Essential Thrombocythemia in Children and Adolescents
Abstract
:Simple Summary
Abstract
1. Introduction
2. Hereditary/Familial Thrombocytosis (HT)
3. Reactive/Secondary Thrombocytosis (ST)
4. Essential Thrombocythemia (ET)
5. Clinical and Molecular Biology of Adult ET
6. Differential Diagnosis of Pediatric ET
7. Clinical Features and Prognosis
8. Managing Thrombocythemia in Children
8.1. Antiaggregating Agents
8.2. Anticoagulants
8.3. Cytoreductive Drugs
8.3.1. Hydroxyurea (HU)
8.3.2. Interferon-Alpha (IFN-a)
8.3.3. Anagrelide
8.4. JAK2-Inhibitors
9. Conclusions
- (1)
- The diagnosis of ET is rare but not impossible in children. It requires: (i) extensive evaluation of any possible reactive condition; (ii) studies by molecular and histological methods; and (iii) prolonged follow-up.
- (2)
- The diagnostic WHO criteria for ET can be used in children as in adults; in addition, pediatric diagnostic guidelines should consider the possibility of familial hereditary cases.
- (3)
- Children with confirmed ET rarely have thrombotic and hemorrhagic events and can be considered as low-risk patients.
- (4)
- In asymptomatic children, a wait-and-watch approach is the best managing option.
- (5)
- Cytoreductive drugs in children with ET should only be prescribed in selected cases. To date, there exists insufficient data to recommend a specific agent in children and the choice should be individually tailored.
- (6)
- Collaborative efforts are needed to study ET and other MPN in children and adolescents, to follow and better understand their clinical and hematological behavior.
- (7)
- Finally, therapeutic approaches, which are widely harmonized, need to be confirmed by cooperative studies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fialkow, P.J.; Faguet, G.B.; Jacobson, R.J.; Vaidya, K.; Murphy, S. Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood 1981, 58, 916–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbui, T.; Thiele, J.; Tefferi, A. Myeloproliferative neoplasms. N. Engl. J. Med. 2017, 377, 894–895. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hesperian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Barbui, T.; Thiele, J.; Gisslinger, H.; Kvasnicka, H.M.; Vannucchi, A.M.; Guglielmelli, P.; Orazi, A.; Tefferi, A. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: Document summary and in-depth discussion. Blood Cancer J. 2018, 8, 15. [Google Scholar] [CrossRef]
- Hasle, H. Incidence of essential trombocytemia in children. Br. J. Haematol. 2000, 110, 751. [Google Scholar] [CrossRef]
- Dame, C.; Sutor, A.H. Primary and secondary thrombocytosis in childhood. Br. J. Haematol. 2005, 129, 165–177. [Google Scholar] [CrossRef]
- Matsubara, K.; Fukaya, T.; Nigami, H.; Harigaya, H.; Hirata, T.; Nozaki, H.; Baba, K. Age-dependent changes in the incidence and etiology of childhood thrombocytosis. Acta Haematol. 2004, 111, 132–137. [Google Scholar] [CrossRef]
- Hofmann, I. Myeloproliferative neoplasms in children. J. Hematop. 2015, 8, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Orkin, S.; David, G.; Nathan, D.G.; Nathan, D. Nathan and Oski’s Hematology of Infancy and Childhood; Saunders: Philadelphia, PA, USA, 2008. [Google Scholar]
- Biino, G.; Santimone, I.; Minelli, C.; Sorice, R.; Frongia, B.; Traglia, M.; Ulivi, S.; Di Castelnuovo, A.; Gögele, M.; Nutile, T.; et al. Age-and sex-related variations in platelet count in Italy: A proposal of reference ranges based on 40987 subjects’ data. PLoS ONE 2013, 8, e54289. [Google Scholar] [CrossRef] [Green Version]
- AIEOP Raccomandazioni per la Gestione Delle Trombocitosi in età Pediatrica. 2015. Available online: https://www.aieop.org/web/operatori-sanitari/linee-guida-consensum/ (accessed on 2 December 2021).
