Can Any Drug Be Repurposed for Cancer Treatment? A Systematic Assessment of the Scientific Literature
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Compilation of Drugs
2.2. Search Strategy and Number of Drugs Implicated with Anti-Cancer Effects
2.3. Categorizing Findings of the Studies
2.4. Assessment of the Methodological Quality
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hay, M.; Thomas, D.W.; Craighead, J.L.; Economides, C.; Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 2014, 32, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Fojo, T.; Mailankody, S.; Lo, A. Unintended consequences of expensive cancer therapeutics—The pursuit of marginal indications and a Me-Too mentality that stifles innovation and creativity. JAMA Otolaryngol. Neck Surg. 2014, 140, 1225–1236. [Google Scholar] [CrossRef]
- Bernards, R.; Jaffee, E.; Joyce, J.A.; Lowe, S.W.; Mardis, E.R.; Morrison, S.J.; Polyak, K.; Sears, C.L.; Vousden, K.H.; Zhang, Z. A Roadmap for the Next Decade in Cancer Research. Available online: https://www.nature.com/articles/s43018-019-0015-9 (accessed on 30 March 2020).
- Ostrom, Q.T.; Gittleman, H.; Fulop, J.; Liu, M.; Blanda, R.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-Oncol. 2015, 17, iv1–iv62. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P. The Repurposing Drugs in Oncology (ReDO) Project. Available online: http://ecancer.org/en/journal/article/442-the-repurposing-drugs-in-oncology-redo-project (accessed on 12 June 2020).
- Lesko, L.J. Efficacy from strange sources. Clin. Pharmacol. Ther. 2017, 103, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Nosengo, N. Can you teach old drugs new tricks? Nature 2016, 534, 314–316. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Byrne, J.; Scollard, D.; Levine, E. Expression of Cyclooxygenase-1 and Cyclooxygenase-2 in human breast cancer. J. Natl. Cancer Inst. 1998, 90, 455–460. [Google Scholar] [CrossRef]
- Goradel, N.H.; Najafi, M.; Salehi, E.; Farhood, B.; Mortezaee, K. Cyclooxygenase-2 in cancer: A review. J. Cell. Physiol. 2019, 234, 5683–5699. [Google Scholar] [CrossRef]
- Sanseau, P.; Agarwal, P.; Barnes, M.; Pastinen, T.; Richards, J.B.; Cardon, L.R.; Mooser, V. Use of genome-wide association studies for drug repositioning. Nat. Biotechnol. 2012, 30, 317–320. [Google Scholar] [CrossRef]
- Pantziarka, P. Drug Repurposing and Oncology—Pitfalls and Potentials. Oncol. Cent. 2017. Available online: https://www.oncology-central.com/drug-repurposing-oncology-pitfalls-potentials/ (accessed on 25 October 2021).
- Gyawali, B.; Prasad, V. Drugs that lack single-agent activity: Are they worth pursuing in combination? Nat. Rev. Clin. Oncol. 2017, 14, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Breckenridge, A.; Jacob, R. Overcoming the legal and regulatory barriers to drug repurposing. Nat. Rev. Drug Discov. 2019, 18, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, E.L.; Hanley, A.J.; Kezouh, A.; Suissa, S. Problem of immortal time bias in cohort studies: Example using statins for preventing progression of diabetes. BMJ 2010, 340, b5087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, C.J.; Burford, B.; Ioannidis, J.P. Assessment of vibration of effects due to model specification can demonstrate the instability of observational associations. J. Clin. Epidemiol. 2015, 68, 1046–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theile, D.; Mikus, G. Methadone against cancer: Lost in translation. Int. J. Cancer 2018, 143, 1840–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ergebnisse der Online-Umfrage. Methadon in der Krebstherapie. Available online: https://www.dgho.de/aktuelles/news/newsarchiv/2017/ergebnisse-umfrage-methadon (accessed on 13 June 2020).
