glimelius, B.; Hamilton-Dutoit, S.; et al. HLA-A alleles and infectious mononucleosis suggest a critical role for cytotoxic T-cell response in EBV-related Hodgkin lymphoma. Proc. Natl. Acad. Sci. USA 2010, 107, 6400–6405. [Google Scholar] [CrossRef]
- Cozen, W.; Timofeeva, M.N.; Li, D.; Diepstra, A.; Hazelett, D.; Delahaye-Sourdeix, M.; Edlund, C.K.; Franke, L.; Rostgaard, K.; Berg, D.J.V.D.; et al. A meta-analysis of Hodgkin lymphoma reveals 19p13.3 TCF3 as a novel susceptibility locus. Nat. Commun. 2014, 5, 1–10. [Google Scholar] [CrossRef]
- Niens, M.; Jarrett, R.; Hepkema, B.; Nolte, I.M.; Diepstra, A.; Platteel, M.; Kouprie, N.; Delury, C.P.; Gallagher, A.; Visser, L.; et al. HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV+ Hodgkin lymphoma. Blood 2007, 110, 3310–3315. [Google Scholar] [CrossRef]
- Niens, M.; van den Berg, A.; Diepstra, A.; Nolte, I.M.; van der Steege, G.; Gallagher, A.; Taylor, G.M.; Jarrett, R.F.; Poppema, S.; te Meerman, G.J. The human leukocyte antigen class I region is associated with EBV-positive Hodgkin’s lymphoma: HLA-A and HLA complex group 9 are putative candidate genes. Cancer Epidemiol. Biomark. Prev. 2006, 15, 2280–2284. [Google Scholar] [CrossRef]
- Glaser, S.L.; Clarke, C.A.; Chang, E.T.; Yang, J.; Gomez, S.L.; Keegan, T.H. Hodgkin lymphoma incidence in California Hispanics: Influence of nativity and tumor Epstein-Barr virus. Cancer Causes Control. 2014, 25, 709–725. [Google Scholar] [CrossRef]
- Glaser, S.L. Hodgkin’s disease in black populations: A review of the epidemiologic literature. Semin. Oncol. 1990, 17, 643–659. [Google Scholar] [PubMed]
- Flavell, K.J.; Biddulph, J.P.; Powell, J.E.; Parkes, S.E.; Redfern, D.; Weinreb, M.; Nelson, P.; Mann, J.R.; Young, L.S.; Murray, P.G. South Asian ethnicity and material deprivation increase the risk of Epstein-Barr virus infection in childhood Hodgkin’s disease. Br. J. Cancer 2001, 85, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Glaser, S.L.; Jarrett, R.F. The epidemiology of Hodgkin’s disease. Baillieres Clin. Haematol. 1996, 9, 401–416. [Google Scholar] [CrossRef]
- Jarrett, R.F. Viruses and Hodgkin’s lymphoma. Ann. Oncol. 2002, 13 (Suppl. S1), 23–29. [Google Scholar] [CrossRef]
- Shankar, A.; Visaduraki, M.; Hayward, J.; Morland, B.; McCarthy, K.; Hewitt, M. Clinical outcome in children and adolescents with Hodgkin lymphoma after treatment with chemotherapy alone—The results of the United Kingdom HD3 national cohort trial. Eur. J. Cancer 2012, 48, 108–113. [Google Scholar] [CrossRef]
- Keegan, T.H.; Glaser, S.L.; Clarke, C.A.; Gulley, M.L.; Craig, F.E.; DiGiuseppe, J.A.; Dorfman, R.F.; Mann, R.B.; Ambinder, R.F. Epstein-Barr virus as a marker of survival after Hodgkin’s lymphoma: A population-based study. J. Clin. Oncol. 2005, 23, 7604–7613. [Google Scholar] [CrossRef]
- Jarrett, R.; Stark, G.L.; White, J.; Angus, B.; Alexander, F.E.; Krajewski, A.S.; Freeland, J.; Taylor, G.M.; Taylor, P.R.A.; The Scotland and Newcastle Epidemiology of Hodgkin Disease Study Group. Impact of tumor Epstein-Barr virus status on presenting features and outcome in age-defined subgroups of patients with classic Hodgkin lymphoma: A population-based study. Blood 2005, 106, 2444–2451. [Google Scholar] [CrossRef]