- Harrison, C.N.; Bareford, D.; Butt, N.; Campbell, P.; Conneally, E.; Drummond, M.; Erber, W.; Everington, T.; Green, A.R.; Hall, G.W.; et al. British Committee for standards in haematology. Guideline for investigation and management of adults and children presenting with a thrombocytosis. Br. J. Haematol. 2010, 149, 352–375. [Google Scholar] [CrossRef]
- Teofili, L.; Giona, F.; Martini, M.; Cenci, T.; Guidi, F.; Torti, L.; Palumbo, G.; Amendola, A.; Leone, G.; Foà, R.; et al. The revised WHO diagnostic criteria for Ph-negative myeloproliferative diseases are not appropriate for the diagnostic screening of childhood polycythemia vera and essential thrombocythemia. Blood 2007, 110, 3384–3386. [Google Scholar] [CrossRef] [Green Version]
- Randi, M.L.; Putti, M.C.; Scapin, M.; Pacquola, E.; Tucci, F.; Micalizzi, C.; Zanesco, L.; Fabris, F. Pediatric patients with essential thrombocythemia are mostly polyclonal and V617FJAK2 negative. Blood 2006, 108, 3600–3602. [Google Scholar] [CrossRef] [Green Version]
- Randi, M.L.; Geranio, G.; Bertozzi, I.; Micalizzi, C.; Ramenghi, U.; Tucci, F.; Notarangelo, L.D.; Ladogana, S.; Menna, G.; Giordano, P.; et al. Are all cases of paediatric essential thrombocythaemia really myeloproliferative neoplasms? Analysis of a large cohort. Br. J. Haematol. 2015, 169, 584–589. [Google Scholar] [CrossRef]
- Giona, F.; Teofili, L.; Moleti, M.L.; Martini, M.; Palumbo, G.; Amendola, A.; Mazzucconi, M.G.; Testi, A.M.; Pignoloni, P.; Orlando, S.M.; et al. Thrombocythemia and polycythemia in patients younger than 20 years at diagnosis: Clinical and biologic features, treatment, and long-term outcome. Blood 2012, 119, 2219–2227. [Google Scholar] [CrossRef] [Green Version]
- Fu, R.; Zhang, L.; Yang, R. Paediatric essential thrombocythaemia: Clinical and molecular features, diagnosis and treatment. Br. J. Haematol. 2013, 163, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Kucine, N.; Chastain, K.M.; Mahler, M.B.; Bussel, J.B. Primary thrombocytosis in children. Haematologica 2014, 99, 620–628. [Google Scholar] [CrossRef] [Green Version]
- Teofili, L.; Giona, F.; Torti, L.; Cenci, T.; Ricerca, B.M.; Rumi, C.; Nunes, V.; Foà, R.; Leone, G.; Martini, M.; et al. Hereditary thrombocytosis caused by MPLSer505Asn is associated with a high thrombotic risk, splenomegaly and progression to bone marrow fibrosis. Haematologica 2010, 95, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Teofili, L.; Larocca, L.M. Advances in understanding of the pathogenesis of familial thrombocythemia. Br. J. Haematol. 2011, 152, 701–712. [Google Scholar] [CrossRef]
- Ghilardi, N.; Wiestner, A.; Kikuchi, M.; Osaka, A.; Skoda, R.C. Hereditary thrombocythemia in a Japanese family is caused by a novel point mutation in the thrombopoietin gene. Br. J. Haematol. 1999, 107, 310–316. [Google Scholar] [CrossRef]
- Wiestner, A.; Schempler, R.J.; van der Maas, A.P.; Scoda, R.C. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocytosis. Nat. Genet. 1998, 18, 49–52. [Google Scholar] [CrossRef]
- Liu, K.; Martini, M.; Rocca, B.; Amos, C.I.; Teofili, L.; Giona, F.; Ding, J.; Komatsu, H.; Larocca, L.M.; Skoda, R.C. Evidence for a founder effect of the MPL-S505N mutation in eight Italian pedigrees with hereditary thrombocythemia. Haematologica 2009, 94, 1368–1374. [Google Scholar] [CrossRef]
- Sungarian, R.; Markovich, B.; Chong, B.H. Localization and regulation of thrombopoietin mRNA expression in human kidney, liver, bone marrow and spleen using in situ hybridization. Blood 1997, 89, 101–107. [Google Scholar] [CrossRef]
- Kaushansky, K. Thrombopoietina and its receptor in normal and neoplastic hematopoiesis. Thromb. J. 2016, 14, 40. [Google Scholar] [CrossRef] [Green Version]
- Wolber, E.M.; Fandrey, J.; Frackowski, U.; Jelkmann, W. Hepatic thrombopoietin mRNAis increased in acute infections. Br. J. Haematol. 2002, 116, 612–618. [Google Scholar] [CrossRef]
