Incidence of the CHEK2 Germline Mutation and Its Impact on Clinicopathological Features, Treatment Responses, and Disease Course in Patients with Papillary Thyroid Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Management and Follow-Up Protocols
2.3. End of Follow-Up and Oncological Assessment (31 May 2020)
2.4. Detection of CHEK2 Mutations
2.5. Statistical Analysis
3. Results
Baseline Characteristics
3.1.1. Relationship between the Genotype of CHEK2 Mutation and PTC Risk
3.1.2. Relationship between CHEK2 Mutation Status and CHEK2 Wild-Type (WT) in Terms of Clinicopathological Characteristics, Responses to Therapy, and Disease Outcomes
3.1.3. Relationship between CHEK2 I157T Missense Heterozygous Mutation and CHEK2 WT with Respect to Clinicopathological Characteristics, Responses to Therapy, and Disease Outcomes
3.1.4. Relationship between the Heterozygous Truncating CHEK2 Mutation Variants (IVS2 + 1G > A, del5395, and 1100delC) and CHEK2 WT with respect to Clinicopathological Characteristics, Responses to Therapy, and Disease Outcomes
3.1.5. Relationship between the Heterozygous Truncating CHEK2 Mutation Variants (IVS2 + 1G > A, del5395, and 1100delC) and Heterozygous Missense Mutation I157T with Respect to Clinicopathological Characteristics, Responses to Therapy, and Disease Outcomes
3.1.6. The Impact of CHEK2 Mutation Status on Vascular Invasion, High and Intermediate Risk of Recurrence/Persistence According to ATA, response to Initial Therapy and Disease Outcome in Univariate and Multivariate Regression Analysis
3.1.7. Clinical Characteristics of PTC Patients Carrying Two CHEK2 Mutations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agate, L.; Lorusso, L.; Elisei, R. New and Old Knowledge on Differentiated Thyroid Cancer Epidemiology and Risk Factors. J. Endocrinol. Invest. 2012, 35, 3–9. [Google Scholar]
- Davies, L.; Welch, H.G. Current Thyroid Cancer Trends in the United States. JAMA Otolaryngol. Head Neck Surg. 2014, 140, 317–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Vecchia, C.; Malvezzi, M.; Bosetti, C.; Garavello, W.; Bertuccio, P.; Levi, F.; Negri, E. Thyroid Cancer Mortality and Incidence: A Global Overview. Int. J. Cancer 2015, 136, 2187–2195. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Didkowska, J.; Wojciechowska, U.; Olasek, P. Cancer in Poland in 2015. In Polish National Cancer Registry; Polish National Cancer Registry, Ed.; Health Ministry: Warsaw, Poland, 2017. [Google Scholar]
- Lim, H.; Devesa, S.S.; Sosa, J.A.; Check, D.; Kitahara, C.M. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974–2013. JAMA 2017, 317, 1338–1348. [Google Scholar] [CrossRef]
- Marotta, V.; Malandrino, P.; Russo, M.; Panariello, I.; Ionna, F.; Chiofalo, M.G.; Pezzullo, L. Fathoming the Link between Anthropogenic Chemical Contamination and Thyroid Cancer. Crit. Rev. Oncol. Hematol. 2020, 150, 102950. [Google Scholar] [CrossRef]
- Brito, J.P.; Davies, L. Is there really an increased incidence of thyroid cancer? Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 405–408. [Google Scholar] [CrossRef]
- Mazzaferri, E.L.; Jhiang, S.M. Long-Term Impact of Initial Surgical and Medical Therapy on Papillary and Follicular Thyroid Cancer. Am. J. Med. 1994, 97, 418–428. [Google Scholar] [CrossRef]