- Ioannidis, J.P.A. Why most published research findings are false. PLoS Med. 2005, 2, e124. [Google Scholar] [CrossRef] [Green Version]
- Wieschowski, S.; Chin, W.W.L.; Federico, C.; Sievers, S.; Kimmelman, J.; Strech, D. Preclinical efficacy studies in investigator brochures: Do they enable risk–benefit assessment? PLoS Biol. 2018, 16, e2004879. [Google Scholar] [CrossRef] [Green Version]
- MacLeod, M.R.; McLean, A.L.; Kyriakopoulou, A.; Serghiou, S.; de Wilde, A.; Sherratt, N.; Hirst, T.; Hemblade, R.; Bahor, Z.; Nunes-Fonseca, C.; et al. Risk of bias in reports of in vivo research: A focus for improvement. PLoS Biol. 2015, 13, e1002273. [Google Scholar] [CrossRef] [PubMed]
- Holman, L.; Head, M.L.; Lanfear, R.; Jennions, M.D. Evidence of experimental bias in the life sciences: Why we need blind data recording. PLoS Biol. 2015, 13, e1002190. [Google Scholar] [CrossRef]
- Schmidt-Pogoda, A.; Bonberg, N.; Koecke, M.H.M.; Strecker, J.; Wellmann, J.; Bruckmann, N.; Beuker, C.; Schäbitz, W.; Meuth, S.G.; Wiendl, H.; et al. Why most acute stroke studies are positive in animals but not in patients: A systematic comparison of preclinical, early phase, and Phase 3 clinical trials of neuroprotective agents. Ann. Neurol. 2020, 87, 40–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Button, K.S.; Ioannidis, J.P.A.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.J.; Munafò, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Dirnagl, U. Preregistration of exploratory research: Learning from the golden age of discovery. PLoS Biol. 2020, 18, e3000690. [Google Scholar] [CrossRef] [PubMed]
- Van Der Naald, M.; Wenker, S.; Doevendans, A.P.; Wever, E.K.; Chamuleau, S.A.J. Publication rate in preclinical research: A plea for preregistration. BMJ Open Sci. 2020, 4, e100051. [Google Scholar] [CrossRef]
- Wieschowski, S.; Biernot, S.; Deutsch, S.; Glage, S.; Bleich, A.; Tolba, R.; Strech, D. Publication rates in animal research. Extent and characteristics of published and non-published animal studies followed up at two German university medical centres. PLoS ONE 2019, 14, e0223758. [Google Scholar] [CrossRef] [Green Version]
- Tsilidis, K.K.; Panagiotou, O.; Sena, E.S.; Aretouli, E.; Evangelou, E.; Howells, D.; Salman, R.A.-S.; Macleod, M.R.; Ioannidis, J.P.A. Evaluation of excess significance bias in animal studies of neurological diseases. PLoS Biol. 2013, 11, e1001609. [Google Scholar] [CrossRef] [Green Version]
- Bastian, H. Biomedical Research: Believe It or Not? Absol. Maybe 2013. Available online: https://absolutelymaybe.plos.org/2013/12/16/biomedical-research-believe-it-or-not/ (accessed on 25 October 2021).
- Palumbo, A.; Facon, T.; Sonneveld, P.; Bladé, J.; Offidani, M.; Gay, F.; Moreau, P.; Waage, A.; Spencer, A.; Ludwig, H.; et al. Thalidomide for treatment of multiple myeloma: 10 years later. Blood 2008, 111, 3968–3977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves Raloxifene for Breast Cancer Prevention. Available online: https://prevention.cancer.gov/news-and-events/news/fda-approves-raloxifene (accessed on 25 November 2021).
- Rice, D.B.; Raffoul, H.; Ioannidis, A.J.P.; Moher, D. Academic criteria for promotion and tenure in biomedical sciences faculties: Cross sectional analysis of international sample of universities. BMJ 2020, 369, m2081. [Google Scholar] [CrossRef]
- Begley, C.G.; Ioannidis, J.P. Reproducibility in science. Circ. Res. 2015, 116, 116–126. [Google Scholar] [CrossRef] [Green Version]
Systematic Search | Frequently Prescribed Drugs | Randomly Selected Drugs | |
---|---|---|---|
Drugs reported to have anti-cancer effects | |||
Identified by all search strategies | 81 | 57 | |
Identified by search strategy 1 | 42 | 29 | |
Identified by search strategy 2 | 30 | 24 | |
Identified by search strategy 3 | 9 | 4 | |
Categorization of findings | |||
Review | 19 | 16 | |
Single-agent activity | in vivo | 28 | 13 |
in vitro | 22 | 21 | |
Combination therapy | in vivo | 1 | 1 |
in vitro | 5 | 3 | |
Biological plausibility | 6 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stransky, N.; Ruth, P.; Schwab, M.; Löffler, M.W. Can Any Drug Be Repurposed for Cancer Treatment? A Systematic Assessment of the Scientific Literature. Cancers 2021, 13, 6236. https://doi.org/10.3390/cancers13246236
Stransky N, Ruth P, Schwab M, Löffler MW. Can Any Drug Be Repurposed for Cancer Treatment? A Systematic Assessment of the Scientific Literature. Cancers. 2021; 13(24):6236. https://doi.org/10.3390/cancers13246236
Chicago/Turabian StyleStransky, Nicolai, Peter Ruth, Matthias Schwab, and Markus W. Löffler. 2021. "Can Any Drug Be Repurposed for Cancer Treatment? A Systematic Assessment of the Scientific Literature" Cancers 13, no. 24: 6236. https://doi.org/10.3390/cancers13246236
APA StyleStransky, N., Ruth, P., Schwab, M., & Löffler, M. W. (2021). Can Any Drug Be Repurposed for Cancer Treatment? A Systematic Assessment of the Scientific Literature. Cancers, 13(24), 6236. https://doi.org/10.3390/cancers13246236