Microtubule-Interfering Drugs: Current and Future Roles in Epithelial Ovarian Cancer Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Role in Front-Line Treatment
2.1. Paclitaxel (Taxol®)
2.2. Docetaxel (Taxotere®)
2.3. Nab-Paclitaxel (Abraxane®)
3. Role in Recurrent Disease
4. Future Directions
4.1. Understanding Mechanisms of Resistance to Microtubule-Interfering Agents
4.2. Mitigating the Limitations and Toxicities of Microtubule-Interfering Agents
4.2.1. Drug Resistance
Alternative Microtubule Stabilizing Agents
Alternative Microtubule-Destabilizing Agents
4.2.2. Water Insolubility
4.2.3. Peripheral Neuropathy, a Dose-Limiting Toxicity of Microtubule-Interfering Agents
5. Ongoing Clinical Trials Involving Microtubule Inhibitors
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cancer Facts & Figures 2020. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020.html (accessed on 9 September 2021).
- Heintz, A.P.; Odicino, F.; Maisonneuve, P.; Quinn, M.A.; Benedet, J.L.; Creasman, W.T.; Ngan, H.Y.; Pecorelli, S.; Beller, U. Carcinoma of the ovary. FIGO 26th Annual Report on the Results of Treatment in Gynecological Cancer. Int. J. Gynaecol. Obstet. 2006, 95, S161–S192. [Google Scholar] [CrossRef]
- Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian cancer. Lancet 2014, 384, 1376–1388. [Google Scholar] [CrossRef]
- Roett, M.A.; Evans, P. Ovarian cancer: An overview. Am. Fam. Physician 2009, 80, 609–616. [Google Scholar]
- McCluggage, W.G. Morphological subtypes of ovarian carcinoma: A review with emphasis on new developments and pathogenesis. Pathology 2011, 43, 420–432. [Google Scholar] [CrossRef]
- Mollinedo, F.; Gajate, C. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 2003, 8, 413–450. [Google Scholar] [CrossRef] [Green Version]
- Holthuis, J.J. Etoposide and teniposide. Bioanalysis, metabolism and clinical pharmacokinetics. Pharm. Weekbl. Sci. 1988, 10, 101–116. [Google Scholar] [CrossRef]
- Bozkaya, Y.; Doğan, M.; Erdem, G.U.; Tulunay, G.; Uncu, H.; Arık, Z.; Demirci, U.; Yazıcı, O.; Zengin, N. Effectiveness of low-dose oral etoposide treatment in patients with recurrent and platinum-resistant epithelial ovarian cancer. J. Obstet. Gynaecol. 2017, 37, 649–654. [Google Scholar] [CrossRef] [PubMed]
- De Geest, K.; Blessing, J.A.; Morris, R.T.; Yamada, S.D.; Monk, B.J.; Zweizig, S.L.; Matei, D.; Muller, C.Y.; Richards, W.E. Phase II clinical trial of ixabepilone in patients with recurrent or persistent platinum- and taxane-resistant ovarian or primary peritoneal cancer: A gynecologic oncology group study. J. Clin. Oncol. 2010, 28, 149–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, N.; Kutarska, E.; Dimopoulos, M.; Bae, D.S.; Rzepka-Gorska, I.; Bidzinski, M.; Scambia, G.; Engelholm, S.A.; Joly, F.; Weber, D.; et al. Randomized, open-label, phase III study comparing patupilone (EPO906) with pegylated liposomal doxorubicin in platinum-refractory or -resistant patients with recurrent epithelial ovarian, primary fallopian tube, or primary peritoneal cancer. J. Clin. Oncol. 2012, 30, 3841–3847. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; ten Bokkel Huinink, W.W.; Swenerton, K.D.; Gianni, L.; Myles, J.; van der Burg, M.E.; Kerr, I.; Vermorken, J.B.; Buser, K.; Colombo, N.; et al. European-Canadian randomized trial of paclitaxel in relapsed ovarian cancer: High-dose versus low-dose and long versus short infusion. J. Clin. Oncol. 1994, 12, 2654–2666. [Google Scholar] [CrossRef]
- Pfisterer, J.; Dean, A.P.; Baumann, K.; Rau, J.; Harter, P.; Joly, F.; Sehouli, J.; Canzler, U.; Schmalfeldt, B.; Shannon, C.; et al. Carboplatin/pegylated liposomal doxorubicin/bevacizumab (CD-BEV) vs.carboplatin/gemcitabine/bevacizumab (CG-BEV) in patients with recurrent ovarian cancer: A prospective randomized phase III ENGOT/GCIG-Intergroup study (AGO study group, AGO-Austria, ANZGOG, GINECO, SGCTG). Ann. Oncol. 2018, 29, VIII332–VIII333. [Google Scholar]
- Sharma, R.; Graham, J.; Mitchell, H.; Brooks, A.; Blagden, S.; Gabra, H. Extended weekly dose-dense paclitaxel/carboplatin is feasible and active in heavily pre-treated platinum-resistant recurrent ovarian cancer. Br. J. Cancer. 2009, 100, 707–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pujade-Lauraine, E.; Hilpert, F.; Weber, B.; Reuss, A.; Poveda, A.; Kristensen, G.; Sorio, R.; Vergote, I.; Witteveen, P.; Bamias, A.; et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: The AURELIA open-label randomized phase III trial. J. Clin. Oncol. 2014, 32, 1302–1308. [Google Scholar] [CrossRef] [PubMed]
- Gynecologic Oncology Group; Markman, M.; Blessing, J.; Rubin, S.C.; Connor, J.; Hanjani, P.; Waggoner, S. Phase II trial of weekly paclitaxel (80 mg/m2) in platinum and paclitaxel-resistant ovarian and primary peritoneal cancers: A Gynecologic Oncology Group study. Gynecol. Oncol. 2006, 101, 436–440. [Google Scholar] [CrossRef]
- Kowalski, R.J.; Giannakakou, P.; Hamel, E. Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol(R)). J. Biol. Chem. 1997, 272, 2534–2541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roque, D.; Siegel, E.; Buza, N.; Bellone, S.; Silasi, D.-A.; Huang, G.; Andikyan, V.; Clark, M.; Azodi, M.; Schwartz, P.; et al. Randomized phase II trial of weekly ixabepilone with or without biweekly bevacizumab for platinum-resistant or refractory ovarian/fallopian tube/primary peritoneal cancer. Gynecol. Oncol. 2021, 162, S58. [Google Scholar] [CrossRef]
- Horwitz, S.B.; Fojo, T. Ch 13: Microtubule stabilizing agents. In The Role of Microtubules in Cell Biology, Neurobiology, and Oncology; Tito, F., Ed.; Humana Press: Totowa, NJ, USA, 2008; pp. 307–366. [Google Scholar]
- Calvert, A.H.; Boddy, A.; Bailey, N.P.; Siddiqui, N.; Humphreys, A.; Hughes, A.; Robson, L.; Gumbrell, L.; Thomas, H.; Chapman, F.; et al. Carboplatin in combination with paclitaxel in advanced ovarian cancer: Dose determination and pharmacokinetic and pharmacodynamic interactions. Semin. Oncol. 1995, 22, 91–100. [Google Scholar] [PubMed]
- McGuire, W.P.; Hoskins, W.J.; Brady, M.F.; Kucera, P.R.; Partridge, E.E.; Look, K.Y.; Clarke-Pearson, D.L.; Davidson, M. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N. Engl. J. Med. 1996, 334, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bookman, M.A.; McGuire, W.P.; Kilpatrick, D.; Keenan, E.; Hogan, W.M.; Johnson, S.W.; O’Dwyer, P.; Rowinsky, E.; Gallion, H.H.; Ozols, R.F. Carboplatin and paclitaxel in ovarian carcinoma: A phase I study of the Gynecologic Oncology Group. J. Clin. Oncol. 1996, 14, 1895–1902. [Google Scholar] [CrossRef] [PubMed]