- Clarke, C.A.; Glaser, S.L.; Dorfman, R.F.; Mann, R.; DiGiuseppe, J.A.; Prehn, A.W.; Ambinder, R.F. Epstein-Barr virus and survival after Hodgkin disease in a population-based series of women. Cancer 2001, 91, 1579–1587. [Google Scholar] [CrossRef]
- Stark, G.L.; Wood, K.M.; Jack, F.; Angus, B.; Proctor, S.J.; Taylor, P.R.; Northern Region Lymphoma Group. Hodgkin’s disease in the elderly: A population-based study. Br. J. Haematol. 2002, 119, 432–440. [Google Scholar] [CrossRef]
- Diepstra, A.; van Imhoff, G.W.; Schaapveld, M.; Karim-Kos, H.; Berg, A.V.D.; Vellenga, E.; Poppema, S. Latent Epstein-Barr Virus Infection of Tumor Cells in Classical Hodgkin’s Lymphoma Predicts Adverse Outcome in Older Adult Patients. J. Clin. Oncol. 2009, 27, 3815–3821. [Google Scholar] [CrossRef]
- Wang, C.; Zou, S.-P.; Chen, D.-G.; Wang, J.-S.; Zheng, Y.-B.; Chen, X.-R.; Yang, Y. Latent Epstein–Barr virus infection status and prognosis in patients with newly diagnosed Hodgkin lymphoma in Southeast China: A single-center retrospective study. Hematology 2021, 26, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Proctor, S.J.; Rueffer, J.U.; Angus, B.; Breuer, K.; Flechtner, H.; Jarrett, R.; Levis, A.; Taylor, P.; Tirelli, U. Hodgkin’s disease in the elderly: Current status and future directions. Ann. Oncol. 2002, 13, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.W.; Yoon, D.H.; Suh, C.; Huh, J. Impact of the Epstein–Barr virus positivity on Hodgkin’s lymphoma in a large cohort from a single institute in Korea. Ann. Hematol. 2012, 91, 1403–1412. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.M.; Park, Y.H.; Kang, J.H.; Kim, K.; Ko, Y.H.; Ryoo, B.Y.; Lee, S.S.; Lee, S.I.; Koo, H.H.; Kim, W.S. The effect of Epstein–Barr virus status on clinical outcome in Hodgkin’s lymphoma. Ann. Hematol. 2006, 85, 463–468. [Google Scholar] [CrossRef]
- Glavina-Durdov, M.; Jakic-Razumovic, J.; Capkun, V.; Murray, P. Assessment of the prognostic impact of the Epstein–Barr virus-encoded latent membrane protein-1 expression in Hodgkin’s disease. Br. J. Cancer 2001, 84, 1227–1234. [Google Scholar] [CrossRef]
- Murray, P.G.; Billingham, L.J.; Hassan, H.T.; Flavell, J.R.; Nelson, P.N.; Scott, K.; Reynolds, G.; Constandinou, C.M.; Kerr, D.J.; Devey, E.C.; et al. Effect of Epstein-Barr virus infection on response to chemotherapy and survival in Hodgkin’s disease. Blood 1999, 94, 442–447. [Google Scholar] [CrossRef]
- Flavell, K.J.; Billingham, L.J.; Biddulph, J.P.; Gray, L.; Flavell, J.R.; Constandinou, C.M.; Young, L.S.; Murray, P.G. The effect of Epstein–Barr virus status on outcome in age- andsex-defined subgroups of patients with advanced Hodgkin’s disease. Ann. Oncol. 2003, 14, 282–290. [Google Scholar] [CrossRef]