- Durante, C.; Montesano, T.; Torlontano, M.; Attard, M.; Monzani, F.; Tumino, S.; Costante, G.; Meringolo, D.; Bruno, R.R.; Trulli, F.; et al. Papillary Thyroid Cancer: Time Course of Recurrences During Postsurgery Surveillance. J. Clin. Endocrinol. Metab. 2013, 98, 636–642. [Google Scholar] [CrossRef] [Green Version]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggisano, V.; Celano, M.; Lepore, S.M.; Sponziello, M.; Rosignolo, F.; Pecce, V.; Verrienti, A.; Baldan, F.; Mio, C.; Allegri, L.; et al. Human Telomerase Reverse Transcriptase in Papillary Thyroid Cancer: Gene Expression, Effects of Silencing and Regulation by Bet Inhibitors in Thyroid Cancer Cells. Endocrine 2019, 63, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Trybek, T.; Walczyk, A.; Gąsior-Perczak, D.; Pałyga, I.; Mikina, E.; Kowalik, A.; Hińcza, K.; Kopczyński, J.; Chrapek, M.; Góźdź, S.; et al. Impact of Braf V600e and Tert Promoter Mutations on Response to Therapy in Papillary Thyroid Cancer. Endocrinology 2019, 160, 2328–2338. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Song, YS.; Kim, YA.; Lim, J.A.; Cho, S.W.; Moon, J.H.; Hahn, S.; Park, D.J.; Park, Y.J. Effects of Coexistent Braf(V600e) and Tert Promoter Mutations on Poor Clinical Outcomes in Papillary Thyroid Cancer: A Meta-Analysis. Thyroid 2017, 27, 651–660. [Google Scholar] [CrossRef]
- Vuong, H.G.; Altibi, A.M.; Duong, U.N.; Hassell, L. Prognostic implication of BRAF and TERT promoter mutation combination in papillary thyroid carcinoma-A meta-analysis. Clin. Endocrinol. 2017, 87, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Marotta, V.; Sciammarella, C.; Colao, A.; Faggiano, A. Application of molecular biology of differentiated thyroid cancer for clinical prognostication. Endocr. Relat. Cancer 2016, 23, 499–515. [Google Scholar] [CrossRef] [Green Version]
- Rutter, M.M.; Jha, P.; Schultz, K.A.P.; Sheil, A.; Harris, A.K.; Bauer, A.J.; Field, A.L.; Geller, J.; Hill, D.A. DICER1Mutations and Differentiated Thyroid Carcinoma: Evidence of a Direct Association. J. Clin. Endocrinol. Metab. 2016, 101, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Pereira, J.S.; Da Silva, J.G.; Tomaz, R.A.; Pinto, A.E.; Bugalho, M.J.; Leite, V.; Cavaco, B.M. Identification of a novel germline FOXE1 variant in patients with familial non-medullary thyroid carcinoma (FNMTC). Endocrine 2015, 49, 204–214. [Google Scholar] [CrossRef]
- He, H.; Bronisz, A.; Liyanarachchi, S.; Nagy, R.; Li, W.; Huang, Y.; Akagi, K.; Saji, M.; Kula, D.; Wojcicka, A.; et al. SRGAP1Is a Candidate Gene for Papillary Thyroid Carcinoma Susceptibility. J. Clin. Endocrinol. Metab. 2013, 98, 973–980. [Google Scholar] [CrossRef] [Green Version]
- Gara, S.K.; Jia, L.; Merino, M.J.; Agarwal, S.K.; Zhang, L.; Cam, M.; Patel, D.; Kebebew, E. GermlineHABP2Mutation Causing Familial Nonmedullary Thyroid Cancer. N. Engl. J. Med. 2015, 373, 448–455. [Google Scholar] [CrossRef] [Green Version]