- Piccart, M.J.; Bertelsen, K.; James, K.; Cassidy, J.; Mangioni, C.; Simonsen, E.; Stuart, G.; Kaye, S.; Vergote, I.; Blom, R.; et al. Randomized intergroup trial of cisplatin-paclitaxel versus cisplatin-cyclophosphamide in women with advanced epithelial ovarian cancer: Three-year results. J. Natl. Cancer. Inst. 2000, 92, 699–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muggia, F.M.; Braly, P.S.; Brady, M.F.; Sutton, G.; Niemann, T.H.; Lentz, S.L.; Alvarez, R.D.; Kucera, P.R.; Small, J.M. Phase III randomized study of cisplatin versus paclitaxel versus cisplatin and paclitaxel in patients with suboptimal stage III or IV ovarian cancer: A gynecologic oncology group study. J. Clin. Oncol. 2000, 18, 106–115. [Google Scholar] [CrossRef] [PubMed]
- International Collaborative Ovarian Neoplasm Group. Paclitaxel plus carboplatin versus standard chemotherapy with either single-agent carboplatin or cyclophosphamide, doxorubicin, and cisplatin in women with ovarian cancer: The ICON3 randomised trial. Lancet 2002, 360, 505–515. [Google Scholar] [CrossRef]
- Katsumata, N.; Yasuda, M.; Takahashi, F.; Isonishi, S.; Jobo, T.; Aoki, D.; Tsuda, H.; Sugiyama, T.; Kodama, S.; Kimura, E.; et al. Dose-dense paclitaxel once a week in combination with carboplatin every 3 weeks for advanced ovarian cancer: A phase 3, open-label, randomised controlled trial. Lancet 2009, 374, 1331–1338. [Google Scholar] [CrossRef]
- Katsumata, N.; Yasuda, M.; Isonishi, S.; Takahashi, F.; Michimae, H.; Kimura, E.; Aoki, D.; Jobo, T.; Kodama, S.; Terauchi, F.; et al. Long-term results of dose-dense paclitaxel and carboplatin versus conventional paclitaxel and carboplatin for treatment of advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer (JGOG 3016): A randomised, controlled, open-label trial. Lancet Oncol. 2013, 14, 1020–1026. [Google Scholar] [CrossRef]
- Chan, J.K.; Brady, M.F.; Penson, R.T.; Huang, H.; Birrer, M.J.; Walker, J.L.; DiSilvestro, P.A.; Rubin, S.C.; Martin, L.P.; Davidson, S.A.; et al. Weekly vs. Every-3-Week Paclitaxel and Carboplatin for Ovarian Cancer. N. Engl. J. Med. 2016, 374, 738–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clamp, A.R.; McNeish, I.; Dean, A.; Gallardo, D.; Weon-Kim, J.; O’Donnell, D.; Hook, J.; Coyle, C.; Blagden, S.P.; Brenton, J.; et al. ICON8: A GCIG phase III randomised trial evaluating weekly dose-dense chemotherapy integration in first-line epithelial ovarian/fallopian tube/primary peritoneal carcinoma (EOC) treatment: Results of primary progression-free survival (PFS) analysis. Ann. Oncol. 2017, 28S, V627. [Google Scholar] [CrossRef] [Green Version]
- Pignata, S.; Scambia, G.; Katsaros, D.; Gallo, C.; Pujade-Lauraine, E.; De Placido, S.; Bologna, A.; Weber, B.; Raspagliesi, F.; Panici, P.B.; et al. Carboplatin plus paclitaxel once a week versus every 3 weeks in patients with advanced ovarian cancer (MITO-7): A randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2014, 15, 396–405. [Google Scholar] [CrossRef]
- Clamp, A.R.; James, E.C.; McNeish, I.A.; Dean, A.; Kim, J.W.; O’Donnell, D.M.; Hook, J.; Coyle, C.; Blagden, S.; Brenton, J.D.; et al. Weekly dose-dense chemotherapy in first-line epithelial ovarian, fallopian tube, or primary peritoneal carcinoma treatment (ICON8): Primary progression free survival analysis results from a GCIG phase 3 randomised controlled trial. Lancet 2019, 394, 2084–2095. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Lee, H.H.; Chang, W.H.; Lee, N.R.; Huang, H.Y.; Chen, Y.J.; Horng, H.C.; Lee, W.L.; Wang, P.H. Weekly Dose-Dense Paclitaxel and Triweekly Low-Dose Cisplatin: A Well-Tolerated and Effective Chemotherapeutic Regimen for First-Line Treatment of Advanced Ovarian, Fallopian Tube, and Primary Peritoneal Cancer. Int. J. Environ. Res. Public. Health. 2019, 16, 4794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.Y.; Cheng, M.; Lee, N.R.; Huang, H.Y.; Lee, W.L.; Chang, W.H.; Wang, P.H. Comparing Paclitaxel-Carboplatin with Paclitaxel-Cisplatin as the Front-Line Chemotherapy for Patients with FIGO IIIC Serous-Type Tubo-Ovarian Cancer. Int. J. Environ. Res. Public. Health. 2020, 17, 2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozols, R.F.; Bundy, B.N.; Greer, B.E.; Fowler, J.M.; Clarke-Pearson, D.; Burger, R.A.; Mannel, R.S.; DeGeest, K.; Hartenbach, E.M.; Baergen, R.; et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: A Gynecologic Oncology Group study. J. Clin. Oncol. 2003, 21, 3194–3200. [Google Scholar] [CrossRef]
- Lavelle, F.; Gueritte-Voegelein, F.; Guenard, D. Le taxotère: Des aiguilles d’if à la clinique Taxotere: From yew’s needles to clinical practice. Bull. Cancer. 1993, 80, 326–338. [Google Scholar] [PubMed]
- Vasey, P.A.; Jayson, G.C.; Gordon, A.; Gabra, H.; Coleman, R.; Atkinson, R.; Parkin, D.; Paul, J.; Hay, A.; Kaye, S.B.; et al. Phase III randomized trial of docetaxel-carboplatin versus paclitaxel-carboplatin as first-line chemotherapy for ovarian carcinoma. J. Natl. Cancer. Inst. 2004, 96, 1682–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, D.K.; Alvarez, R.D.; Bakkum-Gamez, J.N.; Barroilhet, L.; Behbakht, K.; Berchuck, A.; Chen, L.M.; Cristea, M.; De Rosa, M.; Eisenhauer, E.L.; et al. Ovarian cancer, version 2.2020, NCCN clinical practice guidelines in oncology. J. Nat. Comprehens. Cancer Netw. 2021, 19, 191–226. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Vermorken, J.B. The taxoids. Comparative clinical pharmacology and therapeutic potential. Drugs 1998, 55, 5–30. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.B. Hypersensitivity reactions. Semin. Oncol. 1992, 19, 458–477. [Google Scholar]
- Wiernik, P.H.; Schwartz, E.L.; Strauman, J.J.; Dutcher, J.P.; Lipton, R.B.; Paietta, E. Phase I clinical and pharmacokinetic study of taxol. Cancer. Res. 1987, 47, 2486–2493. [Google Scholar] [PubMed]
- Albanell, J.; Baselga, J. Systemic therapy emergencies. Semin. Oncol. 2000, 27, 347–361. [Google Scholar] [PubMed]
- Trudeau, M.E.; Eisenhauer, E.A.; Higgins, B.P.; Letendre, F.; Lofters, W.S.; Norris, B.D.; Vandenberg, T.A.; Delorme, F.; Muldal, A.M. Docetaxel in patients with metastatic breast cancer: A phase II study of the National Cancer Institute of Canada-Clinical Trials Group. J. Clin. Oncol. 1996, 14, 422–428. [Google Scholar] [CrossRef]
