Prognostic Value of HER2-Low Expression in Non-Metastatic Triple-Negative Breast Cancer and Correlation with Other Biomarkers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Patient and Tumor Characteristics
2.2. HER2 Expression and Pathological Associations
2.3. Survival Analyses
3. Discussion
4. Materials and Methods
4.1. Objectives
4.2. Patients and Tumor Samples
4.3. Tissue Microarray and Immunohistochemistry
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Antibody–drug conjugate |
ASCO | American Society of Clinical Oncology |
AR | Androgen receptor |
CAP | American Society of Clinical Oncology |
CK 5/6 | Cytokeratin 5/6 |
CI | Confidence intervals |
DCC | Dextran-coated charcoal |
EGFR | Epidermal growth factor receptor |
ER | Estrogen receptor |
FISH | Fluorescence in situ hybridization |
FOXA1 | Forkhead box protein A1 |
HER2 | Human epidermal growth factor receptor 2 |
HR | Hazard ratio |
IHC | Immunohistochemistry |
ISH | in situ hybridization |
OS | Overall survival |
PD-L1 | Programmed death-ligand 1 |
PR | Progesterone receptor |
RFS | Relapse-free survival |
TILs | Tumor-infiltrating lymphocytes |
TNBC | Triple-negative breast cancer |
References
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elias, A.D. Triple-negative breast cancer: A short review. Am. J. Clin. Oncol. 2010, 33, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Carey, L.A.; Dees, E.C.; Sawyer, L.; Gatti, L.; Moore, D.T.; Collichio, F.; Ollila, D.W.; Sartor, C.I.; Graham, M.L.; Perou, C.M. The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 2007, 13, 2329–2334. [Google Scholar] [CrossRef] [Green Version]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J. Clin. Oncol. 2018, 36, 2105–2122. [Google Scholar] [CrossRef] [Green Version]
- Tarantino, P.; Hamilton, E.; Tolaney, S.M.; Cortes, J.; Morganti, S.; Ferraro, E.; Marra, A.; Viale, G.; Trapani, D.; Cardoso, F.; et al. HER2-Low Breast Cancer: Pathological and Clinical Landscape. J. Clin. Oncol. 2020, 38, 1951–1962. [Google Scholar] [CrossRef] [PubMed]
- Franchet, C.; Djerroudi, L.; Maran-Gonzalez, A.; Abramovici, O.; Antoine, M.; Becette, V.; Berghian, A.; Blanc-Fournier, C.; Brabencova, E.; Charafe-Jauffret, E.; et al. 2021 update of the GEFPICS’ recommendations for HER2 status assessment in invasive breast cancer in France. Ann. Pathol. 2021, 41, 507–520. [Google Scholar] [CrossRef]
- Zhang, H.; Katerji, H.; Turner, B.M.; Hicks, D.G. HER2-Low Breast Cancers. Am. J. Clin. Pathol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Fehrenbacher, L.; Cecchini, R.S.; Geyer, C.E., Jr.; Rastogi, P.; Costantino, J.P.; Atkins, J.N.; Crown, J.P.; Polikoff, J.; Boileau, J.F.; Provencher, L.; et al. NSABP B-47/NRG Oncology Phase III Randomized Trial Comparing Adjuvant Chemotherapy With or Without Trastuzumab in High-Risk Invasive Breast Cancer Negative for HER2 by FISH and With IHC 1+ or 2. J. Clin. Oncol. 2020, 38, 444–453. [Google Scholar] [CrossRef]
