Cognitive Decline following Radiotherapy of Head and Neck Cancer: Systematic Review and Meta-Analysis of MRI Correlates
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Systematic Review Protocol
2.2. Data Review and Extraction
2.3. Meta-Analysis
3. Results
3.1. Study Selection and Quality
3.2. Study Characteristics
3.3. Neurocognitive Assessments in Detecting Cognitive Changes
3.4. Relationship of Neurocognitive Assessments to Magnetic Resonance Imaging (MRI)
3.5. Effect of Radiotherapy Treatment Dose to Brain Structural and Functional Changes
3.6. Meta-Analysis on the Correlation of MoCA Scores to Brain Changes
3.7. Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, C.; Zhang, L.H.; Chen, Y.P.; Liu, X.; Zhou, G.Q.; Lin, A.H.; Sun, Y.; Ma, J. Chemoradiotherapy versus radiotherapy alone in stage II naso-pharyngeal carcinoma: A systemic review and meta-analysis of 2138 patients. J. Cancer 2017, 8, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.T. Nasopharyngeal carcinoma. Ann. Oncol. 2010, 21 (Suppl. 7), 308–312. [Google Scholar] [CrossRef] [PubMed]
- Welsh, L.; Dunlop, A.; McGovern, T.; McQuaid, D.; Dean, J.; Gulliford, S.; Bhide, S.; Harrington, K.; Nutting, C.; Newbold, K. Neurocognitive Function After (Chemo)-Radiotherapy for Head and Neck Cancer. Clin. Oncol. 2014, 26, 765–775. [Google Scholar] [CrossRef]
- Meyers, C.A.; Geara, F.; Wong, P.F.; Morrison, W.H. Neurocognitive effects of therapeutic radiation for base of skull tumors. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 51–55. [Google Scholar] [CrossRef]
- Cheung, M.C.; Chan, A.S.; Law, S.C.; Chan, J.H.; Tse, V.K. Cognitive function of patients with nasopharyngeal carcinoma with and without temporal lobe radionecrosis. Arch. Neurol. 2000, 57, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, K.-Y.; Yeh, S.-A.; Chang, C.-C.; Tsai, P.-C.; Wu, J.-M.; Gau, J.-S. Cognitive function before and after intensity-modulated radiation therapy in patients with nasopharyngeal carcinoma: A prospective study. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Kiang, A.; Weinberg, V.K.; Cheung, K.H.N.; Shugard, E.; Chen, J.; Quivey, J.M.; Yom, S.S. Long-term disease-specific and cognitive quality of life after intensity-modulated radiation therapy: A cross-sectional survey of nasopharyngeal carcinoma survivors. Radiat. Oncol. 2016, 11, 127. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Luo, D.; Rong, X.; Shi, X.; Peng, Y. Psychological disorders, cognitive dysfunction and quality of life in nasopharyngeal carcinoma patients with radiation-induced brain injury. PLoS ONE 2012, 7, e36529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjordal, K.; Kaasa, S.; Mastekaasa, A. Quality of life in patients treated for head and neck cancer: A follow-up study 7 to 11 years after radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1994, 28, 847–856. [Google Scholar] [CrossRef]
- Boykoff, N.; Moieni, M.; Subramanian, S.K. Confronting chemobrain: An in-depth look at survivors’ reports of impact on work, social networks, and health care response. J. Cancer Surviv. 2009, 3, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Downie, F.P.; Fan, H.G.M.; Houédé-Tchen, N.; Yi, Q.; Tannock, I.F. Cognitive function, fatigue, and menopausal symptoms in breast cancer patients receiving adjuvant chemotherapy: Evaluation with patient interview after formal assessment. Psycho-Oncology 2016, 15, 921–930. [Google Scholar] [CrossRef]
- Shilling, V.; Jenkins, V. Self-reported cognitive problems in women receiving adjuvant therapy for breast cancer. Eur. J. Oncol. Nurs. 2007, 11, 6–15. [Google Scholar] [CrossRef]