- Tefferi, A.; Ho, T.C.; Ahmann, G.J.; Katzmann, J.A.; Greipp, P.R. Plasma interleukin-6 and C-reactive protein levels in reactive versus clonal thrombocytosis. Am. J. Med. 1994, 97, 374–378. [Google Scholar] [CrossRef]
- Wolber, E.M.; Jelkmann, W. Interleukin-6 increases thrombopoietin production in human hepatoma cells HepG2 and Hep3B. J. Interferon Cytokine Res. 2000, 20, 499–506. [Google Scholar] [CrossRef]
- Garoufi, A.; Voutsioti, K.; Tsapra, H.; Karpathios, T.; Zeis, P.M. Reactive thrombocytosis in children with upper urinary tract infections. Acta Paediatr. 2001, 90, 448–449. [Google Scholar] [CrossRef]
- Indolfi, G.; Catania, P.; Bartolini, E.; Azzari, C.; Massai, C.; Poggi, G.M.; De Martino, M.; Resti, M. Incidence and clinical significance of reactive thrombocytosis in children aged 1 to 24 months, hospitalized for community-acquired infections. Platelets 2008, 19, 409–414. [Google Scholar] [CrossRef]
- Wang, J.L.; Huang, L.T.; Wu, K.H.; Lin, H.W.; Ho, M.Y.; Liu, H.E. Associations of reactive thrombocytosis with clinical characteristics in pediatric diseases. Pediatr. Neonatol. 2011, 52, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Lee, D.H.; Jung, N.; Choi, H.J.; Shim, Y.J. A cross-sectional retrospective study to analyze the underlying causes and clinical characteristics of children with reactive thrombocytosis at a Korean tertiary medical center. Blood Res. 2018, 53, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Thom, C.S.; Echevarria, E.; Osborne, A.D.; Carr, L.; Rubey, K.M.; Salazar, E.; Callaway, D.; Pawlowski, T.; Devine, M.; Kleinman, S.; et al. Extreme thrombocytosis is associated with critical illness and young age, but not increased thrombotic risk, in hospitalized pediatric patients. Thromb. Haemost. 2020, 18, 3352–3358. [Google Scholar] [CrossRef] [PubMed]
- Rokkam, V.R.; Kotagiri, R. Secondary Thrombocytosis; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Stockklausner, C.; Duffert, C.M.; Cario, H.; Knöfler, H.; Streif, W.; Kulozik, A.E. Thrombocytosis in children and adolescents-classification, diagnostic approach, and clinical management. Ann. Hematol. 2021, 100, 1647–1665. [Google Scholar] [CrossRef] [PubMed]
- Nigrovic, L.E.; Nigrovic, P.A.; Harper, M.B.; Chiang, V.W. Extreme thrombocytosis predicts Kawasaki disease in infants. Clin. Pediatr. 2006, 45, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.D.; Greer, F.R.; The Committee on Nutrition. Diagnosis and prevention of iron deficiency and iron deficiency anemia in infants and young children (0–2 years of age). Pediatrics 2010, 126, 1040–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evstatiev, R.; Bukaty, A.; Jimenez, K.; Kulnigg-Dabschet, S.; Surman, L.; Schmid, W.; Eferl, R.; Lippert, K.; Scheiber-Mojdehkar, B.; Kvasnicka, H.M. Iron deficiency alters megakaryopoiesis and platelet phenotype independent of thrombopoietin. Am. J. Hematol. 2014, 89, 524–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulnigg-Dabsch, S.; Evstatiev, R.; Dejaco, C.; Gasche, C. Effect of iron therapy on platelet counts in patients with inflammatory bowel disease-associated anemia. PLoS ONE 2012, 7, e34520. [Google Scholar] [CrossRef] [Green Version]
- Cerutti, A.; Custodi, P.; Duranti, M.; Cazzola, M.; Balduini, C.L. Circulating thrombopoietin in reactive conditions behaves like an acute phase reactant. Clin. Lab. Haematol. 1999, 2, 271–275. [Google Scholar] [CrossRef]
- Bleeker, J.S.; Hogan, W.J. Thrombocytosis: Diagnostic evaluation, thrombotic risk stratification, and risk-based management strategies. Thrombosis 2011, 2011, 536062. [Google Scholar] [CrossRef]
- Samuk, I.; Seguier-Lipszyc, E.; Baazov, A.; Tamay, H.; Nahum, E.; Steinberg, R.; Freud, E. Emergency or urgent splenectomy in children for non-traumatic reasons. Eur. J. Pediatr. 2019, 178, 1363–1367. [Google Scholar] [CrossRef]
- Ianotto, J.C.; Curto-Garcia, N.; Lauermanova, M.; Radia, D.; Kiladjian, J.J.; Harrison, C.N. Characteristics and outcomes of patients with essential thrombocythemia or polycythemia vera diagnosed before 20 years of age: A systematic review. Haematologica 2019, 104, 1580–1588. [Google Scholar] [CrossRef]