- Engel, M.; Essop, M.F.; Close, P.; Hartley, P.; Pallesen, G.; Sinclair-Smith, C. Improved prognosis of Epstein-Barr virus associated childhood Hodgkin’s lymphoma: Study of 47 South African cases. J. Clin. Pathol. 2000, 53, 182–186. [Google Scholar] [CrossRef]
- Barros, M.H.M.; Scheliga, A.; De Matteo, E.; Minnicelli, C.; Soares, F.A.; Zalcberg, I.R.; Hassan, R. Cell cycle characteristics and Epstein–Barr virus are differentially associated with aggressive and non-aggressive subsets of Hodgkin lymphoma in pediatric patients. Leuk. Lymphoma 2010, 51, 1513–1526. [Google Scholar] [CrossRef]
- Dinand, V.; Dawar, R.; Arya, L.S.; Unni, R.; Mohanty, B.; Singh, R. Hodgkin’s lymphoma in Indian children: Prevalence and significance of Epstein-Barr virus detection in Hodgkin’s and Reed-Sternberg cells. Eur. J. Cancer 2007, 43, 161–168. [Google Scholar] [CrossRef]
- Aktas, S.; Kargı, A.; Olgun, N.; Diniz, G.; Erbay, A.; Vergin, C.; Kargi, A. Prognostic Significance of Cell Proliferation and Apoptosis-Regulating Proteins in Epstein-Barr Virus Positive and Negative Pediatric Hodgkin Lymphoma. Lymphat. Res. Biol. 2007, 5, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Chabay, P.; Lara, J.; Lorenzetti, M.; Cambra, P.; Haab, G.A.; Aversa, L.; De Matteo, E.; Preciado, M. Epstein Barr virus in relation to apoptosis markers and patients’ outcome in pediatric B-cell Non-Hodgkin lymphoma. Cancer Lett. 2011, 307, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Claviez, A.; Tiemann, M.; Luüders, H.; Krams, M.; Parwaresch, R.; Schellong, G.; Dorffel, W. Impact of latent Epstein-Barr virus infection on outcome in children and adolescents with Hodgkin’s lymphoma. J. Clin. Oncol. 2005, 23, 4048–4056. [Google Scholar] [CrossRef]
- Koh, Y.W.; Han, J.H.; Yoon, D.H.; Suh, C.; Huh, J. Epstein-Barr virus positivity is associated with angiogenesis in, and poorer survival of, patients receiving standard treatment for classical Hodgkin’s lymphoma. Hematol. Oncol. 2018, 36, 182–188. [Google Scholar] [CrossRef]
- Enblad, G.; Sandvej, K.; Sundstrom, C.; Pallesen, G.; Glimelius, B. Epstein-Barr virus distribution in Hodgkin’s disease in an unselected Swedish population. Acta Oncol. 1999, 38, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Herling, M.; Rassidakis, G.Z.; Medeiros, L.J.; Vassilakopoulos, T.P.; Kliche, K.O.; Nadali, G.; Viviani, S.; Bonfante, V.; Giardini, R.; Chilosi, M.; et al. Expression of Epstein-Barr virus latent membrane protein-1 in Hodgkin and Reed-Sternberg cells of classical Hodgkin’s lymphoma: Associations with presenting features, serum interleukin 10 levels, and clinical outcome. Clin. Cancer Res. 2003, 9, 2114–2120. [Google Scholar]
- Axdorph, U.; Porwit-MacDonald, A.; Sjöberg, J.; Grimfors, G.; Ekman, M.; Wang, W.; Biberfeld, P.; Björkholm, M. Epstein–Barr virus expression in Hodgkin’s disease in relation to patient characteristics, serum factors and blood lymphocyte function. Br. J. Cancer 1999, 81, 1182–1187. [Google Scholar] [CrossRef]