- Greene-Schloesser, D.; Robbins, M.E. Radiation-induced cognitive impairment-from bench to bedside. Neuro-Oncology 2012, 14, iv37–iv44. [Google Scholar] [CrossRef] [Green Version]
- McDowell, L.J.; Rock, K.; Xu, W.; Chan, B.; Waldron, J.; Lu, L.; Ezzat, S.; Pothier, D.; Bernstein, L.; So, N.; et al. Long-term late toxicity, quality of life, and emotional distress in patients with nasopharyngeal carcinoma treated with intensity modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 340–352. [Google Scholar] [CrossRef]
- McDowell, L.; Corry, J.; Ringash, J.; Rischin, D. Quality of Life, Toxicity and Unmet Needs in Nasopharyngeal Cancer Survivors. Front. Oncol. 2020, 10, 930. [Google Scholar] [CrossRef] [PubMed]
- Karunamuni, R.; Bartsch, H.; White, N.S.; Moiseenko, V.; Carmona, R.; Marshall, D.; Seibert, T.; McDonald, C.R.; Farid, N.; Krishnan, A.; et al. Dose-dependent cortical thinning after partial brain irradiation in high-grade glioma. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Seibert, T.M.; Karunamuni, R.; Bartsch, H.; Kaifi, S.; Krishnan, A.P.; Dalia, Y.; Burkeen, J.; Murzin, V.; Moiseenko, V.; Kuperman, J.; et al. Radiation dose–dependent hippocampal atrophy detected with longitudinal volumetric magnetic resonance imaging. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Chapman, C.H.; Nagesh, V.; Sundgren, P.C.; Buchtel, H.; Chenevert, T.L.; Junck, L.; Lawrence, T.S.; Tsien, C.I.; Cao, Y. Diffusion tensor imaging of normal-appearing white matter as biomarker for radiation-induced late delayed cognitive decline. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 2033–2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makale, M.T.; McDonald, C.R.; Hattangadi-Gluth, M.T.M.J.A.; Kesari, S. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat. Rev. Neurol. 2017, 13, 52–64. [Google Scholar] [CrossRef] [Green Version]
- Saad, S.; Wang, T. Neurocognitive deficits after radiation therapy for brain malignancies. Am. J. Clin. Oncol. 2015, 38, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Spiegler, B.J.; Kennedy, K.; Maze, R.; Greenberg, M.L.; Weitzman, S.; Hitzler, J.K.; Nathan, P.C. Comparison of long-term neurocognitive outcomes in young children with acute lymphoblastic leukemia treated with cranial radiation or high-dose or very high-dose intravenous methotrexate. J. Clin. Oncol. 2006, 24, 3858–3864. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, Y.R.; Li, X.A.; el Naqa, I.; Hahn, C.A.; Marks, L.B.; Merchant, T.E.; Dicker, A.P. Radiation dose–volume effects in the brain. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S20–SS7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greene-Schloesser, D.; Robbins, M.E.; Peiffer, A.M.; Shaw, E.G.; Wheeler, K.T.; Chan, M.D. Radiation-induced brain injury: A review. Front. Oncol. 2010, 2, 73. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Lin, F.; Rong, X.; Yang, W.; Li, Y.; Cai, Z.; Xu, P.; Xu, Y.; Tang, Y. Temporal cerebral microbleeds are associated with radiation necrosis and cognitive dysfunction in patients treated for nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 1113–1120. [Google Scholar] [CrossRef] [Green Version]
- Spena, G.; Panciani, P.P.; Fontanella, M.M. Resection of supratentorial gliomas: The need to merge microsurgical technical corner-stones with modern functional mapping concepts. An overview. Neurosurg. Rev. 2015, 38, 59–70. [Google Scholar] [CrossRef]
- Yahya, N.; Manan, H.A. Utilisation of diffusion tensor imaging in intracranial radiotherapy and radiosurgery planning for white matter dose optimization: A systematic review. World Neurosurg. 2019, 130, e188–e198. [Google Scholar] [CrossRef]
- Manan, H.A.; Franz, E.A.; Yahya, N. Utilization of functional MRI language paradigms for pre-operative mapping: A systematic review. Neuroradiology 2019, 62, 353–367. [Google Scholar] [CrossRef]