- Kucine, N. Myeloproliferative neoplasms in children, adolescents, and young adults. Curr. Hematol. Malig. Rep. 2020, 15, 141–148. [Google Scholar] [CrossRef]
- Baxter, E.J.; Scott, L.M.; Campbell, P.J.; East, C.; Fourouclas, N.; Swanton, S.; Vassiliou, G.S.; Bench, A.J.; Boyd, E.M.; Curtin, N.; et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Cancer Genome Project. Lancet 2005, 365, 1054–1061. [Google Scholar] [CrossRef]
- James, C.; Ugo, V.; Le Couédic, J.P.; Staerk, J.; Delhommeau, F.; Lacout, C.; Garçon, L.; Raslova, H.; Berger, R.; Bennaceur-Griscelli, A.; et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005, 434, 1144–1148. [Google Scholar] [CrossRef]
- Kralovics, R.; Passamonti, F.; Buser, A.S.; Teo, S.S.; Tiedt, R.; Passweg, J.R.; Tichelli, A.; Cazzola, M.; Skoda, R.C. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 2005, 52, 1779–1790. [Google Scholar] [CrossRef] [Green Version]
- Levine, R.L.; Wadleigh, M.; Cools, J.; Ebert, B.L.; Wernig, G.; Huntly, B.J.; Boggon, T.J.; Wlodarska, I.; Clark, J.J.; Moore, S.; et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005, 7, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Xing, S.; Li, Z.; Fu, X.; Li, Q.; Krantz, S.B.; Zhao, Z.J. Identification of an acquired JAK2 mutation in polycythemia vera. J. Biol. Chem. 2005, 80, 22788–22792. [Google Scholar] [CrossRef] [Green Version]
- Pardanani, A.D.; Levine, R.L.; Lasho, T.; Pikman, Y.; Mesa, R.A.; Wadleigh, M.; Steensma, D.P.; Elliott, M.A.; Wolanskyj, A.P.; Hogan, W.J.; et al. MPL515 mutations in myeloproliferative and other myeloid disorders: A study of 1182 patients. Blood 2006, 108, 3472–3476. [Google Scholar] [CrossRef] [Green Version]
- Pikman, Y.; Lee, B.H.; Mercher, T.; McDowell, E.; Ebert, B.L.; Gozo, M.; Cuker, A.; Wernig, G.; Moore, S.; Galinsky, I.; et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006, 3, e270. [Google Scholar] [CrossRef] [Green Version]
- Klampfl, T.; Gisslinger, H.; Harutyunyan, A.S.; Nivarthi, H.; Rumi, E.; Milosevic, J.D.; Them, N.C.; Berg, T.; Gisslinger, B.; Pietra, D.; et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N. Engl. J. Med. 2013, 369, 2379–2390. [Google Scholar] [CrossRef] [Green Version]
- Nangalia, J.; Massie, C.E.; Baxter, E.J.; Nice, F.L.; Gundem, G.; Wedge, D.C.; Avezov, E.; Li, J.; Kollmann, K.; Kent, D.G.; et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N. Engl. J. Med. 2013, 369, 2391–2405. [Google Scholar] [CrossRef] [Green Version]
- Tefferi, A.; Wassie, E.A.; Guglielmelli, P.; Gangat, N.; Belachew, A.A.; Lasho, T.L.; Finke, C.; Ketterling, R.P.; Hanson, C.A.; Pardanani, A.; et al. Type 1 versus Type 2 calreticulin mutations in essential thrombocythemia: A collaborative study of 1027 patients. Am. J. Hematol. 2014, 89, E121–E124. [Google Scholar] [CrossRef]
- Tefferi, A.; Barbui, T. Polycythemia vera and essential thrombocythemia: 2021 update on diagnosis, risk stratification and management. Am. J. Hematol. 2020, 95, 1599–1613. [Google Scholar] [CrossRef]
- Rotunno, G.; Mannarelli, C.; Guglielmelli, P.; Pacilli, A.; Pancrazzi, A.; Pieri, L.; Fanelli, T.; Bosi, A.; Vannucchi, A.M.; Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood 2014, 123, 1552–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumi, E.; Pietra, D.; Ferretti, V.; Klampfl, T.; Harutyunyan, A.S.; Milosevic, J.D.; Them, N.C.; Berg, T.; Elena, C.; Casetti, I.C.; et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 2014, 123, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Lasho, T.L.; Guglielmelli, P.; Finke, C.M.; Rotunno, G.; Elala, Y.; Pacilli, A.; Hanson, C.A.; Pancrazzi, A.; Ketterling, R.P.; et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 2016, 1, 21–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carobbio, A.; Thiele, J.; Passamonti, F.; Rumi, E.; Ruggeri, M.; Rodeghiero, F.; Randi, M.L.; Bertozzi, I.; Vannucchi, A.M.; Antonioli, E.; et al. Risk for arterial and venous thrombosis in WHO-defined essential thrombocythemia: An international study of 891 patients. Blood 2011, 117, 5857–5859. [Google Scholar] [CrossRef] [PubMed]