- Gianni, L.; Llado, A.; Bianchi, G.; Cortes, J.; Kellokumpu-Lehtinen, P.L.; Cameron, D.A.; Miles, D.; Salvagni, S.; Wardley, A.; Goeminne, J.C.; et al. Open-label, phase II, multicenter, randomized study of the efficacy and safety of two dose levels of Pertuzumab, a human epidermal growth factor receptor 2 dimerization inhibitor, in patients with human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 2010, 28, 1131–1137. [Google Scholar] [CrossRef] [Green Version]
- Eggemann, H.; Ignatov, T.; Burger, E.; Kantelhardt, E.J.; Fettke, F.; Thomssen, C.; Costa, S.D.; Ignatov, A. Moderate HER2 expression as a prognostic factor in hormone receptor positive breast cancer. Endocr. Relat. Cancer 2015, 22, 725–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denkert, C.; Seither, F.; Schneeweiss, A.; Link, T.; Blohmer, J.U.; Just, M.; Wimberger, P.; Forberger, A.; Tesch, H.; Jackisch, C.; et al. Clinical and molecular characteristics of HER2-low-positive breast cancer: Pooled analysis of individual patient data from four prospective, neoadjuvant clinical trials. Lancet Oncol. 2021, 22, 1151–1161. [Google Scholar] [CrossRef]
- Agostinetto, E.; Rediti, M.; Fimereli, D.; Debien, V.; Piccart, M.; Aftimos, P.; Sotiriou, C.; de Azambuja, E. HER2-Low Breast Cancer: Molecular Characteristics and Prognosis. Cancers 2021, 13, 2824. [Google Scholar] [CrossRef] [PubMed]
- Modi, S.; Park, H.; Murthy, R.K.; Iwata, H.; Tamura, K.; Tsurutani, J.; Moreno-Aspitia, A.; Doi, T.; Sagara, Y.; Redfern, C.; et al. Antitumor Activity and Safety of Trastuzumab Deruxtecan in Patients With HER2-Low-Expressing Advanced Breast Cancer: Results From a Phase Ib Study. J. Clin. Oncol. 2020, 38, 1887–1896. [Google Scholar] [CrossRef]
- Boissiere-Michot, F.; Jacot, W.; Massol, O.; Mollevi, C.; Lazennec, G. CXCR2 Levels Correlate with Immune Infiltration and a Better Prognosis of Triple-Negative Breast Cancers. Cancers 2021, 13, 2328. [Google Scholar] [CrossRef]
- Guiu, S.; Mollevi, C.; Charon-Barra, C.; Boissiere, F.; Crapez, E.; Chartron, E.; Lamy, P.J.; Gutowski, M.; Bourgier, C.; Romieu, G.; et al. Prognostic value of androgen receptor and FOXA1 co-expression in non-metastatic triple negative breast cancer and correlation with other biomarkers. Br. J. Cancer 2018, 119, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Jacot, W.; Lopez-Crapez, E.; Mollevi, C.; Boissiere-Michot, F.; Simony-Lafontaine, J.; Ho-Pun-Cheung, A.; Chartron, E.; Theillet, C.; Lemoine, A.; Saffroy, R.; et al. BRCA1 Promoter Hypermethylation is Associated with Good Prognosis and Chemosensitivity in Triple-Negative Breast Cancer. Cancers 2020, 12, 828. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, H.; Alcaraz, L.B.; Mollevi, C.; Mallavialle, A.; Jacot, W.; Boissière-Michot, F.; Simony-Lafontaine, J.; Laurent-Matha, V.; Roger, P.; Liaudet-Coopman, E.; et al. Co-Expression of Androgen Receptor and Cathepsin D Defines a Triple-Negative Breast Cancer Subgroup with Poorer Overall Survival. Cancers 2020, 12, 1244. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.Y.; Chang, M.H.; Choi, Y.L.; Lee, J.E.; Nam, S.J.; Yang, J.H.; Park, Y.H.; Ahn, J.S.; Im, Y.H. Potential candidate biomarkers for heterogeneity in triple-negative breast cancer (TNBC). Cancer Chemother Pharm. 