- Heuvel, M.V.D.; Pol, H.H. Exploring the brain network: A review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 2010, 20, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Guo, Z.; Han, L.; Yang, Y.; Li, J.; Liu, S.; Lv, X. Network-level dysconnectivity in patients with nasopharyngeal carcinoma (NPC) early post-radiotherapy: Longitudinal resting state fMRI study. Brain Imaging Behav. 2017, 12, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Cheng, J.; Jiang, J.; Chang, J.; Zhang, Y.; Qiu, S. Whole-brain changes in white matter microstructure after radiotherapy for nasopharyngeal carcinoma: A diffusion tensor imaging study. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 4453–4459. [Google Scholar] [CrossRef] [PubMed]
- Liyan, L.; Si, W.; Qian, W.; Yuhui, S.; Xiaoer, W.; Yuehua, L.; Wenbin, L. Diffusion Kurtosis as an in vivo imaging marker of early radiation-induced changes in radiation-induced temporal lobe necrosis in nasopharyngeal carcinoma patients. Clin. Neuroradiol. 2018, 28, 413–420. [Google Scholar] [CrossRef]
- Murphy, K.; Birn, R.M.; Bandettini, P.A. Resting-state fMRI confounds and cleanup. NeuroImage 2013, 80, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Kelly, C.; Castellanos, F. Strengthening connections: Functional connectivity and brain plasticity. Neuropsychol. Rev. 2014, 24, 63–76. [Google Scholar] [CrossRef]
- Luft, C.D.B.; Pereda, E.; Banissy, M.J.; Ebhattacharya, J. Best of both worlds: Promise of combining brain stimulation and brain connectome. Front. Syst. Neurosci. 2014, 8, 132. [Google Scholar] [CrossRef] [Green Version]
- Voon, N.; Lau, F.; Zakaria, R.; Rani, S.M.; Ismail, F.; Manan, H.; Yahya, N. MRI-based brain structural changes following radiotherapy of Nasopharyngeal Carcinoma: A systematic review. Cancer Radiother. 2021, 25, 62–71. [Google Scholar] [CrossRef]
- Ma, Q.; Wu, D.; Zeng, L.-L.; Shen, H.; Hu, D.; Qiu, S. Radiation-induced functional connectivity alterations in nasopharyngeal carcinoma patients with radiotherapy. Medicine 2016, 95, e4275. [Google Scholar] [CrossRef]
- Wu, G.; Luo, S.-S.; Balasubramanian, P.S.; Dai, G.-M.; Li, R.-R.; Huang, W.-Y.; Chen, F. Early stage markers of late delayed neurocognitive decline using diffusion kurtosis imaging of temporal lobe in nasopharyngeal carcinoma patients. J. Cancer 2020, 11, 6168–6177. [Google Scholar] [CrossRef]
- Suurmond, R.; van Rhee, H.; Hak, T. Introduction, comparison, and validation of meta-essentials: A free and simple tool for meta-analysis. Res. Synth. Methods 2017, 8, 537–553. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.-T.; Li, Y.-X.; Wang, K.; Gao, L.; Yi, J.-L.; Huang, X.-D.; Luo, J.-W.; Wu, R.-Y.; Yang, Y.; Wang, J.-Y.; et al. Cerebral functional abnormalities in patients with nasopharyngeal carcinoma after radiotherapy. Chin. Med. J. 2019, 132, 1563–1571. [Google Scholar] [CrossRef]
- Guo, Z.; Han, L.; Yang, Y.; He, H.; Li, J.; Chen, H.; Song, T.; Qiu, Y.; Lv, X. Longitudinal brain structural alterations in patients with nasopharyngeal carcinoma early after radiotherapy. NeuroImage Clin. 2018, 19, 252–259. [Google Scholar] [CrossRef]
- Lv, X.; He, H.; Yang, Y.; Han, L.; Guo, Z.; Chen, H.; Li, J.; Qiu, Y.; Xie, C. Radiation-induced hippocampal atrophy in patients with nasopharyngeal carcinoma early after radiotherapy: A longitudinal MR-based hippocampal subfield analysis. Brain Imaging Behav. 2018, 13, 1160–1171. [Google Scholar] [CrossRef]
