Comment on Geoffroy, M.-C.; de Thé, H. Classic and Variants APLs, as Viewed from a Therapy Response. Cancers 2020, 12, 967
Author Contributions
Funding
Conflicts of Interest
References
- Marinelli, A.; Bossi, D.; Pelicci, P.G.; Minucci, S. Redundant function of retinoic acid receptor isoforms in leukemogenesis unravels a prominent function of genome topology and architecture in the selection of mutagenic events in cancer. Leukemia 2009, 23, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Geoffroy, M.-C.; de Thé, H. Classic and Variants APLs, as Viewed from a Therapy Response. Cancers 2020, 12, 967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Liang, J.-W.; Xue, H.-L.; Shen, S.-H.; Chen, J.; Tang, Y.-J.; Yu, L.-S.; Liang, H.-H.; Gu, L.-J.; Tang, J.-Y.; et al. The genetics and clinical characteristics of children morphologically diagnosed as acute promyelocytic leukemia. Leukemia 2019, 33, 1387–1399. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Song, L.; Deng, Y.; Chen, Y.; Shi, Y.; Gan, Y.; Deng, Z.; Ding, B.; He, Z.; Wang, C.; et al. Acute Myeloid Leukemia with NUP98-RARG Gene Fusion Similar to Acute Promyelocytic Leukemia: Case Report and Literature Review. OncoTargets Ther. 2020, 13, 10559–10566. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Liu, Q.; Song, F.; Cao, H.; Liu, M.; Jiang, Y.; Li, Y.; Gao, S. Alkaloid-based regimen is beneficial for acute myeloid leukemia resembling acute promyelocytic leukemia with NUP98/RARG fusion and RUNX1 mutation: A case report. Medicine 2020, 99, e22488. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Jin, C.; Zheng, G.; Li, Y.; Wang, Y.; Zhang, E.; Zhu, H.; Cai, Z. Acute myeloid leukemia with CPSF6-RARG fusion resembling acute promyelocytic leukemia with extramedullary infiltration. Ther. Adv. Hematol. 2021, 12, 2040620720976984. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Zhou, Y.R.; Zhan, Y.; Zhang, H.Q.; Zhang, Q.; Guo, Y.; Zhang, Z.L. Application of transcriptome sequencing and fusion genes analysis in the diagnosis of myeloid leukemia with normal karyotype. Zhonghua Yi Xue Za Zhi 2021, 101, 939–944. [Google Scholar]
- Liu, T.; Wen, L.; Yuan, H.; Wang, Y.; Yao, L.; Xu, Y.; Cen, J.; Ruan, C.; Wu, D.; Chen, S. Identification of novel recurrent CPSF6-RARG fusions in acute myeloid leukemia resembling acute promyelocytic leukemia. Blood 2018, 131, 1870–1873. [Google Scholar] [CrossRef]
- Qin, Y.-Z.; Huang, X.-J.; Zhu, H.-H. Identification of a novel CPSF6-RARG fusion transcript in acute myeloid leukemia resembling acute promyelocytic leukemia. Leukemia 2018, 32, 2285–2287. [Google Scholar] [CrossRef]
- Miller, C.A.; Tricarico, C.; Skidmore, Z.L.; Uy, G.L.; Lee, Y.-S.; Hassan, A.; O’Laughlin, M.D.; Schmidt, H.; Tian, L.; Duncavage, E.J.; et al. A case of acute myeloid leukemia with promyelocytic features characterized by expression of a novel RARG-CPSF6 fusion. Blood Adv. 2018, 2, 1295–1299. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, M.; Borthakur, G.; Luan, S.; Huang, X.; Tang, G.; Xu, Q.; Ji, D.; Boyer, A.D.; Li, F.; et al. Acute myeloid leukemia with a novel CPSF6-RARG variant is sensitive to homoharringtonine and cytarabine chemotherapy. Am. J. Hematol. 2020, 95, E48–E51. [Google Scholar] [CrossRef]
- Such, E.; Cervera, J.; Valencia, A.; Barragán, E.; Ibañez, M.; Luna, I.; Fuster, O.; Perez-Sirvent, M.L.; Senent, L.; Sempere, A.; et al. A novel NUP98/RARG gene fusion in acute myeloid leukemia resembling acute promyelocytic leukemia. Blood 2011, 117, 242–245. [Google Scholar] [CrossRef]