- Finazzi, G.; Carobbio, A.; Cervantes, F.; Isola, I.M.; Vannucchi, A.M.; Guglielmelli, P.; Rambaldi, A.; Finazzi, G.; Barosi, G.; Barbui, T. Calreticulin mutation does not modify the IPSET score for predicting the risk of thrombosis among 1150 patients with essential thrombocythemia. Blood 2014, 124, 2611–2612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Larran, A.; Martínez, D.; Arenillas, L.; Rubio, A.; Arellano-Rodrigo, E.; Hernández Boluda, J.C.; Papaleo, N.; Caballero, G.; Martínez, C.; Ferrer-Marín, F.; et al. Essential thrombocythaemia with mutation in MPL: Clinicopathological correlation and comparison with JAK2V617F-mutated and CALR-mutated genotypes. J. Clin. Pathol. 2018, 71, 975–980. [Google Scholar] [CrossRef]
- Palandri, F.; Latagliata, R.; Polverelli, N.; Tieghi, A.; Crugnola, M.; Martino, B.; Perricone, M.; Breccia, M.; Ottaviani, E.; Testoni, N.; et al. Mutations and long-term outcome of 217 young patients with essential thrombocythemia or early primary myelofibrosis. Leukemia 2015, 29, 1344–1349. [Google Scholar] [CrossRef]
- Barbui, T. How to manage children and young adults with myeloproliferative neoplasms. Leukemia 2012, 26, 1452–1457. [Google Scholar] [CrossRef] [Green Version]
- Farruggia, P.; D’Angelo, P.; La Rosa, M.; Scibetta, N.; Santangelo, G.; Lo Bello, A.; Duner, E.; Randi, M.L.; Putti, M.C.; Santoro, A. MPL W515L mutation in pediatric essential thrombocythemia. Pediatric Blood Cancer 2013, 60, E52–E54. [Google Scholar] [CrossRef]
- Fu, R.; Liu, D.; Cao, Z.; Zhu, S.; Li, H.; Su, H.; Zhang, L.; Xue, F.; Liu, X.; Zhang, X.; et al. Distinct molecular abnormalities underlie unique clinical features essential thrombocythemia in children. Leukemia 2016, 30, 746–749. [Google Scholar] [CrossRef] [Green Version]
- Barg, A.A.; Toren, A.; Tamary, H.; Yacobovich, J.; Steinberg-Shemer, O.; Gilad, O.; Goldstein, G.; Miskin, H.; Revel-Vilk, S.; Rosenberg, N.; et al. Essential thrombocythemia A retrospective case series. Pediatric Blood Cancer 2020, 67, e28183. [Google Scholar] [CrossRef]
- Putti, M.C.; Pizzi, M.; Bertozzi, I.; Sabattini, E.; Micalizzi, C.; Farruggia, P.; Ramenghi, U.; Cesaro, S.; Russo, G.; Peroni, E.; et al. Bone marrow histology for the diagnosis of essential thrombocythemia in children: A multicenter Italian study. Blood 2017, 129, 3040–3042. [Google Scholar] [CrossRef] [Green Version]
- Tefferi, A.; Guglielmelli, P.; Lasho, T.L.; Coltro, G.; Finke, C.M.; Loscocco, G.G.; Sordi, B.; Szuber, N.; Rotunno, G.; Pacilli, A.; et al. Mutation-enhanced international prognostic systems for essential thrombocythaemia and polycythaemia vera. Br. J. Haematol. 2020, 189, 291–302. [Google Scholar] [CrossRef]
- Karow, A.; Nienhold, R.; Lundberg, P.; Peroni, E.; Putti, M.C.; Randi, M.L.; Skoda, R.C. Mutational profile of childhood myeloproliferative neoplasms. Leukemia 2015, 29, 2407–2409. [Google Scholar] [CrossRef]
- Kucine, N.; Viny, A.D.; Rampal, R.; Berger, M.; Socci, N.; Viale, A.; Bussel, J.B.; Levine, R.L.; Rapaport, F. Genetic analysis of five children with essential thrombocytosis identified mutations in cancer-associated genes with roles in transcriptional regulation. Haematologica 2016, 101, e237–e239. [Google Scholar] [CrossRef] [Green Version]
- Alimam, S.; Villiers, W.; Dillon, R.; Simpson, M.; Runglall, M.; Smith, A.; Chatzikyriakou, P.; Lavender, P.; Kanda, A.; Mills, K.; et al. Patients with triple-negative, JAK2V617F- and CALR-mutated essential thrombocythemia share a unique gene expression signature. Blood Adv. 2021, 5, 1059–1068. [Google Scholar] [CrossRef]
- Barbui, T.; Tefferi, A.; Vannucchi, A.M.; Passamonti, F.; Silver, R.T.; Hoffman, R.; Verstovsek, S.; Mesa, R.; Kiladjian, J.J.; Hehlmann, R.; et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: Revised management recommendations from European LeukemiaNet. Leukemia 2018, 32, 1057–1069. [Google Scholar] [CrossRef] [Green Version]