- Ma, Q.; Zeng, L.-L.; Qin, J.; Luo, Z.; Su, J.; Wu, D.; Qiu, S.; Hu, D. Radiation-induced cerebellar–cerebral functional connectivity alterations in nasopharyngeal carcinoma patients. NeuroReport 2017, 28, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Zong-Wen, S.; Lei, S.; Qinglin, L.; Yue, K.; Feng-Lei, D.; Tie-Ming, X.; Yong-Hong, H.; Qiao-Ying, H.; Xiao-Zhong, C.; Yuan-Yuan, C.; et al. Results of the radiation dose of head, body and tail of hippocampus in nasopharyngeal carcinoma patients treated with intensity modulated radiotherapy. Sci. Rep. 2018, 8, 5595. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Jensen, K.; Amidi, A.; Eskildsen, S.; Johansen, J.; Grau, C. Late toxicity in the brain after radiotherapy for sinonasal cancer: Neurocognitive functioning, MRI of the brain and quality of life. Clin. Transl. Radiat. Oncol. 2020, 25, 52–60. [Google Scholar] [CrossRef]
- Shi, L.; Lin, L. The trim-and-fill method for publication bias: Practical guidelines and recommendations based on a large database of meta-analyses. Medicine 2019, 98, e15987. [Google Scholar] [CrossRef]
- Milani, S.A.; Marsiske, M.; Cottler, L.B.; Chen, X.; Striley, C.W. Optimal cutoffs for the Montreal Cognitive Assessment vary by race and ethnicity. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2018, 10, 773–781. [Google Scholar] [CrossRef]
- McLennan, S.; Mathias, J.; Brennan, L.; Stewart, S. Validity of the Montreal Cognitive Assessment (MoCA) as a screening test for mild cognitive impairment (MCI) in a cardiovascular population. J. Geriatr. Psychiatry Neurol. 2011, 24, 33–38. [Google Scholar] [CrossRef]
- Elkana, O.; Tal, N.; Oren, N.; Soffer, S.; Ash, E.L. Is the cutoff of the MoCA too High? Longitudinal data from highly educated older adults. J. Geriatr. Psychiatry Neurol. 2019, 33, 155–160. [Google Scholar] [CrossRef]
- Tsai, J.-C.; Chen, C.-W.; Chu, H.; Yang, H.-L.; Chung, M.-H.; Liao, Y.-M.; Chou, K.-R. Comparing the sensitivity, specificity, and predictive values of the montreal cognitive assessment and mini-mental state examination when screening people for mild cognitive impairment and dementia in Chinese population. Arch. Psychiatr. Nurs. 2016, 30, 486–491. [Google Scholar] [CrossRef]
- Mellor, D.; Lewis, M.; McCabe, M.; Byrne, L.; Wang, T.; Wang, J.; Zhu, M.; Cheng, Y.; Yang, C.; Dong, S.; et al. Determining appropriate screening tools and cut-points for cognitive impairment in an elderly Chinese sample. Psychol. Assess. 2016, 28, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.-W.; Ng, K.H.; Law, A.C.; Lee, A.M.; Kwan, F. Validity of the Cantonese Chinese Montreal cognitive assessment in Southern Chinese. Geriatr. Gerontol. Int. 2015, 15, 96–103. [Google Scholar] [CrossRef]
- Luis, C.A.; Keegan, A.P.; Mullan, M. Cross validation of the Montreal Cognitive Assessment in community dwelling older adults residing in the Southeastern US. Int. J. Geriatr. Psychiatry 2009, 24, 197–201. [Google Scholar] [CrossRef]
- Carson, N.; Leach, L.; Murphy, K.J. A re-examination of Montreal Cognitive Assessment (MoCA) cutoff scores. Int. J. Geriatr. Psychiatry 2017, 33, 379–388. [Google Scholar] [CrossRef]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.; Hyman, B.T.; et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 2006, 31, 968–980. [Google Scholar] [CrossRef]
- Palm, W.M.; Saczynski, J.S.; Van Der Grond, J.; Msc, S.S.; Kjartansson, O.; Jonsson, P.V.; Msc, G.E.; Gudnason, V.; Admiraal-Behloul, F.; Launer, L.J.; et al. Ventricular dilation: Association with gait and cognition. Ann. Neurol. 2009, 66, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Balentova, S.; Adamkov, M. Molecular, cellular and functional effects of radiation-induced brain injury: A review. Int. J. Mol. Sci. 2015, 16, 27796–27815. [Google Scholar] [CrossRef]