- Enblad, G.; Sandvej, K.; Lennette, E.; Sundstrom, C.; Klein, G.; Glimelius, B.; Pallesen, G. Lack of correlation between EBV serology and presence of EBV in the Hodgkin and Reed-Sternberg cells of patients with Hodgkin’s disease. Int. J. Cancer 1997, 72, 394–397. [Google Scholar] [CrossRef]
- Keresztes, K.; Miltenyi, Z.; Bessenyei, B.; Beck, Z.; Szollosi, Z.; Nemes, Z.; Olah, E.; Illes, A. Association between the Epstein-Barr Virus and Hodgkin’s Lymphoma in the North-Eastern Part of Hungary: Effects on Therapy and Survival. Acta Haematol. 2006, 116, 101–107. [Google Scholar] [CrossRef]
- Krugmann, J.; Tzankov, A.; Gschwendtner, A.; Fischhofer, M.; Greil, R.; Fend, F.; Dirnhofer, S. Longer Failure-Free Survival Interval of Epstein-Barr Virus–Associated Classical Hodgkin’s Lymphoma: A Single-Institution Study. Mod. Pathol. 2003, 16, 566–573. [Google Scholar] [CrossRef]
- Naresh, K.N.; Johnson, J.; Srinivas, V.; Soman, C.S.; Saikia, T.; Advani, S.H.; Badwe, R.A.; Dinshaw, K.A.; Muckaden, M.; Magrath, I.; et al. Epstein—Barr virus association in classical Hodgkin’s disease provides survival advantage to patients and correlates with higher expression of proliferation markers in Reed—Sternberg cells. Ann. Oncol. 2000, 11, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Morente, M.M.; Piris, M.A.; Abraira, V.; Acevedo, A.; Aguilera, B.; Bellas, C.; Fraga, M.; Garcia-Del-Moral, R.; Gomez-Marcos, F.; Menarguez, J.; et al. Adverse clinical outcome in Hodgkin’s disease is associated with loss of retinoblastoma protein expression, high Ki67 proliferation index, and absence of Epstein-Barr virus-latent membrane protein 1 expression. Blood 1997, 90, 2429–2436. [Google Scholar] [PubMed]
- Montalban, C.; Abraira, V.; Morente, M.; Acevedo, A.; Aguilera, B.; Bellas, C.; Fraga, M.; Del Moral, R.G.; Menarguez, J.; Oliva, H.; et al. Epstein-Barr virus-latent membrane protein 1 expression has a favorable influence in the outcome of patients with Hodgkin’s Disease treated with chemotherapy. Leuk. Lymphoma 2000, 39, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Trimèche, M.; Bonnet, C.; Korbi, S.; Boniver, J.; Leval, L.D. Association between Epstein-Barr virus and Hodgkin’s lymphoma in Belgium: A pathological and virological study. Leuk. Lymphoma 2007, 48, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Quijano, S.; Saavedra, C.; Fiorentino, S.; Orozco, O.; Bravo, M.M. Epstein-Barr virus presence in Colombian Hodgkin lymphoma cases and its relation to treatment response. Biomedica 2004, 24, 163–173. [Google Scholar] [CrossRef]
- Myriam, B.D.; Sonia, Z.; Hanene, S.; Teheni, L.; Mounir, T. Prognostic significance of Epstein–Barr virus (EBV) infection in Hodgkin lymphoma patients. J. Infect. Chemother. 2017, 23, 121–130. [Google Scholar] [CrossRef]
- Santisteban-Espejo, A.; Perez-Requena, J.; Atienza-Cuevas, L.; Moran-Sanchez, J.; Fernandez-Valle, M.D.C.; Bernal-Florindo, I.; Romero-Garcia, R.; Garcia-Rojo, M. Prognostic Role of the Expression of Latent-Membrane Protein 1 of Epstein–Barr Virus in Classical Hodgkin Lymphoma. Viruses 2021, 13, 2523. [Google Scholar] [CrossRef]