- Such, E.; Cordón, L.; Sempere, A.; Villamón, E.; Ibañez, M.; Luna, I.; Gómez-Seguí, I.; López-Pavía, M.; Alonso, C.; Lo-Coco, F.; et al. In vitro all-trans retinoic acid sensitivity of acute myeloid leukemia blasts with NUP98/RARG fusion gene. Ann. Hematol. 2014, 93, 1931–1933. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, S.; Li, K.; Chen, X.-H.; Li, Y.-C.; Sun, Y.; Liu, L.-F.; Yu, H.-Y.; Zhu, H.-H. A novel entity of acute myeloid leukaemia with recurrent RARG-rearrangement resembling acute promyelocytic leukaemia. Leuk. Res. 2019, 77, 14–16. [Google Scholar] [CrossRef]
- Zhang, X.; Li, F.; Wang, J.; Suo, S.; Ling, Q.; Yu, W.; Jin, J. RARγ-rearrangements resemble acute promyelocytic leukemia and benefit from 3 + 7 regimen. Leuk. Lymphoma 2019, 60, 1831–1834. [Google Scholar] [CrossRef]
- Su, Z.; Liu, X.; Xu, Y.; Hu, W.; Zhao, C.; Zhao, H.; Feng, X.; Zhang, S.; Yang, J.; Shi, X.; et al. Novel reciprocal fusion genes involving HNRNPC and RARG in acute promyelocytic leukemia lacking RARA rearrangement. Haematologica 2020, 105, e376–e378. [Google Scholar] [CrossRef]
- Qiu, H.; Xue, Y.; Pan, J.; Wu, Y.; Wang, Y.; Shen, J.; Zhang, J. A novel t(4; 12) (q11; q13) in a patient with acute myeloid leukemia. Cancer Genet. Cytogenet. 2007, 172, 176–177. [Google Scholar] [CrossRef]
- Gong, B.-F.; Li, Q.-H.; Li, W.; Wang, Y.; Wei, H.; Wang, J.-Y.; Zhao, X.-L.; Lin, D.; Li, C.-W.; Liu, X.-P.; et al. Acute myeloid leukemia with t(11; 12)(p15; q13) translocation: Two cases report and literature review. Zhonghua Xue Ye Xue Za Zhi 2013, 34, 830–833. [Google Scholar]
- Hua, J.; Bao, X.; Xie, Y. A Rare Morphology Resembling APL with t(11; 12) (p15; q13) in Acute Myeloid Leukemia: Case Report and Literature Review. Clin. Lab. 2019, 65. [Google Scholar] [CrossRef]
- Su, Y.; Liu, W.; Guan, Y.; Song, L.; Xie, X. Clinical observation of acute myeloid leukemia with morphology supporting the diagnosis of acute promyelocytic leukemia and PML/RARa gene negative. Mod. Med. J. China 2019, 21, 42–44. [Google Scholar]
- Hu, J.; Hong, X.; Li, Z.; Lu, Q. Acute monocytic leukaemia with t(11; 12) (p15; q13) chromosomal changes: A case report and literature review. Oncol. Lett. 2015, 10, 2307–2310. [Google Scholar] [CrossRef] [Green Version]
- Chlapek, P.; Slavikova, V.; Mazanek, P.; Sterba, J.; Veselska, R. Why Differentiation Therapy Sometimes Fails: Molecular Mechanisms of Resistance to Retinoids. Int. J. Mol. Sci. 2018, 19, 132. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Parra, M.A.; Bourguet, W.; de Lera, A.R.; Gronemeyer, H. Retinoid Receptor-Selective Modulators. In The Retinoids: Biology, Biochemistry, and Disease; Dollé, P., Niederreither, K., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 165–192. ISBN 9781118628003. [Google Scholar]
- Geoffroy, M.-C.; Esnault, C.; de Thé, H. Retinoids in hematology: A timely revival? Blood 2021, 137, 2429–2437. [Google Scholar] [CrossRef]
- Coccaro, N.; Zagaria, A.; Orsini, P.; Anelli, L.; Tota, G.; Casieri, P.; Impera, L.; Minervini, A.; Minervini, C.F.; Cumbo, C.; et al. RARA and RARG gene downregulation associated with EZH2 mutation in acute promyelocytic-like morphology leukemia. Hum. Pathol. 2018, 80, 82–86. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Xu, H.; Li, J.; Yu, W. MLL-rearrangement can resemble acute promyelocytic leukemia. Leuk. Lymphoma 2019, 60, 2841–2843. [Google Scholar] [CrossRef]