- Gan, H.K.; Bernstein, L.; Brown, J.; Ringash, J.; Vakilha, M.; Wang, L.; Goldstein, D.; Kim, J.; Hope, A.; O’Sullivan, B.; et al. Cognitive functioning after radiotherapy or chemoradiotherapy for head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 126–134. [Google Scholar] [CrossRef]
- Wang, S.; Wu, E.X.; Qiu, D.; Leung, L.H.; Lau, H.-F.; Khong, P.-L. Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model. Cancer Res. 2009, 69, 1190–1198. [Google Scholar] [CrossRef] [Green Version]
- Petr, J.; Platzek, I.; Seidlitz, A.; Mutsaerts, H.J.; Hofheinz, F.; Schramm, G.; Maus, J.; Beuthien-Baumann, B.; Krause, M.; Hoff, J.V.D. Early and late effects of radiochemotherapy on cerebral blood flow in glioblastoma patients measured with non-invasive perfusion MRI. Radiother. Oncol. 2016, 118, 24–28. [Google Scholar] [CrossRef]
- Yahya, N.; Manan, H.A. Diffusion tensor imaging indices to predict cognitive changes following adult radiotherapy. Eur. J. Cancer Care 2021, 30, e13329. [Google Scholar] [CrossRef]
- Zer, A.; Pond, G.R.; Razak, A.R.A.; Tirona, K.; Gan, H.K.; Chen, E.X.; O’Sullivan, B.; Waldron, J.; Goldstein, D.P.; Weinreb, I.; et al. Association of neurocognitive deficits with radiotherapy or chemoradiotherapy for patients with head and neck cancer. JAMA Otolaryngol. Neck Surg. 2018, 144, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Farjam, R.; Pramanik, P.; Aryal, M.P.; Srinivasan, A.; Chapman, C.H.; Tsien, C.I.; Lawrence, T.S.; Cao, Y. A radiation-induced hippocampal vascular injury surrogate marker predicts late neurocognitive dysfunctioN. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 908–915. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.-W.; Lin, L.; Mao, Y.-P.; Chen, C.-Y.; Chen, F.-P.; Wu, C.-F.; Huang, X.-D.; Li, Z.-X.; Xu, S.-S.; Kou, J.; et al. Normal tissue complication probability (NTCP) models for predicting temporal lobe injury after intensity-modulated radiotherapy in nasopharyngeal carcinoma: A large registry-based retrospective study from China. Radiother. Oncol. 2021, 157, 99–105. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, H.; Tian, Y. Radiation-induced cognitive impairment. Ther. Targets Neurol. Dis. 2015, 2, e837. [Google Scholar] [CrossRef]
- Schagen, S.B.; Muller, M.J.; Boogerd, W.; Rosenbrand, R.M.; van Rhijn, D.; Rodenhuis, S.; van Dam, F.S.A.M. Late effects of adjuvant chemotherapy on cognitive function: A follow-up study in breast cancer patients. Ann. Oncol. 2002, 13, 1387–1397. [Google Scholar] [CrossRef]
- Winocur, G.; Vardy, J.; Binns, M.; Kerr, L.; Tannock, I. The effects of the anti-cancer drugs, methotrexate and 5-fluorouracil, on cognitive function in mice. Pharmacol. Biochem. Behav. 2006, 85, 66–75. [Google Scholar] [CrossRef]
- Manan, H.A.; Franz, E.A.; Yahya, N. Functional connectivity changes in patients with brain tumours—A systematic review on resting state-fMRI. Neurol. Psychiatry Brain Res. 2020, 36, 73–82. [Google Scholar] [CrossRef]
- Harada, C.N.; Love, M.C.N.; Triebel, K.L. Normal cognitive aging. Clin. Geriatr. Med. 2013, 29, 737–752. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
First Author [ref.] | Intervention | Pts No | Median Age (years) | Group Division | Male (%) | Cancer (%) | Chemo- Therapy (%) | Imaging Investigation | Neurocognitive Test | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Site | Staging (AJCC) | ||||||||||
Longitudinal study | |||||||||||
1. | Ren WT (2019) [39] | IMRT | 20 (NPC), 17 (NC) | 46.3 | NC, n = 20 NPC, n = 22 (baseline, 1 day after RT completion) | 80 | NPC, 100% | I/II, 29%; III/IV, 71% | 60 | rs-fMRI, FC | MoCA, AVLT |
2. | Guo Z (2018) [40] | IMRT | 63 (NPC), 20 (NC) | 49 (21–62) | NC, n = 20 NPC, n = 63 (scan at pre and post RT (at 3 months or 6 months) | 68 | NPC, 100% | NA | 93.7 | 3D-BRAVO | MoCA |