- Elsayed, A.A.; Asano, N.; Ohshima, K.; Izutsu, K.; Kinoshita, T.; Nakamura, S. Prognostic significance of CD 20 expression and E pstein-B arr virus (EBV) association in classical H odgkin lymphoma in J apan: A clinicopathologic study. Pathol. Int. 2014, 64, 336–345. [Google Scholar] [CrossRef]
- Souza, E.M.; Baiocchi, O.C.; Zanichelli, M.A.; Alves, A.C.; Assis, M.G.; Eiras, D.P.; Dobo, C.; Oliveira, J.S. Impact of Epstein–Barr virus in the clinical evolution of patients with classical Hodgkin’s lymphoma in Brazil. Hematol. Oncol. 2010, 28, 137–141. [Google Scholar] [CrossRef]
- Cheriyalinkal Parambil, B.; Narula, G.; Dhamne, C.; Roy Moulik, N.; Shet, T.; Shridhar, E.; Gujral, S.; Shah, S.; Laskar, S.; Khanna, N.; et al. Assessment of tumor Epstein-Barr Virus status and its impact on outcomes in intermediate and high-risk childhood classic Hodgkin Lymphoma treated at a tertiary cancer center in India. Leuk. Lymphoma 2020, 61, 3217–3225. [Google Scholar] [CrossRef]
- Vestlev, P.M.; Pallesen, G.; Sandvej, K.; Hamilton-Duroit, S.J.; Bendtzen, S.M. Prognosis of Hodgkin’s disease in not influenced by epstein-barry virus latent membrane protein. Int. J. Cancer 1992, 50, 670–671. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.; Lennard, A.; Alexander, F.; Angus, B.; Proctor, S.; Onions, D.; Jarrett, R. Prognostic significance of Epstein-Barr virus association in Hodgkin’s disease. Eur. J. Cancer 1994, 30, 1045–1046. [Google Scholar] [CrossRef]
- Levy, A.; Diomin, V.; Gopas, J.; Ariad, S.; Sacks, M.; Benharroch, D. Hodgkin’s lymphoma in the Bedouin of southern Israel: Epidemiological and clinical features. Isr. Med. Assoc. J. 2000, 2, 501–503. [Google Scholar] [PubMed]
- Vassallo, J.; Metze, K.; Traina, F.A.; de Souza, C.; Lorand-Metze, I. The prognostic relevance of apoptosis-related proteins in classical Hodgkin’s lymphomas. Leuk. Lymphoma 2003, 44, 483–488. [Google Scholar] [CrossRef]
- Lee, E.K.; Kim, S.Y.; Noh, K.-W.; Joo, E.H.; Zhao, B.; Kieff, E.; Kang, M.-S. Small molecule inhibition of Epstein–Barr virus nuclear antigen-1 DNA binding activity interferes with replication and persistence of the viral genome. Antivir. Res. 2014, 104, 73–83. [Google Scholar] [CrossRef]
- Eichenauer, D.A.; Aleman, B.M.P.; André, M.; Federico, M.; Hutchings, M.; Illidge, T.; Engert, A.; Ladetto, M.; ESMO Guidelines Committee. Hodgkin lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv19–iv29. [Google Scholar] [CrossRef]
- Kaseb, H.; Babiker, H.M. Hodgkin Lymphoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Cui, X.; Snapper, C.M. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front. Immunol. 2021, 12, 734471. [Google Scholar] [CrossRef]
- Toner, K.; Bollard, C.M. EBV+ lymphoproliferative diseases: Opportunities for leveraging EBV as a therapeutic target. Blood 2022, 139, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Heslop, H.E.; Sharma, S.; Rooney, C.M. Adoptive T-Cell Therapy for Epstein-Barr Virus–Related Lymphomas. J. Clin. Oncol. 2021, 39, 514–524. [Google Scholar] [CrossRef]