- Kwon, J.S.; Elit, L.; Finn, M.; Hirte, H.; Mazurka, J.; Moens, F.; Trim, K. A comparison of two prophylactic regimens for hypersensitivity reactions to paclitaxel. Gynecol. Oncol. 2002, 84, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Tsavaris, N.B.; Kosmas, C. Risk of severe acute hypersensitivity reactions after rapid paclitaxel infusion of less than 1-h duration. Cancer. Chemother. Pharmacol. 1998, 42, 509–511. [Google Scholar] [CrossRef]
- Schrijvers, D.; Wanders, J.; Dirix, L.; Prove, A.; Vonck, I.; van Oosterom, A.; Kaye, S. Coping with toxicities of docetaxel (Taxotere). Ann. Oncol. 1993, 4, 610–611. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.S.; Yang, K.Y.; Perng, R.P. Life-threatening hypersensitivity pneumonitis induced by docetaxel (taxotere). Br. J. Cancer. 2001, 85, 1247–1250. [Google Scholar] [CrossRef]
- García, A.P.; de la Losa, F.P. Immunoglobulin E-mediated severe anaphylaxis to paclitaxel. J. Investig. Allergol. Clin. Immunol. 2010, 20, 170–171. [Google Scholar]
- Essayan, D.M.; Kagey-Sobotka, A.; Colarusso, P.J.; Lichtenstein, L.M.; Ozols, R.F.; King, E.D. Successful parenteral desensitization to paclitaxel. J. Allergy Clin. Immunol. 1996, 97, 42–46. [Google Scholar] [CrossRef]
- Ibrahim, N.K.; Desai, N.; Legha, S.; Soon-Shiong, P.; Theriault, R.L.; Rivera, E.; Esmaeli, B.; Ring, S.E.; Bedikian, A.; Hortobagyi, G.N.; et al. Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin. Cancer. Res. 2002, 8, 1038–1044. [Google Scholar]
- Ibrahim, N.K.; Samuels, B.; Page, R.; Doval, D.; Patel, K.M.; Rao, S.C.; Nair, M.K.; Bhar, P.; Desai, N.; Hortobagyi, G.N. Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J. Clin. Oncol. 2005, 23, 6019–6026. [Google Scholar] [CrossRef] [PubMed]
- Gradishar, W.J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Bhar, P.; Hawkins, M.; O’Shaughnessy, J. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 2005, 23, 7794–7803. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.L.; Brady, W.E.; McMeekin, D.S.; Rose, P.G.; Soper, J.T.; Lentz, S.S.; Hoffman, J.S.; Shahin, M.S. A phase II evaluation of nanoparticle, albumin-bound (nab) paclitaxel in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: A Gynecologic Oncology Group study. Gynecol. Oncol. 2011, 122, 111–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, D.; Von Hoff, D.D.; Moore, M.; Greeno, E.; Tortora, G.; Ramanathan, R.K.; Macarulla, T.; Liu, H.; Pilot, R.; Ferrara, S.; et al. Development of peripheral neuropathy and its association with survival during treatment with nab-paclitaxel plus gemcitabine for patients with metastatic adenocarcinoma of the pancreas: A subset analysis from a randomised phase III trial (MPACT). Eur. J. Cancer. 2016, 52, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Rubin, S.C.; Randall, T.C.; Armstrong, K.A.; Chi, D.S.; Hoskins, W.J. Ten-year follow-up of ovarian cancer patients after second-look laparotomy with negative findings. Obstet. Gynecol. 1999, 93, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Parmar, M.K.; Ledermann, J.A.; Colombo, N.; du Bois, A.; Delaloye, J.F.; Kristensen, G.B.; Wheeler, S.; Swart, A.M.; Qian, W.; Torri, V.; et al. Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: The ICON4/AGO-OVAR-2.2 trial. Lancet 2003, 361, 2099–2106. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.A.; Miller, H.; Ni, L.; Castenada, S.; Inigo, I.; Kan, D.; Lewin, A.; Ryseck, R.; Kramer, R.; Wilson, L.; et al. The Pat-21 breast cancer model derived from a patient with primary Taxol resistance recapitulates the phenotype of its origin, has altered beta-tubulin expression and is sensitive to ixabepilone. Proc. Am. Assoc. Cancer Res. 2006, 47, 73. [Google Scholar]
- Mozzetti, S.; Ferlini, C.; Concolino, P.; Filippetti, F.; Raspaglio, G.; Prislei, S.; Gallo, D.; Martinelli, E.; Ranelletti, F.O.; Ferrandina, G.; et al. Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin. Cancer. Res. 2005, 11, 298–305. [Google Scholar]
- Roque, D.M.; Ratner, E.S.; Silasi, D.A.; Azodi, M.; Rutherford, T.J.; Schwartz, P.E.; Nelson, W.K.; Santin, A.D. Weekly ixabepilone with or without biweekly bevacizumab in the treatment of recurrent or persistent uterine and ovarian/primary peritoneal/fallopian tube cancers: A retrospective review. Gynecol. Oncol. 2015, 137, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, R.Z.; Duan, Z.; Lamendola, D.E.; Penson, R.T.; Seiden, M.V. Paclitaxel resistance: Molecular mechanisms and pharmacologic manipulation. Curr. Cancer. Drug. Targets 2003, 3, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Galletti, E.; Magnani, M.; Renzulli, M.L.; Botta, M. Paclitaxel and docetaxel resistance: Molecular mechanisms and development of new generation taxanes. ChemMedChem 2007, 2, 920–942. [Google Scholar] [CrossRef]
- Schöndorf, T.; Kurbacher, C.M.; Göhring, U.J.; Benz, C.; Becker, M.; Sartorius, J.; Kolhagen, H.; Mallman, P.; Neumann, R. Induction of MDR1-gene expression by antineoplastic agents in ovarian cancer cell lines. Anticancer. Res. 2002, 22, 2199–2203. [Google Scholar] [PubMed]
- Xu, X.; Leo, C.; Jang, Y.; Chan, E.; Padilla, D.; Huang, B.C.; Lin, T.; Gururaja, T.; Hitoshi, Y.; Lorens, J.B.; et al. Dominant effector genetics in mammalian cells. Nat. Genet. 2001, 27, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Devine, S.E.; Ling, V.; Melera, P.W. Amino acid substitutions in the sixth transmembrane domain of P-glycoprotein alter multidrug resistance. Proc. Natl. Acad. Sci. USA 1992, 89, 4564–4568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, A.; Roach, M.C.; Trcka, P.; Luduena, R.F. Preparation of a monoclonal antibody specific for the class IV isotype of beta-tubulin. Purification and assembly of alpha beta II, alpha beta III, and alpha beta IV tubulin dimers from bovine brain. J. Biol. Chem. 1992, 267, 5625–5630. [Google Scholar] [CrossRef]
- Ludueña, F.R.; Banerjee, A. The Isotypes of Tubulin. In The Role of Microtubules in Cell Biology, Neurobiology, and Oncolog; Fojo, T., Ed.; Humana Press: Totowa, NJ, USA, 2008; pp. 123–175. [Google Scholar] [CrossRef]
- Kanakkanthara, A.; Miller, J.H. βIII-tubulin overexpression in cancer: Causes, consequences, and potential therapies. Biochim. Biophys. Acta. Rev. Cancer. 2021, 1876, 188607. [Google Scholar] [CrossRef] [PubMed]