3. | Lv X (2018) [41] | IMRT TOMO | 58 (NPC): 53-IMRT; 5-Tomo, 20 (NC) | 21–62 | NC, n = 20 (baseline, 3–4 months and 6–7 months) NPC, pre RT, n = 58; post RT (3 months), n = 45; post RT (6 months), n = 32 | 67.2 | NPC, 100% | I, 1.7%; II, 12%; III, 46.6%; IV,39.7 | 94.8 | 3D- BRAVO | MoCA |
Prospective cross-sectional | |||||||||||
1. | Wu G (2020) [37] | IMRT | 44 (NPC) | 20–71 | NFD, n = 16; NFND, n = 38 | 65.9 | NPC, 100% | I-II, 53.7%; III-IV, 46.3% | 94.4 | DKI | MoCA |
2. | Ma Q (2017) [42] | IMRT | 59 (NPC) | 20–55 | Baseline NPC, n = 24; Complete RT NPC, n = 35 | 72.9 | NPC, 100% | NA | 100 | fMRI, FC | MoCA |
3. | Qiu Y (2017) [29] | IMRT | 39 (NPC) | 48.9 (22–63) | NPC, n = 39 (baseline, 3 months post RT) | 64 | NPC, 100% | II, 7.7%; III-IV, 92.3% | 100 | BOLD-fMRI, FC | MoCA |
4. | Ma Q (2016) [36] | IMRT | 59 (NPC) | 20–55 | Baseline NPC, n = 24; Complete RT NPC, n = 35 | 72.9 | NPC, 100% | NA | 100 | fMRI, FC | MoCA |
First Author, Year | Average MoCA Post-RT (Range, Bonus Point) | Pre-MRI Findings | Post-MRI Findings | Study Limitations |
---|---|---|---|---|
Ma Q, 2016 [36] | 24.2 (22–27) | 45 altered FC compared to untreated NPC group | Heterogeneous treatment protocol, combined both non-irradiated and irradiated subjects, varied sample size, lack of new and larger sample, and between-subject variance | |
Qiu Y, 2017 [29] | NR | Functional network connectivity for NPC patients pre- and post-RT shared similar connectivity | Weaker intra-network connectivity with lower mean connectivity correlation than baseline | Heterogeneous treatment protocols, between-subject variance |
Ma Q, 2017 [42] | 24.2 (22–27) | Altered FC between cerebellar seeds and relative brain clusters | Heterogeneous treatment protocol, combined both non-irradiated and irradiated subjects, varied sample size, lack of new and larger sample, and between-subject variance | |
Guo Z, 2018 [40] | <26 | No differences in cerebral volume of pre-NPC to controls | Decrease in brain macrostructural volume | Combined both non-irradiated and irradiated subjects, short time interval, and varied sample size |
Lv X, 2018 [41] | NR | No significant differences in volumes of hippocampus and hippocampal subfields between groups | Significant volume reductions in bilateral hippocampus and hippocampal subfields | Combined both non-irradiated and irradiated subjects and varied sample size |
Ren WT, 2019 [39] | 27 (24–29) | No significant changes in regional cerebral and connectivity before RT | Reduced regional cerebral and neural network functions | Comparison to healthy controls and small sample size, short time interval |
Wu G, 2020 [37] | <26 (<12 years education and >65 years age) | Baseline of kurtosis and diffusivity does not show significant difference | Significantly lower kurtosis and diffusivity of white matter | Heterogeneous treatment protocols, comparison between different marker groups, and between subject-variance |
First Author, Year | Score | Functional Connectivity or Volume | Significant Relationships and Prediction Details | Summary |
---|---|---|---|---|
Functional connectivity | ||||
Ma Q, 2016 [36] | MoCA | Vermis and hippocampus | r = 0.4440, p = 0.00043 | ↓ FC ↓ MoCA score |
Attention | r = 0.4282, p = 0.00072 | ↓ FC ↓ Attention score | ||
MoCA | Cerebellum lobule VI and dIPFC | r = −0.4343, p = 0.00059 | ↑ FC ↓ MoCA score | |
Precuneus and dFC | r = 0.4622, p = 0.00023 | ↓ FC ↓ MoCA score | ||
Cuneus and middle occipital lobe | r = 0.4282, p = 0.00071 | ↓ FC ↓ MoCA score | ||
Anterior insula and cuneus | r = 0.4569, p = 0.00028 | ↓ FC ↓ MoCA score | ||
Qiu Y, 2017 [29] | MoCA | Left anterior cingulate cortex within the default mode network (DMN) | No significant correlation | |