- Wu, R.; Sattarzadeh, A.; Rutgers, B.; Diepstra, A.; Berg, A.V.D.; Visser, L. The microenvironment of classical Hodgkin lymphoma: Heterogeneity by Epstein–Barr virus presence and location within the tumor. Blood Cancer, J. 2016, 6, e417. [Google Scholar] [CrossRef]
- Barros, M.H.M.; Vera-Lozada, G.; Soares, F.A.; Niedobitek, G.; Hassan, R. Tumor microenvironment composition in pediatric classical Hodgkin lymphoma is modulated by age and Epstein-Barr virus infection. Int. J. Cancer 2011, 131, 1142–1152. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, O.; Barros, M.H.; De Matteo, E.; Lombardi, M.G.; Preciado, M.V.; Niedobitek, G.; Chabay, P. M1-like macrophage polarization prevails in young children with classic Hodgkin Lymphoma from Argentina. Sci. Rep. 2019, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, O.; Colli, S.; Lombardi, M.G.; Preciado, M.V.; De Matteo, E.; Chabay, P. Epstein–Barr virus recruits PDL1-positive cells at the microenvironment in pediatric Hodgkin lymphoma. Cancer Immunol. Immunother. 2020, 70, 1519–1526. [Google Scholar] [CrossRef]
- Satoh, T.; Wada, R.; Yajima, N.; Imaizumi, T.; Yagihashi, S. Tumor Microenvironment and RIG-I Signaling Molecules in Epstein Barr Virus-Positive and -Negative Classical Hodgkin Lymphoma of the Elderly. J. Clin. Exp. Hematop. 2014, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Assis, M.C.G.; Campos, A.H.F.M.; de Oliveira, J.S.R.; Soares, F.A.; Silva, J.M.K.; Silva, P.B.; Penna, A.D.; Souza, E.M.; Baiocchi, O.C.G. Increased expression of CD4+CD25+FOXP3+ regulatory T cells correlates with Epstein–Barr virus and has no impact on survival in patients with classical Hodgkin lymphoma in Brazil. Med. Oncol. 2012, 29, 3614–3619. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, V.; Yikilmaz, A.S.; Kilicarslan, A.; Bakanay, S.M.; Akinci, S.; Dilek, I. The Triple Positivity for EBV, PD-1, and PD-L1 Identifies a Very High Risk Classical Hodgkin Lymphoma. Clin. Lymphoma Myeloma Leuk. 2020, 20, e375–e381. [Google Scholar] [CrossRef]
- Sueur, C.; Lupo, J.; Mas, P.; Morand, P.; Boyer, V. Difference in cytokine production and cell cycle progression induced by Epstein-Barr virus Lmp1 deletion variants in Kmh2, a Hodgkin lymphoma cell line. Virol. J. 2014, 11, 94. [Google Scholar] [CrossRef]
- IIncrocci, R.; McAloon, J.; Montesano, M.; Bardahl, J.; Vagvala, S.; Stone, A.; Swanson-Mungerson, M. Epstein-Barr virus LMP2A utilizes Syk and PI3K to activate NF-kappaB in B-cell lymphomas to increase MIP-1alpha production. J. Med. Virol. 2019, 91, 845–855. [Google Scholar] [CrossRef]
- Baumforth, K.R.; Birgersdotter, A.; Reynolds, G.M.; Wei, W.; Kapatai, G.; Flavell, J.R.; Kalk, E.; Piper, K.; Lee, S.; Machado, L.; et al. Expression of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear antigen 1 in Hodgkin’s lymphoma cells mediates Up-regulation of CCL20 and the migration of regulatory T cells. Am. J. Pathol. 2008, 173, 195–204. [Google Scholar] [CrossRef]