2011, 68, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 2011, 121, 2750–2767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, B.D.; Jovanovic, B.; Chen, X.; Estrada, M.V.; Johnson, K.N.; Shyr, Y.; Moses, H.L.; Sanders, M.E.; Pietenpol, J.A. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLoS ONE 2016, 11, e0157368. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Pietenpol, J.A. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J. Pathol. 2014, 232, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Eiger, D.; Agostinetto, E.; Saude-Conde, R.; de Azambuja, E. The Exciting New Field of HER2-Low Breast Cancer Treatment. Cancers 2021, 13, 1015. [Google Scholar] [CrossRef] [PubMed]
- Schettini, F.; Chic, N.; Braso-Maristany, F.; Pare, L.; Pascual, T.; Conte, B.; Martinez-Saez, O.; Adamo, B.; Vidal, M.; Barnadas, E.; et al. Clinical, pathological, and PAM50 gene expression features of HER2-low breast cancer. npj Breast Cancer 2021, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.; Schwartz, J.N.; Hagerty, K.L.; Allred, D.C.; Cote, R.J.; Dowsett, M.; Fitzgibbons, P.L.; Hanna, W.M.; Langer, A.; et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch. Pathol. Lab. Med. 2007, 131, 18–43. [Google Scholar] [CrossRef]
- Wolff, A.C.; Hammond, M.E.; Hicks, D.G.; Dowsett, M.; McShane, L.M.; Allison, K.H.; Allred, D.C.; Bartlett, J.M.; Bilous, M.; Fitzgibbons, P.; et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 2013, 31, 3997–4013. [Google Scholar] [CrossRef] [PubMed]
- Lehmann-Che, J.; Hamy, A.S.; Porcher, R.; Barritault, M.; Bouhidel, F.; Habuellelah, H.; Leman-Detours, S.; de Roquancourt, A.; Cahen-Doidy, L.; Bourstyn, E.; et al. Molecular apocrine breast cancers are aggressive estrogen receptor negative tumors overexpressing either HER2 or GCDFP15. Breast Cancer Res. 2013, 15, R37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, U.; Ardasheva, A.; Mahmud, Z.; Coombes, R.C.; Yague, E. FOXA1 is a determinant of drug resistance in breast cancer cells. Breast Cancer Res. Treat. 2021, 186, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Rossi, V.; Sarotto, I.; Maggiorotto, F.; Berchialla, P.; Kubatzki, F.; Tomasi, N.; Redana, S.; Martinello, R.; Valabrega, G.; Aglietta, M.; et al. Moderate immunohistochemical expression of HER-2 (2+) without HER-2 gene amplification is a negative prognostic factor in early breast cancer. Oncologist 2012, 17, 1418–1425. [Google Scholar] [CrossRef] [Green Version]
- Lamy, P.J.; Fina, F.; Bascoul-Mollevi, C.; Laberenne, A.C.; Martin, P.M.; Ouafik, L.; Jacot, W. Quantification and clinical relevance of gene amplification at chromosome 17q12-q21 in human epidermal growth factor receptor 2-amplified breast cancers. Breast Cancer Res. 2011, 13, R15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamy, P.J.; Nanni, I.; Fina, F.; Bibeau, F.; Romain, S.; Dussert, C.; Penault Llorca, F.; Grenier, J.; Ouafik, L.H.; Martin, P.M. Reliability and discriminant validity of HER2 gene quantification and chromosome 17 aneusomy analysis by real-time PCR in primary breast cancer. Int. J. Biol. Markers 2006, 21, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Goldhirsch, A.; Glick, J.H.; Gelber, R.D.; Coates, A.S.; Thurlimann, B.; Senn, H.J. Meeting highlights: International expert consensus on the primary therapy of early breast cancer 2005. Ann. Oncol. 2005, 16, 1569–1583. [Google Scholar] [CrossRef] [PubMed]