- Wójcicka, A.; Czetwertyńska, M.; Świerniak, M.; Długosińska, J.; Maciąg, M.; Czajka, A.; Dymecka, K.; Kubiak, A.; Kot, A.; Płoski, R.; et al. Variants in the Atm-Chek2-Brca1 Axis Determine Genetic Predisposition and Clinical Presentation of Papillary Thyroid Carcinoma. Genes Chromosomes Cancer 2014, 53, 516–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siołek, M.; Cybulski, C.; Gąsior-Perczak, D.; Kowalik, A.; Kozak-Klonowska, B.; Kowalska, A.; Chłopek, M.; Kluźniak, W.; Wokołorczyk, D.; Pałyga, I.; et al. CHEK2mutations and the risk of papillary thyroid cancer. Int. J. Cancer 2015, 137, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Dombernowsky, S.L.; Weischer, M.; Allin, K.H.; Bojesen, S.E.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. Risk of Cancer by Atm Missense Mutations in the General Population. J. Clin. Oncol. 2008, 26, 305762. [Google Scholar] [CrossRef] [PubMed]
- Peiling Yang, S.; Ngeow, J. Familial Non-Medullary Thyroid Cancer: Unraveling the Genetic Maze. Endocr. Relat. Cancer 2016, 23, 577–595. [Google Scholar] [CrossRef] [Green Version]
- Tomsic, J.; He, H.; Akagi, K.; Liyanarachchi, S.; Pan, Q.; Bertani, B.; Nagy, R.; Symer, D.E.; Blencowe, B.J.; De La Chapelle, A. A germline mutation in SRRM2, a splicing factor gene, is implicated in papillary thyroid carcinoma predisposition. Sci. Rep. 2015, 5, 10566. [Google Scholar] [CrossRef]
- Ryu, R.A.; Tae, K.; Min, H.J.; Jeong, J.H.; Cho, S.H.; Lee, S.H.; Ahn, Y.H. XRCC1 Polymorphisms and Risk of Papillary Thyroid Carcinoma in a Korean Sample. J. Korean Med Sci. 2011, 26, 991–995. [Google Scholar] [CrossRef] [Green Version]
- Ngan, E.S.; Lang, B.H.H.; Liu, T.; Shum, C.K.Y.; So, M.-T.; Lau, D.K.C.; Leon, T.Y.Y.; Cherny, S.S.; Tsai, S.Y.; Lo, C.-Y.; et al. A Germline Mutation (A339V) in Thyroid Transcription Factor-1 (TITF-1/NKX2.1) in Patients with Multinodular Goiter and Papillary Thyroid Carcinoma. J. Natl. Cancer Inst. 2009, 101, 162–175. [Google Scholar] [CrossRef] [Green Version]
- Jendrzejewski, J.; He, H.; Radomska, H.S.; Li, W.; Tomsic, J.; Liyanarachchi, S.; Davuluri, R.V.; Nagy, R.; De La Chapelle, A. The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc. Natl. Acad. Sci. USA 2012, 109, 8646–8651. [Google Scholar] [CrossRef] [Green Version]
- Saenko, V.A.; Rogounovitch, T.I. Genetic Polymorphism Predisposing to Differentiated Thyroid Cancer: A Review of Major Findings of the Genome-Wide Association Studies. Endocrinol. Metab. 2018, 33, 164–174. [Google Scholar] [CrossRef]
- Marotta, V.; Sciammarella, C.; Capasso, M.; Testori, A.; Pivonello, C.; Chiofalo, M.G.; Gambardella, C.; Grasso, M.; Antonino, A.; Annunziata, A.; et al. Germline polymorphisms of the VEGF-pathway predict recurrence in non-advanced differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 2017, 102, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Cybulski, C.; Górski, B.; Huzarski, T.; Masojć, B.; Mierzejewski, M.; Dębniak, T.; Teodorczyk, U.; Byrski, T.; Gronwald, J.; Matyjasik, J.; et al. CHEK2 Is a Multiorgan Cancer Susceptibility Gene. Am. J. Hum. Genet. 2004, 75, 1131–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGowan, C.H. Checking in on Cds1 (Chk2): A checkpoint kinase and tumor suppressor. BioEssays 2002, 24, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Urist, M.; Prives, C. The Chk2 protein kinase. DNA Repair 2004, 3, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Bartek, J.; Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003, 3, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Zannini, L.; Delia, D.; Buscemi, G. CHK2 kinase in the DNA damage response and beyond. J. Mol. Cell Biol. 2014, 6, 442–457. [Google Scholar] [CrossRef] [Green Version]