Right insular within salience network (SN) | No significant correlation | |||
Bilateral executive control network (ECN) | No significant correlation | |||
Ma Q, 2017 [42] | MoCA | Right cerebellar lobule VIIb and right fusiform gyrus | r = −0.34, p = 0.008 | ↑ FC ↓ MoCA score |
Attention | r = −0.41, p = 0.002 | ↑ FC ↓ Attention score | ||
MoCA | Left cerebellar lobule VIII and right crus I | r = −0.30, p = 0.021 | ↑ FC ↓ MoCA score | |
Attention | r = −0.32, p = 0.001 | ↑ FC ↓ Attention score | ||
Attention | Left cerebellar lobule VIII and right MFG | r = −0.27, p = 0.040 | ↑ FC ↓ Attention score | |
Ren WT, 2019 [39] | MoCA | Default mode network (DMN) | No significant correlation | |
Volume | ||||
Guo Z, 2018 [40] | MoCA | Ventricular | bβvolume = −4.63 × 10−4, p = 0.007 | ↓ Volume ↓ MoCA score |
Lv X, 2018 [41] | MoCA | Left hippocampus | bβvolume = 0.010, p = 0.017 | ↓ Volume ↓ MoCA score |
Right Hippocampal | bβvolume = 0.013, p = 0.002 | ↓ Volume ↓ MoCA score | ||
Left Subiculum | bβvolume = 0.061, p = 0.018 | ↓ Volume ↓ MoCA score | ||
Left Granule cell layer (GCL) | bβvolume = 0.102, p = 0.011 | ↓ Volume ↓ MoCA score | ||
Right Granule cell layer (GCL) | bβvolume = 0.158, p = 0.022 | ↓ Volume ↓ MoCA score | ||
Right molecular layer (ML) | bβvolume = 0.285, p = 0.002 | ↓ Volume ↓ MoCA score | ||
Kurtosis | ||||
Wu G, 2020 [37] | MoCA | Hippocampal | r = 0.76, p < 0.05 | Kurtosis mean-1 best in predicting MoCA scores decline |
First Author, Year | Dose-Dependent Changes |
---|---|
Ma Q, 2016 [36] | Functional connectivity pattern in NPC treated patients was significantly impaired compared to NPC untreated with changes shown in cerebellum, sensorimotor, and cingulo-opercular. |
Qiu Y, 2017 [36] | Changes in right insular functional connectivity were negatively correlated with dose of right temporal lobe. |
Ma Q, 2017 [42] | Altered cerebral-cerebral functional connectivity within dorsal attention, default, and frontoparietal networks shown in NPC treated patients. |
Guo Z, 2018 [40] | Significantly decrease volume in bilateral temporal lobe with increased mean dose to this region. |
Lv X, 2018 [41] | Volume deficits in the bilateral hippocampus, bilateral granule cell layer, and right molecular layer negatively correlates with the mean dose to ipsilateral hippocampus. |
Ren WT, 2019 [39] | Decreased connectivity in multiple cerebellar-cerebellar regions mainly in the default-mode networks likely because of radiation dose. |
Wu G, 2020 [37] | Significant radiation-induced changes in both white and gray matter of the temporal lobes due to the high radiation dose received. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voon, N.S.; Abdul Manan, H.; Yahya, N. Cognitive Decline following Radiotherapy of Head and Neck Cancer: Systematic Review and Meta-Analysis of MRI Correlates. Cancers 2021, 13, 6191. https://doi.org/10.3390/cancers13246191
Voon NS, Abdul Manan H, Yahya N. Cognitive Decline following Radiotherapy of Head and Neck Cancer: Systematic Review and Meta-Analysis of MRI Correlates. Cancers. 2021; 13(24):6191. https://doi.org/10.3390/cancers13246191
Chicago/Turabian StyleVoon, Noor Shatirah, Hanani Abdul Manan, and Noorazrul Yahya. 2021. "Cognitive Decline following Radiotherapy of Head and Neck Cancer: Systematic Review and Meta-Analysis of MRI Correlates" Cancers 13, no. 24: 6191. https://doi.org/10.3390/cancers13246191
APA StyleVoon, N. S., Abdul Manan, H., & Yahya, N. (2021). Cognitive Decline following Radiotherapy of Head and Neck Cancer: Systematic Review and Meta-Analysis of MRI Correlates. Cancers, 13(24), 6191. https://doi.org/10.3390/cancers13246191