- Gurler, H.; Yu, Y.; Choi, J.; Kajdacsy-Balla, A.A.; Barbolina, M.V. Three-dimensional collagen type I matrix up-regulates nuclear isoforms of the microtubule associated protein tau implicated in resistance to paclitaxel therapy in ovarian carcinoma. Int. J. Mol. Sci. 2015, 16, 3419–3433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffensen, K.D.; Smoter, M.; Waldstrøm, M.; Grala, B.; Bodnar, L.; Stec, R.; Szczylik, C.; Jakobsen, A. Resistance to first line platinum paclitaxel chemotherapy in serous epithelial ovarian cancer: The prediction value of ERCC1 and Tau expression. Int. J. Oncol. 2014, 44, 1736–1744. [Google Scholar] [CrossRef] [PubMed]
- Smoter, M.; Bodnar, L.; Grala, B.; Stec, R.; Zieniuk, K.; Kozlowski, W.; Szczylik, C. Tau protein as a potential predictive marker in epithelial ovarian cancer patients treated with paclitaxel/platinum first-line chemotherapy. J. Exp. Clin. Cancer. Res. 2013, 32, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, S.S.L. Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends. Cell Biol. 2000, 10, 261–267. [Google Scholar] [CrossRef]
- Luo, Y.; Li, D.; Ran, J.; Yan, B.; Chen, J.; Dong, X.; Liu, Z.; Liu, R.; Zhou, J.; Liu, M. End-binding protein 1 stimulates paclitaxel sensitivity in breast cancer by promoting its actions toward microtubule assembly and stability. Protein Cell. 2014, 5, 469–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magiera, M.M.; Janke, C. Post-translational modifications of tubulin. Curr. Biol. 2014, 24, R351–R354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wattanathamsan, O.; Thararattanobon, R.; Rodsiri, R.; Chanvorachote, P.; Vinayanuwattikun, C.; Pongrakhananon, V. Tubulin acetylation enhances lung cancer resistance to paclitaxel-induced cell death through Mcl-1 stabilization. Cell. Death. Discov. 2021, 7, 67. [Google Scholar] [CrossRef]
- Janke, C.; Kneussel, M. Tubulin post-translational modifications: Encoding functions on the neuronal microtubule cytoskeleton. Trends. Neurosci. 2010, 33, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Krause, W. Resistance to anti-tubulin agents: From vinca alkaloids to epothilones. Cancer Drug Resist. 2019, 2, 82–106. [Google Scholar] [CrossRef]
- Izquierdo, M.A.; van der Zee, A.G.; Vermorken, J.B.; van der Valk, P.; Beliën, J.A.; Giaccone, G.; Scheffer, G.L.; Flens, M.J.; Pinedo, H.M.; Kenemans, P.; et al. Drug resistance-associated marker Lrp for prediction of response to chemotherapy and prognoses in advanced ovarian carcinoma. J. Natl. Cancer. Inst. 1995, 87, 1230–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrethsen, J.; Angeletti, R.H.; Horwitz, S.B.; Yang, C.P. Proteomics of cancer cell lines resistant to microtubule-stabilizing agents. Mol. Cancer. Ther. 2014, 13, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.R.; Schorl, C.; Yano, N.; Romano, N.; Kim, K.K.; Singh, R.K.; Moore, R.G. HE4 promotes collateral resistance to cisplatin and paclitaxel in ovarian cancer cells. J. Ovarian. Res. 2016, 9, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corkery, D.P.; Le Page, C.; Meunier, L.; Provencher, D.; Mes-Masson, A.M.; Dellaire, G. PRP4K is a HER2-regulated modifier of taxane sensitivity. Cell Cycle. 2015, 14, 1059–1069. [Google Scholar] [CrossRef] [Green Version]
- Santibáñez, M.; Gallardo, D.; Morales, F.; López, A.; Prada, D.; Mendoza, J.; Castro, C.; de León, D.C.; Oñate, L.F.; Perez, D.; et al. The MAD1 1673 G→A polymorphism alters the function of the mitotic spindle assembly checkpoint and is associated with a worse response to induction chemotherapy and sensitivity to treatment in patients with advanced epithelial ovarian cancer. Pharmacogenet. Genom. 2013, 23, 190–199. [Google Scholar] [CrossRef]
- Xie, S.; Ogden, A.; Aneja, R.; Zhou, J. Microtubule-Binding Proteins as Promising Biomarkers of Paclitaxel Sensitivity in Cancer Chemotherapy. Med. Res. Rev. 2016, 36, 300–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noguchi, S. Predictive factors for response to docetaxel in human breast cancers. Cancer Sci. 2006, 97, 813–820. [Google Scholar] [CrossRef]
- Whipple, R.A.; Cheung, A.M.; Martin, S.S. Detyrosinated microtubule protrusions in suspended mammary epithelial cells promote reattachment. Exp. Cell. Res. 2007, 313, 1326–1336. [Google Scholar] [CrossRef] [Green Version]
- Killilea, A.N.; Csencsits, R.; Le, E.B.N.T.; Patel, A.M.; Kenny, S.J.; Xu, K.; Downing, K.H. Cytoskeletal organization in microtentacles. Exp. Cell. Res. 2017, 357, 291–298. [Google Scholar] [CrossRef]
- Charpentier, M.; Martin, S. Interplay of Stem Cell Characteristics, EMT, and Microtentacles in Circulating Breast Tumor Cells. Cancers 2013, 5, 1545–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Østevold, K.; Meléndez, A.V.; Lehmann, F.; Schmidt, G.; Aktories, K.; Schwan, C. Septin remodeling is essential for the formation of cell membrane protrusions (microtentacles) in detached tumor cells. Oncotarget 2017, 8, 76686–76698. [Google Scholar] [CrossRef] [Green Version]
- Charras, G.T.; Hu, C.K.; Coughlin, M.; Mitchison, T.J. Reassembly of contractile actin cortex in cell blebs. J. Cell. Biol. 2006, 175, 477–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saykali, B.A.; El-Sibai, M. Invadopodia, regulation, and assembly in cancer cell invasion. Cell Commun Adhes. 2014, 21, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Wolf, K.J.; Shukla, P.; Springer, K.; Lee, S.; Coombes, J.D.; Choy, C.J.; Kenny, S.J.; Xu, K.; Kumar, S. A mode of cell adhesion and migration facilitated by CD44-dependent microtentacles. Proc. Natl. Acad. Sci. USA 2020, 117, 11432–11443. [Google Scholar] [CrossRef] [PubMed]
- Roque, D.M.; Fan, C.; Ory, E.; Lee, C.; Vitolo, M.; Martin, S.; Rao, G.G.; Fulton, A.; Ching, M.; Jewell, C.; et al. Microtentacle Composition and Tubulin Isotype among Ovarian Carcinomas. Microtubules: From Atoms to Complex Systems; Abstract presented at European Molecular Biology Organization; European Molecular Biology Laboratory: Heidelberg, Germany, 2018. [Google Scholar]
- Rickard, B.P.; Conrad, C.; Sorrin, A.J.; Ruhi, M.K.; Reader, J.C.; Huang, S.A.; Franco, W.; Scarcelli, G.; Polacheck, W.J.; Roque, D.M.; et al. Malignant Ascites in Ovarian Cancer: Cellular, Acellular, and Biophysical Determinants of Molecular Characteristics and Therapy Response. Cancers 2021, 13, 4318. [Google Scholar] [CrossRef] [PubMed]