- Bartkova, J.; Guldberg, P.; Gronbaek, K.; Koed, K.; Primdahl, H.; Møller, K.; Lukas, J.; Ørntoft, T.F.; Bartek, J. Aberrations of the Chk2 tumour suppressor in advanced urinary bladder cancer. Oncogene 2004, 23, 8545–8551. [Google Scholar] [CrossRef] [Green Version]
- Fayaz, S.; Fard-Esfahani, P.; Torbati, P.M. Lack of CHEK2 gene mutations in differentiated thyroid carcinoma patients using high resolution melting analysis. Asian Pac. J. Cancer Prev. 2014, 15, 5019–5022. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarek-Ryś, M.; Ziemnicka, K.; Hryhorowicz, S.; Górczak, K.; Hoppe-Gołębiewska, J.; Skrzypczak-Zielinska, M.; Tomys, M.; Gołąb, M.; Szkudlarek, M.; Budny, B.; et al. The c.470 T > C CHEK2 missense variant increases the risk of differentiated thyroid carcinoma in the Great Poland population. Hered. Cancer Clin. Pract. 2015, 13, 8. [Google Scholar] [CrossRef] [Green Version]
- Cybulski, C.; Huzarski, T.; Górski, B.; Masojć, B.; Mierzejewski, M.; Dębniak, T.; Gliniewicz, B.; Matyjasik, J.; Złowocka, E.; Kurzawski, G.; et al. A Novel Founder CHEK2 Mutation is Associated with Increased Prostate Cancer Risk. Cancer Res. 2004, 64, 2677–2679. [Google Scholar] [CrossRef] [Green Version]
- Alzahrani, A.S.; Murugan, A.K.; Qasem, E.; Alswailem, M.M.; Alghamdi, B.; Moria, Y.; Al-Hindi, H. Absence of EIF1AX, PPM1D, and CHEK2 mutations reported in Thyroid Cancer Genome Atlas (TCGA) in a large series of thyroid cancer. Endocrine 2019, 63, 94–100. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research, Network. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell 2014, 159, 676–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasior-Perczak, D.; Kowalik, A.; Walczyk, A.; Siolek, M.; Gruszczynski, K.; Palyga, I.; Mikina, E.; Trybek, T.; Kopczynski, J.; Mezyk, R.; et al. Coexisting Germline Chek2 and Somatic Braf(V600e) Mutations in Papillary Thyroid Cancer and Their Association with Clinicopathological Features and Disease Course. Cancers 2019, 11, 1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuttle, M.; Morris, L.F.; Haugen, B.; Shah, J.; Sosa, J.A.; Rohren, E.; Hunt, J.L.; Subramaniam, R.M.; Perrier, N.D. Ajcc Cancer Staging Manual, 8th ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Walczyk, A.; Kowalska, A.; Kowalik, A.; Kopczynski, J.; Pałyga, I.; Gąsior-Perczak, D.; Mikina, E.; Lizis-Kolus, K.; Szyska-Skrobot, D.; Szymonek, M.; et al. High sensitivity of BRAF detection method does not alter response to therapy of papillary thyroid cancer of known BRAF status. Clin. Endocrinol. 2017, 87, 815–824. [Google Scholar] [CrossRef]
- Gąsior-Perczak, D.; Pałyga, I.; Szymonek, M.; Kowalik, A.; Walczyk, A.; Kopczyński, J.; Lizis-Kolus, K.; Trybek, T.; Mikina, E.; Szyska-Skrobot, D.; et al. The impact of BMI on clinical progress, response to treatment, and disease course in patients with differentiated thyroid cancer. PLoS ONE 2018, 13, 0204668. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, A.; Walczyk, A.; Pałyga, I.; Gąsior-Perczak, D.; Gadawska-Juszczyk, K.; Szymonek, M.; Trybek, T.; Lizis-Kolus, K.; Szyska-Skrobot, D.; Mikina, E.; et al. The Delayed Risk Stratification System in the Risk of Differentiated Thyroid Cancer Recurrence. PLoS ONE 2016, 11, 0153242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gąsior-Perczak, D.; Pałyga, I.; Szymonek, M.; Kowalik, A.; Walczyk, A.; Kopczyński, J.; Lizis-Kolus, K.; Słuszniak, A.; Słuszniak, J.; Łopatyński, T.; et al. Delayed risk stratification system in pT1aN0/Nx DTC patients treated without radioactive iodine. Endocr. Connect. 2017, 6, 522–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marotta, V.; Botti, G.; Ionna, F.; Pezzullo, L. Tsh Modulation in Advanced Differentiated Thyroid Cancer: A Continuous Walk on the Tightrope between Prognostic Stratification, Adverse Events, and Levothyroxine Bioavailability. Minerva Endocrinol. 2020. [Google Scholar] [CrossRef]
- Momesso, D.P.; Vaisman, F.; Yang, S.P.; Bulzico, D.A.; Corbo, R.; Vaisman, M.; Tuttle, R.M. Dynamic Risk Stratification in Patients with Differentiated Thyroid Cancer Treated Without Radioactive Iodine. J. Clin. Endocrinol. Metab. 2016, 101, 2692–2700. [Google Scholar] [CrossRef] [Green Version]
- Bristow, R.G.; Hill, R.P. Hypoxia, DNA repair and genetic instability. Nat. Rev. Cancer 2008, 8, 180–192. [Google Scholar] [CrossRef]
- Yao, Y.; Dai, W. Genomic Instability and Cancer. J. Carcinog. Mutagen. 2014, 5. [Google Scholar] [CrossRef]
- MacConaill, L.E. Existing and Emerging Technologies for Tumor Genomic Profiling. J. Clin. Oncol. 2013, 31, 1815–1824. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.E.; Tuttle, R.M.; Burman, K.D.; Haddady, S.; Truman, C.; Sparling, Y.H.; Wartofsky, L.; Sessions, R.B.; Ringel, M.D. Prognostic importance of vascular invasion in papillary thyroid carcinoma. Arch. Otolaryngol. Head Neck Surg. 2000, 126, 309–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falvo, L.; Catania, A.; D’Andrea, V.; Marzullo, A.; Giustiniani, M.C.; De Antoni, E. Prognostic Importance of Histologic Vascular Invasion in Papillary Thyroid Carcinoma. Ann. Surg. 2005, 241, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Mete, O.; Asa, S.L. Pathological definition and clinical significance of vascular invasion in thyroid carcinomas of follicular epithelial derivation. Mod. Pathol. 2011, 24, 1545–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furlan, J.C.; Bedard, Y.C.; Rosen, I.B. Clinicopathologic significance of histologic vascular invasion in papillary and follicular thyroid carcinomas1 1No competing interests declared. J. Am. Coll. Surg. 2004, 198, 341–348. [Google Scholar] [CrossRef]
- Akslen, L.A.; Myking, A.O.; Salvesen, H.; Varhaug, J.E. Prognostic importance of various clinicopathological features in papillary thyroid carcinoma. Eur. J. Cancer 1992, 29, 44–51. [Google Scholar] [CrossRef]
- Tuttle, R.M.; Tala, H.; Shah, J.; Leboeuf, R.; Ghossein, R.; Gonen, M.; Brokhin, M.; Omry, G.; Fagin, J.A.; Shaha, A. Estimating Risk of Recurrence in Differentiated Thyroid Cancer After Total Thyroidectomy and Radioactive Iodine Remnant Ablation: Using Response to Therapy Variables to Modify the Initial Risk Estimates Predicted by the New American Thyroid Association Staging System. Thyroid 2010, 20, 1341–1349. [Google Scholar] [CrossRef]