- Kis, L.L.; Salamon, D.; Persson, E.K.; Nagy, N.; Scheeren, F.A.; Spits, H.; Klein, G.; Klein, E. IL-21 imposes a type II EBV gene expression on type III and type I B cells by the repression of C- and activation of LMP-1-promoter. Proc. Natl. Acad. Sci. USA 2009, 107, 872–877. [Google Scholar] [CrossRef]
- Kis, L.L.; Takahara, M.; Nagy, N.; Klein, G.; Klein, E. Cytokine mediated induction of the major Epstein–Barr virus (EBV)-encoded transforming protein, LMP-1. Immunol. Lett. 2006, 104, 83–88. [Google Scholar] [CrossRef] [PubMed]
Study | Population | No. of Patients | NLPHL Included | Age (Years) | Effect (No Age Split) | Children/Adolescents | Young Adults | Older Adults |
---|---|---|---|---|---|---|---|---|
Claviez (2005) [63] | Multinational | 842 | yes | 2–20 | NEG | |||
Koh (2018) [64] | South Korea | 135 | no | <15 | NEG | |||
Dinand (2007) [60] | India | 118 | yes | <15 | no | |||
Aktas (2007) [61] | Turkey | 63 | no | Paediatric patients | no | |||
Chabay (2008) [62] | Brazil, Argentina | 176 | yes | 0–18 | no | |||
Engel (2000) [58] | South Africa | 36 | no | ≤14 | POS | |||
Keegan (2005) [46] | USA | 922 | no | up to 96 | POS | no | NEG | |
Barros (2010) [59] | Brazil | 104 | no | up to 18 | POS | |||
Koh (2012) [53] | S Korea | 159 | yes | 4–77 | NEG | NEG | ||
Jarrett (2005) [47] | UK | 437 | no | 16–74 | NEG | no | NEG | |
Clarke (2001) [48] | USA | 311 | yes | 19–79 | no | NEG | ||
Kwon (2006) [54] | Korea | 56 | yes | 6–77 | NEG | POS | ||
Glavina-Durdov (2001) [55] | Croatia | 100 | yes | 13–84 | no | POS | ||
Murray (1999) [56] | UK | 190 | yes | 22–49 | POS | |||
Flavell (2003) [57] | UK | 273 | yes | ≥15 | no | POS | ||
Stark (2002) [49] | UK | 102 | yes | ≥60 | NEG | |||
Diepstra (2009) [50] | Netherlands | 412 | no | 7–91 | no | NEG | ||
Wang (2021) [51] | China | 134 | yes | 5–74 | no | NEG | ||
Enblad (1999) [65] | Sweden | 117 | yes | 11–87 | NEG | |||
Proctor (2002) [52] | UK | 94 | no | >60 | no | |||
Herling(2003) [66] | USA, Italy, Greece | 303 | no | adults | no | |||
Axdorph (1999) [67] | Sweden | 95 | no | 14–77 | no | |||
Enblad (1997) [68] | Sweden | 107 | yes | 6–87 | no | |||
Keresztes (2006) [69] | Hungary | 109 | no | >61 | no | |||
Krugmann (2003) [70] | Austria | 119 | no | 14–83 | POS | |||
Naresh (2000) [71] | India | 110 | no | 4–61 | POS | |||
Morente (1997) [72] | Spain | 140 | yes | 5–83 | POS | |||
Montalban (2000) [73] | Spain | 110 | yes | NK | POS | |||
Trimeche (2007) [74] | Belgium | 111 | no | 8–88 | NEG | |||
Quijano (2004) [75] | Columbia | 67 | no | NK | POS | |||
Myriam (2017) [76] | Tunisia | 131 | no | 4–83 | NEG | |||
Santisteban-Espejo (2021) [77] | Spain | 88 | no | 19–82 | NEG | |||
Elsayed (2014) [78] | Japan | 389 | no | 4–89 | NEG | |||
Souza (2010) [79] | Brazil | 97 | no | >18 | no | |||
Cheriyalinkal Parambil (2020) [80] | India | 189 | no | ≥15 | POS | |||
Vestlev (1992) [81] | Denmark | 66 | no | 12.8–60.5 | no | |||
Armstrong (1994) [82] | UK | 59 | yes | NK | no | |||
Levy (2000) [83] | Israel | 134 | yes | 4–50+ | NEG | |||
Vassalo (2003) [84] | Brazil | 78 | no | >15 | POS | |||
Lee (2014) [85] | various | * | NA | NA | no |