- Ory, E.C.; Chen, D.; Chakrabarti, K.R.; Zhang, P.; Andorko, J.I.; Jewell, C.M.; Losert, W.; Martin, S.S. Extracting microtentacle dynamics of tumor cells in a non-adherent environment. Oncotarget 2017, 8, 111567–111580. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res. 2012, 29, 2943–2971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diéras, V.; Limentani, S.; Romieu, G.; Tubiana-Hulin, M.; Lortholary, A.; Kaufman, P.; Girre, V.; Besenval, M.; Valero, V. Phase II multicenter study of larotaxel (XRP9881), a novel taxoid, in patients with metastatic breast cancer who previously received taxane-based therapy. Ann. Oncol. 2008, 19, 1255–1260. [Google Scholar] [CrossRef]
- Cao, Y.N.; Zheng, L.L.; Wang, D.; Liang, X.X.; Gao, F.; Zhou, X.L. Recent advances in microtubule-stabilizing agents. Eur. J. Med. Chem. 2018, 143, 806–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohena, C.C.; Mooberry, S.L. Recent progress with microtubule stabilizers: New compounds, binding modes and cellular activities. Nat. Prod. Rep. 2014, 31, 335–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yared, J.A.; Tkaczuk, K.H. Update on taxane development: New analogs and new formulations. Drug. Des. Devel. Ther. 2012, 6, 371–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheuer, P.J.; Madamba, L.A.; Swanholm, C.E.; Hudgins, W.R. The constituents of Tacca leontopetaloides. Lloydia 1963, 26, 133–140. [Google Scholar]
- Risinger, A.L.; Hastings, S.D.; Du, L. Taccalonolide C-6 Analogues, Including Paclitaxel Hybrids, Demonstrate Improved Microtubule Polymerizing Activities. J. Nat. Prod. 2021, 84, 1799–1805. [Google Scholar] [CrossRef] [PubMed]
- Prussia, A.J.; Yang, Y.; Geballe, M.T.; Snyder, J.P. Cyclostreptin and microtubules: Is a low-affinity binding site required? ChemBioChem 2010, 11, 101–119. [Google Scholar] [CrossRef]
- Edler, M.C.; Buey, R.M.; Gussio, R.; Marcus, A.I.; Vanderwal, C.D.; Sorensen, E.J.; Díaz, J.F.; Giannakakou, P.; Hamel, E. Cyclostreptin (FR182877), an antitumor tubulin-polymerizing agent deficient in enhancing tubulin assembly despite its high affinity for the taxoid site. Biochemistry 2005, 44, 11525–11538. [Google Scholar] [CrossRef] [Green Version]
- Vollmer, L.L.; Jiménez, M.; Camarco, D.P.; Zhu, W.; Daghestani, H.N.; Balachandran, R.; Reese, C.E.; Lazo, J.S.; Hukriede, N.A.; Curran, D.P.; et al. A simplified synthesis of novel dictyostatin analogues with in vitro activity against epothilone B-resistant cells and antiangiogenic activity in zebrafish embryos. Mol. Cancer Ther. 2011, 10, 994–1006. [Google Scholar] [CrossRef] [Green Version]
- Hung, D.T.; Nerenberg, J.B.; Schreiber, S.L. Distinct binding and cellular properties of synthetic (+)- and (-)-discodermolides. Chem. Biol. 1994, 1, 67–71. [Google Scholar] [CrossRef]
- Long, B.H.; Carboni, J.M.; Wasserman, A.J.; Cornell, L.A.; Casazza, A.M.; Jensen, P.R.; Lindel, T.; Fenical, W.; Fairchild, C.R. Eleutherobin, a novel cytotoxic agent that induces tubulin polymerization, is similar to paclitaxel (Taxol). Cancer Res. 1998, 58, 1111–1115. [Google Scholar] [PubMed]
- Field, J.J.; Pera, B.; Calvo, E.; Canales, A.; Zurwerra, D.; Trigili, C.; Rodríguez-Salarichs, J.; Matesanz, R.; Kanakkanthara, A.; Wakefield, S.J.; et al. Zampanolide, a potent new microtubule-stabilizing agent, covalently reacts with the taxane luminal site in tubulin α,β-heterodimers and microtubules. Chem. Biol. 2012, 19, 686–698. [Google Scholar] [CrossRef]
- Hamel, E.; Sackett, D.L.; Vourloumis, D.; Nicolaou, K.C. The coral-derived natural products eleutherobin and sarcodictyins A and B: Effects on the assembly of purified tubulin with and without microtubule-associated proteins and binding at the polymer taxoid site. Biochemistry 1999, 38, 5490–5498. [Google Scholar] [CrossRef]
- Pryor, D.E.; O’Brate, A.; Bilcer, G.; Díaz, J.F.; Wang, Y.; Wang, Y.; Kabaki, M.; Jung, M.K.; Andreu, J.M.; Ghosh, A.K.; et al. The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry 2002, 41, 9109–9115. [Google Scholar] [CrossRef]
- Liu, J.; Towle, M.J.; Cheng, H.; Saxton, P.; Reardon, C.; Wu, J.; Murphy, E.A.; Kuznetsov, G.; Johannes, C.W.; Tremblay, M.R.; et al. In vitro and in vivo anticancer activities of synthetic (-)-laulimalide, a marine natural product microtubule stabilizing agent. Anticancer Res. 2007, 27, 1509–1518. [Google Scholar] [PubMed]
- Hood, K.A.; West, L.M.; Rouwé, B.; Northcote, P.T.; Berridge, M.V.; Wakefield, S.J.; Miller, J.H. Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule- stabilizing activity. Cancer Res. 2002, 62, 3356–3360. [Google Scholar]
- Hamel, E.; Day, B.W.; Miller, J.H.; Jung, M.K.; Northcote, P.T.; Ghosh, A.K.; Curran, D.P.; Cushman, M.; Nicolaou, K.C.; Paterson, I.; et al. Synergistic effects of peloruside A and laulimalide with taxoid site drugs, but not with each other, on tubulin assembly. Mol. Pharmacol. 2006, 70, 1555–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karjala, G.; Chan, Q.; Manzo, E.; Andersen, R.J.; Roberge, M. Ceratamines, structurally simple microtubule-stabilizing antimitotic agents with unusual cellular effects. Cancer Res. 2005, 65, 3040–3043. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.A.; Wilson, L.; Azarenko, O.; Zhu, X.; Lewis, B.M.; Littlefield, B.A.; Jordan, M.A. Eribulin binds at microtubule ends to a single site on tubulin to suppress dynamic instability. Biochemistry 2010, 49, 1331–1337. [Google Scholar] [CrossRef] [Green Version]
- O’Shaughnessy, J.; Kaklamani, V.; Kalinsky, K. Perspectives on the mechanism of action and clinical application of eribulin for metastatic breast cancer. Future Oncol. 2019, 15, 1641–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hensley, M.L.; Kravetz, S.; Jia, X.; Iasonos, A.; Tew, W.; Pereira, L.; Sabbatini, P.; Whalen, C.; Aghajanian, C.A.; Zarwan, C.; et al. Eribulin mesylate (halichondrin B analog E7389) in platinum-resistant and platinum-sensitive ovarian cancer: A 2-cohort, phase 2 study. Cancer 2012, 118, 2403–2410. [Google Scholar] [CrossRef] [Green Version]
- Bennouna, J.; Delord, J.P.; Campone, M.; Nguyen, L. Vinflunine: A new microtubule inhibitor agent. Clin. Cancer Res. 2008, 14, 1625–1632. [Google Scholar] [CrossRef] [Green Version]
- Kanthou, C.; Tozer, G.M. Microtubule depolymerizing vascular disrupting agents: Novel therapeutic agents for oncology and other pathologies. Int. J. Exp. Pathol. 2009, 90, 284–294. [Google Scholar] [CrossRef]
- Borys, F.; Tobiasz, P.; Poterała, M.; Krawczyk, H. Development of novel derivatives of stilbene and macrocyclic compounds as potent of anti-microtubule factors. Biomed. Pharmacother. 2021, 133, 110973. [Google Scholar] [CrossRef]