- Castagna, M.G.; Maino, F.; Cipri, C.; Belardini, V.; Theodoropoulou, A.; Cevenini, G.; Pacini, F. Delayed risk stratification, to include the response to initial treatment (surgery and radioiodine ablation), has better outcome predictivity in differentiated thyroid cancer patients. Eur. J. Endocrinol. 2011, 165, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Vaccarella, S.; Franceschi, S.; Bray, F.; Wild, C.P.; Plummer, M.; Maso, L.D. Worldwide Thyroid-Cancer Epidemic? The Increasing Impact of Overdiagnosis. N. Engl. J. Med. 2016, 375, 614–617. [Google Scholar] [CrossRef]
- Roman, B.R.; Morris, L.G.; Davies, L. The thyroid cancer epidemic, 2017 perspective. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 332–336. [Google Scholar] [CrossRef]
Characteristic | Total (n = 1547) |
---|---|
Sex | |
Female | 1358 (87.8%) |
Male | 189 (12.2%) |
Age at diagnosis (years) | |
Mean (SD) | 48.7 (13.6) |
Median (Q1–Q3) | 50.0 (39.0–59.0) |
Range | 15.0–85.0 |
Age | |
<55 | 990 (64.0%) |
≥55 | 557 (36.0%) |
Tumor diameter (mm) | |
Mean (SD) | 11.6 (11.5) |
Median (Q1–Q3) | 8.0 (5.0–14.0) |
Range | 0.3–110.0 |
Tumor diameter (mm) | |
≤10 | 987 (63.8%) |
>10–20 | 352 (22.8%) |
>20–40 | 162 (10.5%) |
>40 | 46 (3.0%) |
Papillary cancer histologic variant | |
Classic | 1111 (71.8%) |
Follicular | 363 (23.5%) |
Oxyphilic | 13 (0.8%) |
Diffuse sclerosing | 9 (0.6%) |
Tall cell | 4 (0.3%) |
Other * | 47 (3.0%) |
Multifocality | |
No | 1143 (73.9%) |
Yes | 404 (26.1%) |
Nodal metastases ** | |
N0a | 801 (51.8%) |
N0b | 521 (33.7%) |
N1a | 124 (8.0%) |
N1b | 101 (6.5%) |
Distant metastases | |
No | 1532 (99.0%) |
Yes | 15 (1.0%) |
Extrathyroidal extension | |
Negative | 1250 (80.8%) |
Microscopic | 272 (17.6%) |
Gross | 25 (1.6%) |
Vascular invasion | |
No | 1475 (95.3%) |
Yes | 72 (4.7%) |
Tumor stage | |
pT1a | 980 (63.3%) |
pT1b | 349 (22.6%) |
pT2 | 152 (9.8%) |
pT3a | 42 (2.7%) |
pT3b | 17 (1.1%) |
pT4a | 6 (0.4%) |
pT4b | 1 (0.1%) |
TNM (8th edition) | |
I | 1466 (94.8%) |
II | 71 (4.6%) |
III | 2 (0.1%) |
IVa | 1 (0.1%) |
IVb | 7 (0.5%) |
CHEK2 mutation status | |
CHEK2 WT | 1307 (84.5%) |
CHEK2 mutation (any) | 240 (15.5%) |
CHEK2 I157T missense mutation (any) | 189 (12.3%) |
I157T heterozygous | 182 (11.8%) |
I157T homozygous | 7 (0.5%) |
CHEK2 truncating heterozygous mutation (any) | 44 (2.8%) |
IVS2 + 1G > A | 18 (1.2%) |
Del5395 | 10 (0.6%) |
1100delC | 16 (1.0%) |
Coexistence of two heterozygous CHEK2 mutations | 7 (0.5%) |
I157T and IVS2 + 1G > A | 3 (0.2%) |
I157T and Del5395 | 2 (0.1%) |
IVS2 + 1G > A and Del5395 | 2 (0.1%) |
ATA initial risk stratification system | |
Low | 1055 (68.2%) |
Intermediate | 427 (27.6%) |
High | 65 (4.2%) |
Radioactive iodine therapy (I-131) | |
No | 493 (31.9%) |
Yes | 1054 (68.1%) |
More than one course of radioactive iodine therapy (I-131) | |
No | 1371 (88.6%) |
Yes | 176 (11.4%) |
Response to therapy | |
Excellent | 1259 (81.4%) |
Indeterminate | 234 (15.1%) |
Biochemically incomplete | 22 (1.4%) |
Structurally incomplete | 32 (2.1%) |
Final follow-up (31 May 2020) | |
NED | 1423 (92.0%) |
Indeterminate | 102 (6.6%) |
Biochemically persistent disease | 12 (0.8%) |
Structurally persistent disease | 10 (0.6%) |
Follow-up, recurrence after NED | |
No | 1528 (98.8%) |
Yes | 19 (1.2%) |
Death | |