In EBV Study (n = 189) | Not in EBV Study (n = 198) | p-Value | |
---|---|---|---|
Age at diagnosis | 0.9 | ||
Median, IQR | 13.32 (10.25–14.86) | 13.20 (10.00–14.69) | |
Gender | 0.9 | ||
Male | 119 (65.0%) | 116 (58.5%) | |
Female | 64 (35.0%) | 82 (41.5%) | |
Subtype | 0.8 | ||
Nodular sclerosing | 126 (75.9%) | 129 (65.1%) | |
Mixed cellularity | 26 (15.6%) | 39 (19.6%) | |
Other/unknown | 14 (8.4%) | 30 (15.1%) | |
Stage | 0.2 | ||
I | 23 (12.5%) | 31 (15.6%) | |
II | 77 (44.8%) | 103 (52.0%) | |
III | 38 (22.4%) | 32 (16.1%) | |
IV | 37 (20.2%) | 32 (16.1%) | |
Symptoms | 0.9 | ||
A | 98 (59.0%) | 114 (57.5%) | |
B | 68 (41.0%) | 84 (42.4%) |
EBV+ (n = 62) | EBV− (n = 104) | p-Value | |
---|---|---|---|
Age at diagnosis | <0.001 | ||
Median, IQR | 10.0 (7.1–13.8) | 14.2 (12.2–15.3) | |
Gender | 0.067 | ||
Male | 44 (71.0%) | 59 (56.7%) | |
Female | 18 (29.0%) | 45 (43.3%) | |
Subtype | 0.005 | ||
Nodular sclerosing | 41 (66.1%) | 85 (81.7%) | |
Mixed cellularity | 17 (27.4%) | 9 (8.7%) | |
Other/unknown | 4 (6.5%) | 10 (9.6%) | |
Stage | 0.027 | ||
I | 8 (12.9%) | 5 (4.8%) | |
II | 29 (46.8%) | 48 (46.2%) | |
III | 18 (29.0%) | 22 (21.2%) | |
IV | 7 (11.3%) | 29 (27.9%) | |
Symptoms | 0.897 | ||
A | 37 (59.7%) | 61 (58.7%) | |
B | 25 (40.3%) | 43 (41.3%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nohtani, M.; Vrzalikova, K.; Ibrahim, M.; Powell, J.E.; Fennell, É.; Morgan, S.; Grundy, R.; McCarthy, K.; Dewberry, S.; Bouchal, J.; et al. Impact of Tumour Epstein–Barr Virus Status on Clinical Outcome in Patients with Classical Hodgkin Lymphoma (cHL): A Review of the Literature and Analysis of a Clinical Trial Cohort of Children with cHL. Cancers 2022, 14, 4297. https://doi.org/10.3390/cancers14174297
Nohtani M, Vrzalikova K, Ibrahim M, Powell JE, Fennell É, Morgan S, Grundy R, McCarthy K, Dewberry S, Bouchal J, et al. Impact of Tumour Epstein–Barr Virus Status on Clinical Outcome in Patients with Classical Hodgkin Lymphoma (cHL): A Review of the Literature and Analysis of a Clinical Trial Cohort of Children with cHL. Cancers. 2022; 14(17):4297. https://doi.org/10.3390/cancers14174297
Chicago/Turabian StyleNohtani, Mahdi, Katerina Vrzalikova, Maha Ibrahim, Judith E. Powell, Éanna Fennell, Susan Morgan, Richard Grundy, Keith McCarthy, Sarah Dewberry, Jan Bouchal, and et al. 2022. "Impact of Tumour Epstein–Barr Virus Status on Clinical Outcome in Patients with Classical Hodgkin Lymphoma (cHL): A Review of the Literature and Analysis of a Clinical Trial Cohort of Children with cHL" Cancers 14, no. 17: 4297. https://doi.org/10.3390/cancers14174297
APA StyleNohtani, M., Vrzalikova, K., Ibrahim, M., Powell, J. E., Fennell, É., Morgan, S., Grundy, R., McCarthy, K., Dewberry, S., Bouchal, J., Bouchalova, K., Kearns, P., & Murray, P. G. (2022). Impact of Tumour Epstein–Barr Virus Status on Clinical Outcome in Patients with Classical Hodgkin Lymphoma (cHL): A Review of the Literature and Analysis of a Clinical Trial Cohort of Children with cHL. Cancers, 14(17), 4297. https://doi.org/10.3390/cancers14174297