- Liu, W.; Liang, L.; Zhao, L.; Tan, H.; Wu, J.; Qin, Q.; Gou, X.; Sun, X. Synthesis and characterization of a photoresponsive doxorubicin/combretastatin A4 hybrid prodrug. Bioorg. Med. Chem. Lett. 2019, 29, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Thombare, V.J.; Holden, J.A.; Reynolds, E.C.; O’Brien-Simpson, N.M.; Hutton, C.A. Celogentin mimetics as inhibitors of tubulin polymerization. J. Pept. Sci. 2020, 26, e3239. [Google Scholar] [CrossRef]
- Gordon, M.; McMeekin, D.; Temkin, S.; Tew, W.; Yapp, S.; Scambia, G.; Streltsova, O.; Kaiser, C.; Ilaria, R.; Look, K. Phase II, single-arm study of tasisulam-sodium (LY573636-sodium) as 2nd-4th line therapy for platinum resistant ovarian cancer. Mol. Cancer Ther. 2009, 8, B197. [Google Scholar]
- Pal, S.K.; Twardowski, P.; Sartor, O. Critical appraisal of cabazitaxel in the management of advanced prostate cancer. Clin. Interv. Aging 2010, 5, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copeland, L.; Brady, M.; Burger, R.; Rodgers, W.; Huang, H.; Cella, D.; Fowler, J.M.; Walker, J.L.; Tewari, K.S.; Bender, D.P.; et al. GOG 212:Phase III trial of maintenance therapy in women with advanced ovary/tubal/peritoneal cancer after a complete response to first-line therapy–An NRG oncology(GOG legacy) study [abstract LBA1 and slide presentation]. In Proceedings of the 48th Annual Meeting of the Society of Gynecologic Oncology, Annual Meeting on Women’s Cancer, National Harbor, MD, USA, 12–15 March 2017; Volume 145, p. 219. [Google Scholar]
- Bedikian, A.Y.; DeConti, R.C.; Conry, R.; Agarwala, S.; Papadopoulos, N.; Kim, K.B.; Ernstoff, M. Phase 3 study of docosahexaenoic acid-paclitaxel versus dacarbazine in patients with metastatic malignant melanoma. Ann. Oncol. 2011, 22, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.T.; Su, M.H. EndoTAG-1 plus gemcitabine versus gemcitabine alone in patients with measureable locally advanced and/or metastatic adenocarcinoma of the pancreas failed on FLOFIRINOX treatment (NCT03126435). JCO 2020, 38. [Google Scholar] [CrossRef]
- Shi, M.; Gu, A.; Tu, H.; Huang, C.; Wang, H.; Yu, Z.; Wang, X.; Cao, L.; Shu, Y.; Wang, H.; et al. Comparing nanoparticle polymeric micellar paclitaxel and solvent-based paclitaxel as first-line treatment of advanced non-small-cell lung cancer: An open-label, randomized, multicenter, phase III trial. Ann. Oncol. 2021, 32, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Flores, J.P.; Saif, M.W. Novel oral taxane therapies: Recent Phase I results. Clin. Investig. 2013, 3, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.W.; Lee, I.H.; Kwak, Y.H.; Park, Y.T.; Sung, H.C.; Kwon, I.C.; Chung, H. Efficacy and tissue distribution of DHP107, an oral paclitaxel formulation. Mol. Cancer Ther. 2007, 6, 3239–3247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moes, J.J.; Koolen, S.L.; Huitema, A.D.; Schellens, J.H.; Beijnen, J.H.; Nuijen, B. Pharmaceutical development and preliminary clinical testing of an oral solid dispersion formulation of docetaxel (ModraDoc001). Int. J. Pharm. 2011, 420, 244–250. [Google Scholar] [CrossRef]
- Nicoletti, M.I.; Colombo, T.; Rossi, C.; Monardo, C.; Stura, S.; Zucchetti, M.; Riva, A.; Morazzoni, P.; Donati, M.B.; Bombardelli, E.; et al. IDN5109, a taxane with oral bioavailability and potent antitumor activity. Cancer Res. 2000, 60, 842–846. [Google Scholar]
- Sampath, D.; Discafani, C.M.; Loganzo, F.; Beyer, C.; Liu, H.; Tan, X.; Musto, S.; Annable, T.; Gallagher, P.; Rios, C.; et al. MAC-321, a novel taxane with greater efficacy than paclitaxel and docetaxel in vitro and in vivo. Mol. Cancer Ther. 2003, 2, 873–884. [Google Scholar] [PubMed]
- Mastalerz, H.; Cook, D.; Fairchild, C.R.; Hansel, S.; Johnson, W.; Kadow, J.F.; Long, B.H.; Rose, W.C.; Tarrant, J.; Wu, M.J.; et al. The discovery of BMS-275183: An orally efficacious novel taxane. Bioorg. Med. Chem. 2003, 11, 4315–4323. [Google Scholar] [CrossRef]
- Heath, E.I.; Lorusso, P.; Ramalingam, S.S.; Awada, A.; Egorin, M.J.; Besse-Hamer, T.; Cardoso, F.; Valdivieso, M.; Has, T.; Alland, L.; et al. A phase 1 study of BMS-275183, a novel oral analogue of paclitaxel given on a daily schedule to patients with advanced malignancies. Invest. New Drugs. 2011, 29, 1426–1431. [Google Scholar] [CrossRef]
- Jing, Y.R.; Zhou, W.; Wang, X.Y. T-13 and T-26, the novel taxanes with improved oral bioavailability in rats. Sci. Rep. 2020, 10, 3211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tew, W.P.; Muss, H.B.; Kimmick, G.G.; Von Gruenigen, V.E.; Lichtman, S.M. Breast and ovarian cancer in the older woman. J. Clin. Oncol. 2014, 32, 2553–2561. [Google Scholar] [CrossRef]
- Pignata, S.; De Placido, S.; Biamonte, R.; Scambia, G.; Di Vagno, G.; Colucci, G.; Febbraro, A.; Marinaccio, M.; Lombardi, A.V.; Manzione, L.; et al. Residual neurotoxicity in ovarian cancer patients in clinical remission after first-line chemotherapy with carboplatin and paclitaxel: The Multicenter Italian Trial in Ovarian cancer (MITO-4) retrospective study. BMC Cancer. 2006, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Brewer, J.R.; Morrison, G.; Dolan, M.E.; Fleming, G.F. Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecol. Oncol. 2016, 140, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Peters, C.M.; Jimenez-Andrade, J.M.; Kuskowski, M.A.; Ghilardi, J.R.; Mantyh, P.W. An evolving cellular pathology occurs in dorsal root ganglia, peripheral nerve and spinal cord following intravenous administration of paclitaxel in the rat. Brain Res. 2007, 1168, 46–59. [Google Scholar] [CrossRef] [Green Version]
- Hertz, D.L.; Roy, S.; Jack, J.; Motsinger-Reif, A.A.; Drobish, A.; Clark, L.S.; Carey, L.A.; Dees, E.C.; McLeod, H.L. Genetic heterogeneity beyond CYP2C8*3 does not explain differential sensitivity to paclitaxel-induced neuropathy. Breast Cancer Res. Treat. 2014, 145, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Leandro-García, L.J.; Leskelä, S.; Jara, C.; Gréen, H.; Avall-Lundqvist, E.; Wheeler, H.E.; Dolan, M.E.; Inglada-Perez, L.; Maliszewska, A.; de Cubas, A.A.; et al. Regulatory polymorphisms in β-tubulin IIa are associated with paclitaxel-induced peripheral neuropathy. Clin. Cancer Res. 2012, 18, 4441–4448. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, R.M.; Owzar, K.; Zembutsu, H.; Chhibber, A.; Kubo, M.; Jiang, C.; Watson, D.; Eclov, R.J.; Mefford, J.; McLeod, H.L.; et al. A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin. Cancer Res. 2012, 18, 5099–5109. [Google Scholar] [CrossRef] [Green Version]