- Aviner, S.; Even-Or, E.; Tamary, H. Spontaneous resolution of extreme thrombocytosis in 2 children. Pediatric Hematol. Oncol. 2012, 29, 372–377. [Google Scholar] [CrossRef]
- Finazzi, G.; Xu, M.; Barbui, T.; Hoffman, R. Essential thrombocythemia. In Hematology: Basic Principles and Practice, 5th ed.; Hoffman, R., Benz, E.J., Shattil, S.J., Furie, B., Silberstein, L.E., McGlave, P., Heslop, H., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2009; pp. 1149–1166. [Google Scholar]
- Barosi, G.; Tefferi, A.; Besses, C.; Birgegard, G.; Cervantes, F.; Finazzi, G.; Gisslinger, H.; Griesshammer, M.; Harrison, C.; Hehlmann, R.; et al. Clinical end points for drug treatment trials in BCR-ABL negative classic myeloproliferative neoplasms: Consensus statements from the European Leukemia Net (ELN) and International Working Group-Myeloproliferative neoplasms research and treatment. Leukemia 2015, 25, 20–26. [Google Scholar] [CrossRef]
- Tefferi, A.; Szuber, N.; Pardanani, A.; Hanson, C.A.; Vannucchi, A.M.; Barbui, T.; Gangat, N. Extreme thrombocytosis in low-risk essential thrombocythemia: Retrospective review of vascular events and treatment strategies. Am. J. Hematol. 2021, 96, E182–E184. [Google Scholar] [CrossRef]
- Tokgoz, H.; Caliskan, U.; Yüksekkaya, H.A.; Kucukkaya, R. Essential thrombocythemia with Mpl W515 K mutation in a child presenting with Budd-Chiari syndrome. Platelets 2015, 26, 805–808. [Google Scholar] [CrossRef]
- Wigton, J.C.; Tersak, J.M. JAK2+ Essential thrombocythemia in a young girl with Budd-Chiari syndrome: Diagnostic and therapeutic considerations when adult disease strikes the young. J. Pediatric Hematol. Oncol. 2016, 38, 70–73. [Google Scholar] [CrossRef]
- Sant’Antonio, E.; Guglielmelli, P.; Pieri, L.; Primignani, M.; Randi, M.L.; Santarossa, C.; Rumi, E.; Cervantes, F.; Delaini, F.; Carobbio, A.; et al. Splanchnic vein thromboses associated with myeloproliferative neoplasms: An international, retrospective study on 518 cases. Am. J. Hematol. 2020, 95, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Randi, M.L.; Bertozzi, I.; Putti, M.C. Contemporary management of essential thrombocythemia in children. Expert Rev. Hematol. 2019, 12, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Barbui, T.; Ghirardi, A.; Masciulli, A.; Carobbio, A.; Palandri, F.; Vianelli, N.; De Stefano, V.; Betti, S.; Di Veroli, A.; Iurlo, A.; et al. Second cancer in Philadelphia negative myeloproliferative neoplasms (MPN-K). A nested case-control study. Leukemia 2019, 33, 1996–2005. [Google Scholar] [CrossRef] [Green Version]
- Randi, M.L.; Bertozzi, I.; Rumi, E.; Elena, C.; Finazzi, G.; Vianelli, N.; Polverelli, N.; Ruggeri, M.; Vannucchi, A.M.; Antonioli, E.; et al. Pregnancy complications predict thrombotic events in young women with essential thrombocythemia. Am. J. Hematol. 2014, 89, 306–309. [Google Scholar] [CrossRef]
- Landolfi, R.; Marchioli, R.; Kutti, J.; Gisslinger, H.; Tognoni, G.; Patron, C.; Barbui, T. European collaboration on low-dose aspirin in polycythemia vera investigators. Efficacy and safety of low-dose aspirin in Polycythemia vera. N. Engl. J. Med. 2004, 350, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Larrán, A.; Pereira, A.; Guglielmelli, P.; Hernández-Boluda, J.C.; Arellano-Rodrigo, E.; Ferrer-Marín, F.; Samah, A.; Griesshammer, M.; Kerguelen, A.; Andreasson, B.; et al. Antiplatelet therapy versus observation in low-risk essential thrombocythemia with a CALR mutation. Haematologica 2016, 101, 926–931. [Google Scholar] [CrossRef]
- Rocca, B.; Tosetto, A.; Betti, S.; Soldati, D.; Petrucci, G.; Rossi, E.; Timillero, A.; Cavalca, V.; Porro, B.; Iurlo, A.; et al. A randomized double-blind trial of 3 aspirin regimens to optimize antiplatelet therapy in essential thrombocythemia. Blood 2020, 136, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Larrán, A.; Sant’Antonio, E.; Harrison, C.; Kiladjian, J.J.; Griesshammer, M.; Mesa, R.; Ianotto, J.C.; Palandri, F.; Hernández-Boluda, J.C.; Birgegård, G.; et al. Unmet clinical needs in the management of CALR-mutated essential thrombocythaemia: A consensus-based proposal from the European Leukemia Net. Lancet Haematol. 2021, 8, e658–e665. [Google Scholar] [CrossRef]