- Forghieri, F.; Morselli, M.; Potenza, L.; Maccaferri, M.; Pedrazzi, L.; Coluccio, V.; Barozzi, P.; Vallerini, D.; Riva, G.; Zanetti, E.; et al. A case of JAK2 V617F-positive myelodysplastic/myeloproliferative neoplasm with unusual morphology, resembling acute promyelocytic leukemia-like disorder with a chronic course. Leuk. Lymphoma 2011, 52, 2012–2019. [Google Scholar] [CrossRef]
No. | Age/ Gender | Promyelocytes Percentage | Cytogenetics and Molecular Aberrations | Immunophenotyping | ATRA/ATO Responsivity | Treatment and Efficacy | References |
---|---|---|---|---|---|---|---|
1 | 48/F | 89% | 92, XXXX (2); CPSF6-RARG; DNMT3A-G587fs mutation | Positive: CD13, CD33, and MPO; partially positive: CD9, CD64; negative: HLA-DR, CD117, CD34, CD14 and CD11b | ATRA+ATO, none | ATRA+ATO+idarubicin, ATRA+ATO+IA+G-CSF, then decitabine, NR. Abondoned treatment then died | [8] |
2 | 51/F | 87.5% | del(12)(p12)(2)/46,XX (18); CPSF6-RARG; WT1 and K-RAS mutations | Positive: CD13, CD33, MPO, and CD9; partially positive: CD34; negative: HLA-DR, CD2, CD7, CD10, CD11c, CD14, and CD38 | ATRA, none | ATRA+daunorubicin, NR; then DA, morphologic remission. followed by 2 courses of HD-AC and 2 courses of 7+3 chemotherapy, CR | [8] |
3 | 38/M | 65% | 46,XY (20); CPSF6-RARG; WT1-R462Q mutations | Positive: CD117, CD123, CD34, CD33 and CD13; partially positive: CD9, CD64; negative: CD11b, HLA-DR, CD38, CD56, and CD14 | ATRA, none. suspected differentiation syndrome | ATRA+RIF, then MA as induction therapy, died on the 37th day | [9] |
4 | 26/M | 60% blasts, 15% promyelocytes | 45,X,-Y (10)/45, idem, add(6)(q?13)(2)/46,XY (8); RARG-CPSF6; BMPR1A, NEAT1, WT1 mutations | Positive: CD33, CD13, CD64; partially positive: CD117; weak: HLA-DR; negative: CD34, CD56, CD19, CD2, CD5, CD123, CD14, CD11b, and TdT | ATRA, not exhibited | ATRA+IA, lacking efficacy introduction | [10] |
5 | 5/M | Not exhibited | 46,XY; RARG-CPSF6/CPSF6-RARG | Not exhibited | Not exhibited | ATRA+chemotherapy, relapse then death(11 months from diagnosis) | [3] |
6 | 55/M | 93% | 46,XY; RARG-CPSF6 | Positive: CD13, CD33, CD117, CD56; negative: HLA-DR, CD34, CD38, CD15, CD14, CD7, CD2, CD3, CD4, CD8, CD19, CD20, CD10 | ATRA+ATO, none | ATRA+ATO, switched to IA, NR; then HA, CR. followed by 4 courses of HA and 1 course of EA as maintenance therapy | [11] |
7 | 67/F | 72% | 46,XX; CPSF6-RARG; WT1 mutation | Positive: MPO, CD13, CD33; partially positive: CD71, negative: CD14, CD19, CD34, CD38, CD64, CD117, CD11b, CD11c, HLA-DR | ATRA(10 days), NR | 1 week of ATRA then plus HA, died during the course | [6] |
8 | 55/M | 5.5% blasts, 88% promyelocytes | 46,XY; CPSF6-RARG | Positive: CD33, CD13, CD117, CD56, negative: CD34, HLA-DR | ATRA, none | ATRA plus 3 + 7 schedule, NR; then HA, sustained CR | [7] |
No. | Age/ Gender | Promyelocytes Percentage | Cytogenetics and Mutation | Immunophenotyping | ATRA/ATO Responsivity | Treatment and Efficacy | References |
---|---|---|---|---|---|---|---|
1 | 35/M | 80% | 46,XY,t(11;12)(p15;q13) (16)/46,XY (4) | Positive: CD13, CD33, CD45, CD117, cMPO; weakly positive: CD34; negative: HLA-DR, B or T-cell markers | ATRA, unknown in vivo, none in vitro | IA, CR, followed by consolidation chemotherapy, then auto-PBSCT, CR for 2 years. Died when relapsed during ATRA+salvage treatment+UCBT | [12,13] |
2 | 45/F | 94.5% | 46,XX,t(11;12)(p15;q13) (16)/46 XX (4); WT1-R445W mutation | Positive: MPO, CD117, CD33, CD13, CD38, CD64; negative: CD34, CD11b, HLA-DR, CD56, CD14, B or T-cell markers | None | ATRA+ATO, switched to CA, NR and died | [14] |