- Schneider, B.P.; Li, L.; Radovich, M.; Shen, F.; Miller, K.D.; Flockhart, D.A.; Jiang, G.; Vance, G.; Gardner, L.; Vatta, M.; et al. Genome-Wide Association Studies for Taxane-Induced Peripheral Neuropathy in ECOG-5103 and ECOG-1199. Clin. Cancer Res. 2015, 21, 5082–5091. [Google Scholar] [CrossRef] [Green Version]
- Block, K.I.; Gyllenhaal, C. Commentary: The pharmacological antioxidant amifostine—Implications of recent research for integrative cancer care. Integr. Cancer Ther. 2005, 4, 29–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, E.Y.; Ehrlich, B.E. Prevention of chemotherapy-induced peripheral neuropathy: A review of recent findings. Crit. Rev. Oncol. Hematol. 2020, 145, 102831. [Google Scholar] [CrossRef]
- Smith, E.M.; Pang, H.; Cirrincione, C.; Fleishman, S.; Paskett, E.D.; Ahles, T.; Bressler, L.R.; Fadul, C.E.; Knox, C.; Le-Lindqwister, N.; et al. Alliance for Clinical Trials in Oncology. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: A randomized clinical trial. JAMA 2013, 309, 1359–1367. [Google Scholar] [CrossRef]
- Kukkar, A.; Bali, A.; Singh, N.; Jaggi, A.S. Implications and mechanism of action of gabapentin in neuropathic pain. Arch. Pharm. Res. 2013, 36, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Mo, M.; Erdelyi, I.; Szigeti-Buck, K.; Benbow, J.H.; Ehrlich, B.E. Prevention of paclitaxel-induced peripheral neuropathy by lithium pretreatment. FASEB J. 2012, 26, 4696–4709. [Google Scholar] [CrossRef] [Green Version]
(a) | ||||||
Taxanes | Origin | Use | Mechanism of Action | Resistance | Toxicity | |
Paclitaxel (Taxol ®) [6] | Bark of the Western or Pacific yew tree, T. brevifolia | First or second line ovarian cancer | Stabilizes and inhibits depolymerization of intracellular microtubules | Overexpression of multidrug resistance (MDR-1) gene; molecular changes in the target molecule (betatubulin); changes in checkpoint proteins; changes in lipid composition and overexpression of interleukin 6 (IL-6) | Neuropathy, weakness, myalgias, myelosuppression | |
Docetaxel (Taxotere®) [6] | Semisynthetic analog derived from the bark of T. baccata | Refractory ovarian cancer | Cytotoxic activity through microtubule-stabilization | Limits intracellular drug concentration and stabilization; inhibits cytotoxic effects through alternative growth pathways or apoptotic escape | Neutropenia, hypersensitivity reactions, nausea, emesis | |
Vinca alkaloids | Origin | Use | Mechanism of Action | Resistance | Toxicity | |
Vinblastine [6] | Madagascar periwinkle | Advanced ovarian cancer | Prevents polymerization and assembly of microtubules; disrupts mitotic spindle and cytoskeletal function | Enhanced efflux via P-glycoprotein in the cell membrane | Phlebitis, cellulitis, nausea, vomiting, diarrhea, alopecia, myelosuppression, SIADH | |
Vincristine [6] | Madagascar periwinkle Catharanthus roseus | Used in combination with other agents | Microtubule destabilizing antimitotic activity | Overexpression of efflux pumps and tubulin isotypes; modifications of the target microtubules | Alopecia, GI symptoms, neuropathy, weight loss | |
Vinorelbine [6] | Semi-synthetic | As a single agent in recurrent ovarian cancer | Inhibits mitotic spindle formation and microtubule polymerization causing mitotic arrest | Modification of transport system | Peripheral neuropathy, anemia, hyponatremia, GI symptoms, phlebitis. | |
Epipodophyllotoxins | Origin | Use | Mechanism of Action | Resistance | Toxicity | |
Etoposide [7] | Gylcosidic derivative of podophyllotoxin by the mandrake plant (P. peltatum) | Recurrent platinum-resistant epithelial ovarian cancer | Interferes with topoisomerase II function and promotes single- and double-strand DNA breaks, resulting in cell death | Altered expression of topoisomerase II; multidrug-resistant phenotypes encoded by the mdr1 and MRP (multidrug resistance-associated protein) genes. | Myelosuppression, mucositis, nausea, alopecia, emesis | |
Teniposide [7] | Semisynthetic derivative of podophyllotoxin from the mandrake plant (P. peltatum) | Advanced refractory ovarian cancer | Inhibits topoisomerase II activity; prevents cell mitosis by causing single and double stranded DNA breaks and protein cross linking | Altered expression of topoisomerase II, and the multidrug-resistant phenotypes encoded by the mdr1 and MRP genes. | Bone marrow suppression, gastrointestinal toxicity, hypersensitivity reactions, reversible alopecia | |
Epothilones | Origin | Use | Mechanism of Action | Resistance | Toxicity | |
Ixabepilone (Ixempra®) [9] | Semi-synthetic second-generation analog of epothilone B | Platinum-resistant or refractory ovarian cancer. | Induces cell death by interfering with microtubule function such as intracellular transport. | Increased βIII-tubulin expression. Mutations in β274Thr→Ile and β282Arg→Gln resuting in impaired abiity to induce tubulin polymerization | Neutropenia, peripheral neuropathy | |
Patupilone (epothilone B) [10] | Myxobacterium Sorangium cellulosum | Paclitaxel-resistant ovarian cancer | Induces cell-cycle arrest and apoptosis by binding to B-tubulin | Mutations in β274Thr→Ile and β282Arg→Gln resuting in impaired abiity to induce tubulin polymerization | Diarrhea, peripheral neuropathy, fatigue | |
(b) | ||||||
Year | Authors | Title | Number of Patients Enrolled | Treatment Arms | Clinical Outcomes | Toxicity |
1994 * | Eisenhauer et al. [11] | European-Canadian randomized trial of paclitaxel in relapsed ovarian cancer: high-dose versus low-dose and long versus short infusion. | 382 | Randomized in a bifactorial design to receive either 175 or 135 mg/m2 of Taxol over either 24 or 3 h. | Response was slightly higher at the 175-mg/m2 dose than at 135 mg/m2 (20% vs. 15%; p = 0.2). PFS was significantly longer in the high-dose group (19 vs. 14 weeks; p = 0.02). ORR were similar in the 24- and 3-h groups (19% and 16%, respectively; p = 0.6). No survival differences were noted. | 24-h taxol infusion was associated with significantly more neutropenia. |
2003 | Parmar et al., ICON4/AGO-OVAR-2.2 trial [12] | Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial | 802 | Paclitaxel plus platinum chemotherapy or conventional platinum-based chemotherapy. | Paclitaxel plus platinum was associated with longer 2-year survival (57% vs. 50%) and 1-year PFS (50% vs. 40%). | Paclitaxel plus platinum was associated with more alopecia and neurotoxicity.Conventional platinum-based chemotherapy was associated with myelosuppression. |