- Hamulyàk, E.N.; Daams, J.G.; Leebeek, F.W.G.; Biemond, B.J.; Bowkhorst, P.A.W.; Middeldorp, S.; Lauw, M.N. A systematic review of antithrombotic treatment of venous thromboembolism in patients with myeloproliferative neoplasms. Blood Adv. 2021, 5, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Di Nisio, M.; Valeriani, E.; Riva, N.; Schulman, S.; Beyer-Westendorf, J.; Ageno, W. Anticoagulant therapy for splanchnic vein thrombosis: ISTH SSC Subcommittee Control of Anticoagulation. J. Thromb. Haemost. 2020, 18, 1562–1568. [Google Scholar] [CrossRef]
- Monagle, P.; Cuello, C.A.; Augustine, C.; Bonduel, M.; Brandão, L.R.; Capman, T.; Chan, A.K.C.; Hanson, S.; Male, C.; Meerpohl, J.; et al. American Society of Hematology 2018 Guidelines for management of venous thromboembolism: Treatment of pediatric venous thromboembolism. Blood Adv. 2018, 2, 3292–3316. [Google Scholar] [CrossRef] [Green Version]
- Young, G.; Lensing, A.W.A.; Monagle, P.; Male, C.; Thelen, K.; Willmann, S.; Palumbo, J.S.; Kumar, R.; Nurmeev, I.; Hege, K.; et al. Rivaroxaban for treatment of pediatric venous thromboembolism. An Einstein-Jr. phase 3 dose-exposure-response evaluation. J. Thromb. Haemost. 2020, 18, 1672–1685. [Google Scholar] [CrossRef]
- Harrison, C.N.; Campbell, P.J.; Buck, G.; Wheatley, K.; East, C.L.; Bareford, D.; Wilkins, B.S.; van der Walt, J.D.; Reilly, J.T.; Grigg, A.P.; et al. United Kingdom medical research council primary thrombocythemia 1 study. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N. Engl. J. Med. 2005, 353, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Jinna, S.; Khandhar, P.B. Hydroxyurea Toxicity; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Finazzi, G.; Ruggeri, M.; Rodeghiero, F.; Barbui, T. Efficacy and safety of long-term use of hydroxyurea in young patients with essential thrombocythemia and a high risk of thrombosis. Blood 2003, 101, 37–49. [Google Scholar] [CrossRef]
- De Montalembert, M.; Voskaridou, E.; Oevermann, L.; Cannas, G.; Habibi, A.; Loko, G.; Joseph, L.; Colombatti, R.; Bartolucci, P.; Brousse, V.; et al. Real-life experience with hydroxyurea in patients with sickle cell disease: Results from the prospective ESCORT-HU cohort study. Am. J. Hematol. 2021, 96, 1223–1231. [Google Scholar] [CrossRef]
- Yacoub, A.; Mascarenhas, J.; Kosiorek, H.; Prchal, J.T.; Berenzon, D.; Baer, M.R.; Ritchie, E.; Silver, R.T.; Kessler, C.; Winton, E.; et al. Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea. Blood 2019, 134, 1498–1509. [Google Scholar] [CrossRef]
- Quintás-Cardama, A.; Abdel-Wahab, O.; Manshouri, T.; Kilpivaara, O.; Cortes, J.; Roupie, A.L.; Zhang, S.J.; Harris, D.; Estrov, Z.; Kantarjian, H.; et al. Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon alpha-2a. Blood 2013, 122, 893–901. [Google Scholar] [CrossRef] [Green Version]
- Bewersdorf, J.P.; Giri, S.; Wang, R.; Podoltsev, N.; Williams, R.T.; Tallman, M.S.; Rampal, R.K.; Zeidan, A.M.; Stahl, M. Interferon alpha therapy in essential thrombocythemia and polycythemia vera-a systematic review and meta-analysis. Leukemia 2021, 35, 1643–1660. [Google Scholar] [CrossRef]
- Masarova, L.; Yin, C.C.; Cortes, J.E.; Konopleva, M.; Bourthakure, G.; Newberry, K.; Kantarjian, H.M.; Bueso-Ramos, C.E.; Verstovsek, S. Histomorphological responses after therapy with pegylated interferon α-2a in patients with essential thrombocythemia (ET) and polycythemia vera (PV). Exp. Hematol. Oncol. 2017, 6, 30. [Google Scholar] [CrossRef]
- Pizzi, M.; Silver, R.T.; Barel, A.; Orazi, A. Recombinant interferon-alpha in myelofibrosis reduces bone marrow fibrosis, improves its morphology and is associated with clinical response. Mod. Pathol. 2015, 28, 1315–1323. [Google Scholar] [CrossRef] [Green Version]