- Jacot, W.; Gutowski, M.; Azria, D.; Romieu, G. Adjuvant early breast cancer systemic therapies according to daily used technologies. Crit. Rev. Oncol. Hematol. 2011, 82, 361–369. [Google Scholar] [CrossRef] [PubMed]
Variables | N = 296 | % |
---|---|---|
Age (years), median [min–max] | 57.7 [28.5–98.6] | |
Tumor size (missing = 1) | ||
T1 | 135 | 45.8 |
T2 | 139 | 47.1 |
T3/T4 | 21 | 7.1 |
Nodal status | ||
N− | 188 | 63.5 |
N+ | 108 | 36.5 |
Histological grade (missing = 6) | ||
1–2 | 61 | 21 |
3 | 229 | 79 |
Histology (missing = 3) | ||
Ductal | 240 | 81.9 |
Lobular | 16 | 5.5 |
Other | 37 | 12.6 |
Adjuvant chemotherapy (missing = 1) | ||
No | 73 | 24.7 |
Yes | 222 | 75.3 |
Basal-like phenotype (missing = 3) | ||
No | 106 | 36.2 |
Yes | 187 | 63.8 |
Molecular apocrine (AR/FOXA1) phenotype (missing = 20) | ||
AR+/FOXA1+ | 111 | 40.2 |
AR−and/or FOXA1− | 165 | 59.8 |
TILs %, median [min-max] (missing = 10) | 5 | (1–80) |
≤5 | 174 | 60.8 |
>5 | 112 | 39.2 |
PD-L1 expression tumor cells (%; missing = 26) | ||
<1% | 116 | 43 |
≥1% | 154 | 57 |
PD-L1 expression immune cells (%; missing = 29) | ||
0 | 50 | 18.7 |
]0–10] | 80 | 30 |
]10–50] | 75 | 28.1 |
>50 | 62 | 23.2 |
HER2 | ||
0 | 248 | 83.8 |
1+ | 40 | 13.5 |
2+ | 8 | 2.7 |
Variables | HER2 = 0 | HER2 = 1+/2+ | p-Value | ||
---|---|---|---|---|---|
N | % | N | % | ||
Age (years), median [min–max] | 0.047 | ||||
<55 | 116 | 46.8 | 15 | 31.3 | |
≥55 | 132 | 53.2 | 33 | 68.7 | |
Tumor size | |||||
T1 | 115 | 46.6 | 20 | 41.7 | |
T2 | 114 | 46.1 | 25 | 52.1 | 0.803 |
T3/T4 | 18 | 7.3 | 3 | 6.2 | |
Node status | |||||
N− | 157 | 63.3 | 31 | 64.6 | 0.866 |
N+ | 91 | 36.7 | 17 | 35.4 | |
Histological grade | 0.007 | ||||
1–2 | 44 | 18.2 | 17 | 35.4 | |
3 | 198 | 81.8 | 31 | 64.6 | |
Basal-like phenotype | 0.387 | ||||
No | 86 | 35.1 | 20 | 41.7 | |
Yes | 159 | 64.9 | 28 | 58.3 | |
Molecular apocrine (AR/FOXA1) phenotype | 0.008 | ||||
AR+/FOXA1+ | 84 | 36.7 | 27 | 57.4 | |
AR−and/or FOXA1− | 145 | 63.3 | 20 | 42.6 | |
TILs% | 0.948 | ||||
≤5 | 145 | 60.9 | 29 | 60.4 | |
>5 | 93 | 39.1 | 19 | 39.6 | |
PD-L1 expression in tumor cells (%) | 0.236 | ||||
<1 | 94 | 41.4 | 22 | 51.2 | |
≥1 | 133 | 58.6 | 21 | 48.8 | |
PD-L1 expression in immune cells (%) | 0.382 | ||||
0 | 38 | 17 | 12 | 28 | |
]0–10] | 69 | 30.8 | 11 | 25.6 | |
]10–50] | 65 | 29. | 10 | 23.2 | |
>50 | 52 | 23.2 | 10 | 23.2 |
Variables | OS | RFS | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Age (years) | <0.001 | 0.090 | ||||
<55 | 1 | 1 | ||||
≥55 | 2.18 | 1.38–3.46 | 1.51 | 0.93–2.44 | ||
Tumor size | <0.001 | <0.001 | ||||
T1 | 1 | 1 | ||||
T2/T3/T4 | 2.92 | 1.80–4.74 | 2.52 | 1.51–4.23 | ||
Nodal status | <0.001 | <0.001 | ||||
N− | 1 | 1 | ||||
N+ | 2.07 | 1.36–3.15 | 3.87 | 2.38–6.29 | ||
Histological grade | 0.442 | 0.714 | ||||
1–2 | 1 | 1 | ||||
3 | 0.82 | 0.51–1.34 | 0.90 | 0.52–1.55 | ||
Histology | 0.063 | 0.582 | ||||
Ductal | 1 | 1 | ||||
Other | 0.57 | 0.30–1.08 | 0.84 | 0.45–1.57 | ||