3 | 22/M | 91% | 46,XY,t(11;12)(p15;q13); WT1(c.1255_1256insGG, c643C>T) mutations | Positive: CD117, CD13, CD33, partially positive: HLA-DR; negative: CD34 | None | ATRA+ATO+ idarubicin, then HAA, NR; switched to DA, PR; followed by DA, CR | [15] |
4 | 47/F | 96.5% | 45,X,–X, del(9)(q13q22), t(11;12)(p15;q13) (20); IDH2, TET2, ASXL1, TP53, WT1(exon7, exon9) mutations | Positive: MPO, CD13, CD33, HLA-DR, CD56 | ATRA+ATO (14 days), none | ATRA+ATO, IA, HIAG, sequentially, CR; then HIAG, 2 cycles of half-CAG, 2 cycles of HA as consolidation chemotherapy; leukemia-free in 24-month follow-up | [4] |
5 | 18/M | 90.5% | 46,XY; RUNX1:c.319C>A mutation(onset), 8 point mutations in WT1(relapse) | Positive: CD117, CD13, CD33, CD9, CD64, CD123, cMPO; negative: HLA-DR, CD34, CD38, CD11b, B or T-cell markers | ATRA (5 days)+ ATO (13 days), NR | ATRA+ATO, switched to DA, NR; then HAA, PR; HAA, HD-AC, CR; the patient abandoned further treatment and relapsed 3 months later and died | [5] |
6 | 33/M | 93% | 46,XY | Positive: CD33, CD13, CD117; negative: CD34, HLA-DR | None | ATRA plus 3 + 7 schedule, NR and died | [7] |
No. | Age/ Gender | Promyelocytes Percentage | Cytogenetics and Mutation | Immunophenotyping | ATRA/ATO Responsivity | Treatment and Efficacy | References |
---|---|---|---|---|---|---|---|
1 | 37/M | 87% | 46,XY,t(4;12)(q11;q13) (29)/46,XY (6) | Positive: CD13, CD33, negative: CD34, HLA-DR | ATO (15 days), NR | ATO+CAG as induction therapy, died during the course | [17] |
2 | 14/M | 90% | 46,XY,t(11;12)(p15;q13) | Positive: CD13, CD33, CD 14, CD 64, CD34 | ATRA (2 weeks), NR; ATO (1 month), none | ATRA followed by ATO, then DA, MA as induction therapy, NR and died | [18] |
3 | 51/M | 81.5% | 48,X Y,t(11;12) (p15;q13),+14,+21 (10)/46,XY (10); FLT3-T K D mutation | Positive: CD13, CD33; partially positive: CD4, CD15, CD34, CD38, CD64, CD117; minority positive: CD11b; negative: HLA-DR | ATRA (8 days), NR, ATO (21 days), none | ATRA+ATO, then HDA as induction therapy, CR; followed by D+ID-AC, M+ID-AC, HA, HA, MA, MA as consolidation therapy | [18] |
4 | 21/M | 89% | 46,XY,t(11;12)(p15;q13) (20) | Positive: CD117, CD33, CD13; partially positive: CD64; negative: CD34, CD14, CD56, CD4, CD19, HLA-DR | None | ATRA+ATO+idarubicin, HAA, NR; then IA, CR; died after consolidation therapy | [19] |
5 | 60/M | 85.6% | 46,XY,t(11;12)(p15;q13) | Positive: cMPO, CD13, CD33, CD117, CD64, negative: CD34, HLA-DR | None | ATRA+ATO, NR; then DA, CR | [20] |
6 | 49/M | 78% | 46,XY,t(11;12)(p15;q13) | Positive: cMPO, CD13, CD33, CD117, CD64, negative: CD34, HLA-DR | None | ATRA+ATO, NR; then HAA, CR | [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Z.; Liu, X. Comment on Geoffroy, M.-C.; de Thé, H. Classic and Variants APLs, as Viewed from a Therapy Response. Cancers 2020, 12, 967. Cancers 2021, 13, 5883. https://doi.org/10.3390/cancers13235883
Su Z, Liu X. Comment on Geoffroy, M.-C.; de Thé, H. Classic and Variants APLs, as Viewed from a Therapy Response. Cancers 2020, 12, 967. Cancers. 2021; 13(23):5883. https://doi.org/10.3390/cancers13235883
Chicago/Turabian StyleSu, Zhan, and Xin Liu. 2021. "Comment on Geoffroy, M.-C.; de Thé, H. Classic and Variants APLs, as Viewed from a Therapy Response. Cancers 2020, 12, 967" Cancers 13, no. 23: 5883. https://doi.org/10.3390/cancers13235883
APA StyleSu, Z., & Liu, X. (2021). Comment on Geoffroy, M.-C.; de Thé, H. Classic and Variants APLs, as Viewed from a Therapy Response. Cancers 2020, 12, 967. Cancers, 13(23), 5883. https://doi.org/10.3390/cancers13235883