2006 | Markman et al., GOG-126 N [13] | Phase II trial of weekly paclitaxel (80 mg/m2) in platinum and paclitaxel-resistant ovarian and primary peritoneal cancers: a Gynecologic Oncology Group study | 48 | Patients with platinum- and paclitaxel-resistant ovarian cancer (defined as progression during, or recurrence < 6 months following, their prior treatment with both agents) received single agent weekly paclitaxel (80 mg/m2/week) until disease progression (assuming acceptable toxicity). | Weekly administration of paclitaxel can be useful in women with both platinum- and paclitaxel-resistant ovarian cancer. The ORR was 20.9%. | Serious adverse events were relatively uncommon (neuropathy-grade 2: 21%; grade 3: 4%; and grade 3 fatigue: 8%). |
2009 * | Sharma et al. [14] | Extended weekly dose-dense paclitaxel/carboplatin is feasible and active in heavily pre-treated platinum-resistant recurrent ovarian cancer. | 20 | Patients with platinum-resistant/refractory ovarian cancer received carboplatin AUC 3 and paclitaxel 70 mg/m(2) on day 1, 8, and 15 every 4 weekly for six planned cycles. | Response rate was 60% by radiological criteria (RECIST) and 76% by CA125 assessment. Median PFS was 7.9 months and OS was 13.3 months. | Grade 3 toxicities consisted of neutropenia (29% of patients) and anemia (5%). |
2010 | De Geest et al., GOG-0126M, NCT00025155 [9] | Phase II Clinical Trial of Ixabepilone in Patients With Recurrent or Persistent Platinum- and Taxane-Resistant Ovarian or Primary Peritoneal Cancer: A Gynecologic Oncology Group Study | 49 | Intravenous ixabepilone 20 mg/m2 administered over 1 hour on days 1, 8, and 15 of a 28-day cycle. | The ORR was 14.3%, with median PFS of 4.4 months. SD was achieved in 40.8% of patients. Ixabepilone seems to be an active cytotoxic agent in patients with recurrent platinum- and taxane-resistant ovarian or primary peritoneal carcinoma. | Adverse effects included peripheral neuropathy, neutropenia, fatigue, nausea/emesis, diarrhea, and mucositis. |
2012 | Colombo et al., NCT00262990 [15] | Randomized, open-label, phase III study comparing patupilone (EPO906) with pegylated liposomal doxorubicin in platinum-refractory or -resistant patients with recurrent epithelial ovarian, primary fallopian tube, or primary peritoneal cancer. | 829 | Patients were randomly assigned to receive patupilone 10 mg/m2 IV every 3 weeks or pegylated liposomal doxorubicin (PLD) 50 mg/m2 IV every 4 weeks. | There was no statistically significant difference in OS between the patupilone and PLD arms (13.2 and 12.7 months respectively, p = 0.195). Median PFS was 3.7 months for both arms. The ORR was higher in the patupilone arm than in the PLD arm (15.5% vs. 7.9%). | Frequently observed adverse events included diarrhea (85.3%) and peripheral neuropathy (39.3%) in the patupilone arm and mucositis/stomatitis (43%) and hand-foot syndrome (41.8%) in the PLD arm. |
2014 | Pujade-Lauraine et al. [16] | Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: The AURELIA open-label randomized phase III trial. | 361 | Randomized to single-agent chemotherapy alone (PLD, weekly paclitaxel, or topotecan) or with bevacizumab (10 mg/kg every 2 weeks or 15 mg/kg every 3 weeks) until progression, unacceptable toxicity, or consent withdrawal. | Median PFS was 3.4 months with chemotherapy alone versus 6.7 months with bevacizumab-containing therapy. The OS was 13.3 vs. 16.6 months, respectively. | Hypertension and proteinuria were more common with bevacizumab. GI perforation occurred in 2.2% of bevacizumab-treated patients. |
2015 | Roque et al. [17] | Weekly ixabepilone with or without biweekly bevacizumab in the treatment of recurrent or persistent uterine and ovarian/primary peritoneal/fallopian tube cancers: A retrospective review. | 36 ovarian cancer (+24 uterine cancer) | Retrospective review was performed inclusive of all patients who received ≥2 cycles of weekly ixabepilone (16–20 mg/m2 days 1, 8, 15 of a 28-day cycle) ± biweekly bevacizumab (10 mg/kg days 1 and 15). | Patients completed a mean of 4.7 ± 2.9 cycles of ixabepilone; 91.7% (33/36) of patients with ovarian cancers received concurrent bevacizumab. Weekly ixabepilone with or without biweekly bevacizumab has promising activity and acceptable toxicity in patients with platinum- or taxane-resistant endometrial and ovarian cancers. | Ixabepilone dose was reduced in patients with neuropathy and bevacizumab was reduced due to mucositis. Unacceptable toxicity in four patients included fatigue, proteinuria, neuropathy, diarrhea, mucositis, and new-onset seizures. |
2021 | Roque et al. [18] | Randomized phase II trial of weekly ixabepilone with or without biweekly bevacizumab for platinum-resistant or refractory ovarian, fallopian tube, primary peritoneal cancer. | 78 | Randomized to receive either ixabepilone monotherapy at 20 mg/m2 on days 1, 8, and 15 of a 28-day cycle, or ixabepilone at 20 mg/m2 plus bevacizumab at 10 mg/kg on days 1 and 15 of the same cycle. | PFS for ixabepilone plus bevacizumab was 5.5 months compared to 2.2 months for ixabepilone alone (p <0.001). OS was 10.0 and 6.0 months for the combination and monotherapy arms, respectively (p = 0.006). The ORR was 33% with ixabepilone plus bevacizumab vs. 8% with ixabepilone monotherapy (p = 0.004). | Both regimens were well tolerated. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tymon-Rosario, J.; Adjei, N.N.; Roque, D.M.; Santin, A.D. Microtubule-Interfering Drugs: Current and Future Roles in Epithelial Ovarian Cancer Treatment. Cancers 2021, 13, 6239. https://doi.org/10.3390/cancers13246239
Tymon-Rosario J, Adjei NN, Roque DM, Santin AD. Microtubule-Interfering Drugs: Current and Future Roles in Epithelial Ovarian Cancer Treatment. Cancers. 2021; 13(24):6239. https://doi.org/10.3390/cancers13246239
Chicago/Turabian StyleTymon-Rosario, Joan, Naomi N. Adjei, Dana M. Roque, and Alessandro D. Santin. 2021. "Microtubule-Interfering Drugs: Current and Future Roles in Epithelial Ovarian Cancer Treatment" Cancers 13, no. 24: 6239. https://doi.org/10.3390/cancers13246239
APA StyleTymon-Rosario, J., Adjei, N. N., Roque, D. M., & Santin, A. D. (2021). Microtubule-Interfering Drugs: Current and Future Roles in Epithelial Ovarian Cancer Treatment. Cancers, 13(24), 6239. https://doi.org/10.3390/cancers13246239