Adjuvant chemotherapy | <0.001 | 0.003 | ||||
No | 1 | 1 | ||||
Yes | 0.29 | 0.19–0.44 | 0.46 | 0.29–0.75 | ||
Basal-like phenotype | 0.646 | 0.443 | ||||
No | 1 | 1 | ||||
Yes | 1.11 | 0.71–1.73 | 0.83 | 0.52–1.33 | ||
Molecular apocrine phenotype | 0.043 | 0.035 | ||||
AR−and/or FOXA1− | 1 | 1 | ||||
AR+/FOXA1+ | 1.56 | 1.02–2.40 | 1.66 | 1.04–2.65 | ||
TILs% | 0.002 | <0.001 | ||||
≤5 | 1 | 1 | ||||
>5 | 0.47 | 0.29–0.78 | 0.40 | 0.23–0.70 | ||
PD-L1 expression tumor cells (%) | 0.041 | 0.029 | ||||
<1% | 1 | 1 | ||||
≥1% | 0.63 | 0.41–0.98 | 0.59 | 0.36–0.95 | ||
PD-L1 expression immune cells (%) | 0.171 | 0.025 | ||||
0 | 1 | 1 | ||||
]0–10] | 1.57 | 0.82–3.01 | 1.41 | 0.73–2.73 | ||
]10–50] | 0.87 | 0.42–1.80 | 0.49 | 0.21–1.12 | ||
>50 | 0.94 | 0.45–1.98 | 0.85 | 0.40–1.81 | ||
HER2 (0 vs. 1+ vs. 2+) | 0.547 | 0.104 | ||||
0 | 1 | 1 | ||||
1+ | 0.83 | 0.43–1.61 | 1.06 | 0.54–2.07 | ||
2+ | 1.64 | 0.60–4.50 | 3.19 | 1.28–7.95 | ||
HER2 (0 vs. 1+/2+) | 0.909 | 0.304 | ||||
0 | 1 | 1 | ||||
1+/2+ | 0.97 | 0.55–1.71 | 1.36 | 0.77–2.40 | ||
HER2 (0/1+ vs. 2+) | 0.346 | 0.034 | ||||
0/1+ | 1 | 1 | ||||
2+ | 1.68 | 0.62–4.59 | 3.16 | 1.27–7.85 |
Variables | OS (N = 263) | RFS (N = 285) | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Tumor size | <0.001 | |||||
T1 | 1 | |||||
T2/T3/T4 | 2.56 | 1.49–4.38 | ||||
Nodal status | 0.003 | <0.001 | ||||
N- | 1 | 1 | ||||
N+ | 2.02 | 1.26–3.23 | 4.43 | 2.68–7.30 | ||
Histology | ||||||
Ductal | 1 | 0.002 | ||||
Other | 0.35 | 0.16–0.73 | ||||
Adjuvant chemotherapy | <0.001 | 0.001 | ||||
No | 1 | 1 | ||||
Yes | 0.34 | 0.21–0.53 | 0.40 | 0.24–0.65 | ||
Molecular apocrine phenotype | ||||||
AR-and/or FOXA1- | 1 | 0.048 | ||||
AR+/FOXA1+ | 1.58 | 1.00–2.49 | ||||
TILs% | 0.027 | 0.002 | ||||
≤5 | 1 | 1 | ||||
>5 | 0.57 | 0.35–0.96 | 0.44 | 0.25–0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacot, W.; Maran-Gonzalez, A.; Massol, O.; Sorbs, C.; Mollevi, C.; Guiu, S.; Boissière-Michot, F.; Ramos, J. Prognostic Value of HER2-Low Expression in Non-Metastatic Triple-Negative Breast Cancer and Correlation with Other Biomarkers. Cancers 2021, 13, 6059. https://doi.org/10.3390/cancers13236059
Jacot W, Maran-Gonzalez A, Massol O, Sorbs C, Mollevi C, Guiu S, Boissière-Michot F, Ramos J. Prognostic Value of HER2-Low Expression in Non-Metastatic Triple-Negative Breast Cancer and Correlation with Other Biomarkers. Cancers. 2021; 13(23):6059. https://doi.org/10.3390/cancers13236059
Chicago/Turabian StyleJacot, William, Aurélie Maran-Gonzalez, Océane Massol, Charlotte Sorbs, Caroline Mollevi, Séverine Guiu, Florence Boissière-Michot, and Jeanne Ramos. 2021. "Prognostic Value of HER2-Low Expression in Non-Metastatic Triple-Negative Breast Cancer and Correlation with Other Biomarkers" Cancers 13, no. 23: 6059. https://doi.org/10.3390/cancers13236059
APA StyleJacot, W., Maran-Gonzalez, A., Massol, O., Sorbs, C., Mollevi, C., Guiu, S., Boissière-Michot, F., & Ramos, J. (2021). Prognostic Value of HER2-Low Expression in Non-Metastatic Triple-Negative Breast Cancer and Correlation with Other Biomarkers. Cancers, 13(23), 6059. https://doi.org/10.3390/cancers13236059