- Gugliotta, L.; Tieghi, A.; Tortorella, G.; Scalzulli, P.R.; Ciancia, R.; Lunghi, M.; Cacciola, E.; Cacciola, R.; Candoni, A.; Crugnola, M.; et al. Low impact of cardiovascular adverse events on anagrelide treatment discontinuation in a cohort of 232 patients with essential thrombocythemia. Leuk. Res. 2011, 35, 1557–1563. [Google Scholar] [CrossRef]
- Gisslinger, H.; Gotic, M.; Holowiecki, J.; Penka, M.; Thiele, J.; Kvasnicka, H.M.; Kralovics, R.; Petrides, P.E.; ANAHYDRET Study Group. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: The ANAHYDRET study, a randomized controlled trial. Blood 2013, 121, 1720–1728. [Google Scholar] [CrossRef] [Green Version]
- Mazzucconi, M.G.; Baldacci, E.; Latagliata, R.; Breccia, M.; Paoloni, F.; Di Veroli, A.; Cedrone, M.; Anaclerico, B.; Villivà, N.; Porrini, R.; et al. Anagrelide in essential thrombocythemia (ET): Results from 150 patients over 25 years by the “Ph1-negative myeloproliferative neoplasms latium group”. Eur. J. Haematol. 2020, 105, 335–343. [Google Scholar] [CrossRef]
- Harrison, C.N.; Mead, A.J.; Panchal, A.; Fox, S.; Yap, C.; Gbandi, E.; Houlton, A.; Alimam, S.; Ewing, J.; Wood, M.; et al. Ruxolitinib vs best available therapy for ET intolerant or resistant to hydroxycarbamide. Blood 2017, 130, 1889–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeiser, R.; Polverelli, N.; Ram, R.; Hashmi, S.K.; Chakraverty, R.; Middeke, J.M.; Musso, M.; Giebel, S.; Uzay, A.; Langmuir, P.; et al. Ruxolitinib for glucocorticoid-refractory chronic graft-versus-host disease. N. Engl. J. Med. 2021, 385, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Loh, M.L.; Tasian, S.K.; Rabin, K.R.; Brown, P.; Magoon, D.; Reid, J.M.; Chen, X.; Ahern, C.H.; Weigel, B.J.; Blaney, S.M. A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms: A children’s oncology group phase 1 consortium study (ADVL1011). Pediatric Blood Cancer 2015, 62, 1717–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coskun, M.E.; Heigh, S.; Dhawan, A.; Hadzic, N. Ruxolitinib treatment in an infant with JAK2+ polycythemia vera-associated Budd-Chiari syndrome. BMJ Case Rep. 2017, 2017, bcr2017220377. [Google Scholar] [CrossRef]
MAJOR CRITERIA |
|
|
|
|
MINOR CRITERION |
Presence of a clonal marker or absence of evidence of reactive thrombocytosis. |
Infections |
Inflammations
|
Surgery, trauma, burns, blood loss |
Malignancies |
Anemias
|
Allergic reactions |
Drugs
|
AIEOP Series [15] | Review [43] | |
---|---|---|
# of patients F/M | 89 1.8/1 (65%) | 396 1.3/1 (58%) |
Median age (range) | 7 years (6 m–17.5 y) | 9 years (6 m–20 y) |
Plts × 109/L | 503–4400 | 450–4500 |
Microvascular symptoms | 30% | 23% |
Splenomegaly | 38% | 55% |
Hemorrhagies | 9% minor | 4.8% |
Thrombosis | 3.3% (clonal ET) | 4% (venous > arterial) |
Transformation | No | 2% (MF) |
Clonal cases (%) | 23/89 (25.8%) | 388 (40%) |
JAK2V617F + Allele burden (%) | 14 (15%) 26.2 | 130 (33%) 24.2 |
MPLW515L (56 pts tested) | 1 | 4 (1%) |
CALR mutations (74 pts tested) | 6 (6.5%) | 23 (6%) |
X-CIP test pos (23 females tested) | 6 (2 JAK2V617F; 2 CALR pts) | Not known |
Marrow Biopsy (done) | 45 (50%) | 52% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putti, M.C.; Bertozzi, I.; Randi, M.L. Essential Thrombocythemia in Children and Adolescents. Cancers 2021, 13, 6147. https://doi.org/10.3390/cancers13236147
Putti MC, Bertozzi I, Randi ML. Essential Thrombocythemia in Children and Adolescents. Cancers. 2021; 13(23):6147. https://doi.org/10.3390/cancers13236147
Chicago/Turabian StylePutti, Maria Caterina, Irene Bertozzi, and Maria Luigia Randi. 2021. "Essential Thrombocythemia in Children and Adolescents" Cancers 13, no. 23: 6147. https://doi.org/10.3390/cancers13236147
APA StylePutti, M. C., Bertozzi, I., & Randi, M. L. (2021). Essential Thrombocythemia in Children and Adolescents. Cancers, 13(23), 6147. https://doi.org/10.3390/cancers13236147