No | 1531 (99.0%) |
TC (unrelated) | 16 (1.0%) |
Median follow-up time, years (range) | 6.0 (1.0–34.0) |
CHEK2 Mutation Status | Control Group (n = 468) | Study Group (n = 1547) | p Value (Chi-Square or Fisher’s Exact Test) | OR | 95% CI | p Value (Logistic Regression Model) |
---|---|---|---|---|---|---|
CHEK2 mutation (any) | 28 (6.0%) | 240 (15.5%) | <0.0001 | 2.89 | 1.92–4.33 | <0.0001 |
CHEK2 WT | 440 (94%) | 1307 (84.5%) | <0.0001 | 0.35 | 0.23–0.52 | <0.0001 |
CHEK2 Detailed Mutation Status: | ||||||
Missense I157T | 25 (5.3%) | 189 (12.3%) | <0.0001 | 2.47 | 1.60–3.79 | <0.0001 |
I157T heterozygous | 25 (5.3%) | 182 (11.8%) | <0.0001 | 2.36 | 1.53–3.63 | <0.0001 |
I157T homozygous | 0 (0.0%) | 7 (0.5%) | 0.3641 | Not calculable (0 in cell) | ||
CHEK2 Heterozygous Truncating Mutation | 3 (0.6%) | 44 (2.8%) | 0.0057 | 4.54 | 1.40–14.68 | 0.0116 |
IVS2 + 1G > A | 1 (0.2%) | 18 (1.2%) | 0.0261 | 7.05 | 0.95–52.31 | 0.0562 |
Del5395 | 2 (0.4%) | 10 (0.6%) | 0.3888 | 2.13 | 0.48–9.4 | 0.319 |
1100delC | 0 (0.0%) | 16 (1.0%) | 0.0315 | Not calculable (0 in cell) | ||
CHEK2 Missense I157T + Truncating Mutations | 0 (0.0%) | 5 (0.3%) | 0.5961 | Not calculable (0 in cell) | ||
IVS2 + 1G > A and I157T | 0 (0.0%) | 3 (0.2%) | 1.0 | Not calculable (0 in cell) | ||
del5395 and I157T | 0 (0.0%) | 2 (0.1%) | 1.0 | Not calculable (0 in cell) | ||
Coexistence of Two Truncating Mutations (IVS2 + 1G > A +Del5395) | 0 (0.0%) | 2 (0.1%) | 1.0 | Not calculable (0 in cell) |
Feature | A CHEK2 WT (n = 1307) | B ANY CHEK2 Mutation (n = 240) | C Missense CHEK2 I157T Heterozygous (n = 182) | D Heterozygous Truncating CHEK2 Mutation IVS2 + 1G > A, Del5395, 1100delC) (n = 44) | p-Value | |||
---|---|---|---|---|---|---|---|---|
A vs. B | A vs. C | A vs. D | C vs. D | |||||
Sex | 0.1164 | 0.1869 | 0.0378 | 0.2101 | ||||
Female | 1140 (87.2%) | 218 (90.8%) | 165 (90.7%) | 43 (97.7%) | ||||
Male | 167 (12.8%) | 22 (9.2%) | 17 (9.3%) | 1 (2.3%) | ||||
Age at diagnosis (years) | 0.2443 | 0.4755 | 0.2569 | 0.4662 | ||||
Mean (SD) | 48.6 (13.7) | 49.5 (12.8) | 49.3 (12.7) | 50.8 (12.1) | ||||
Median (Q1–Q3) | 50.0 (39.0, 58.0) | 51.0 (41.0, 59.0) | 50.5 (40.2, 58.8) | 50.5 (43.5, 61.0) | ||||
Range | 15.0–85.0 | 18.0–76.0 | 18.0–76.0 | 23.0–70.0 | ||||
Age | 0.2670 | 0.6091 | 0.2907 | 0.4765 | ||||
<55 | 844 (64.6%) | 146 (60.8%) | 114 (62.6%) | 25 (56.8%) | ||||
≥55 | 463 (35.4%) | 94 (39.2%) | 68 (37.4%) | 19 (43.2%) | ||||
Tumor diameter (mm) | 0.9617 | 0.8702 | 0.9973 | 0.8440 | ||||
Mean (SD) | 11.5 (11.1) | 12.4 (13.4) | 12.1 (13.4) | 13.6 (14.7) | ||||
Median (Q1–Q3) | 8.0 (5.0, 14.0) | 8.0 (5.0, 15.0) | 9.0 (4.0, 15.0) | 7.0 (5.0, 20.2) | ||||
Range | 0.3–110.0 | 0.3–84.0 | 0.3–84.0 | 1.0–80.0 | ||||
Tumor diameter (mm) | 0.5255 | 0.6763 | 0.0356 | 0.0634 | ||||
≤10 | 833 (63.7%) | 154 (64.2%) | 117 (64.3%) | 28 (63.6%) | ||||
>10–20 | 304 (23.3%) | 48 (20.0%) | 40 (22.0%) | 5 (11.4%) | ||||
>20–40 | 133 (10.2%) | 29 (12.1%) | 17 (9.3%) | 10 (22.7%) | ||||
>40 mm | 37 (2.8%) | 9 (3.8%) | 8 (4.4%) | 1 (2.3%) | ||||
Papillary cancer histology variant | 0.8195 | 0.836 | 0.0397 | 0.0219 | ||||
Classic | 936 (71.6%) | 175 (72.9%) | 136 (74.7%) | 27 (61.4%) | ||||
Follicular | 311 (23.8%) | 52 (21.7%) | 39 (21.4%) | 12 (27.3%) | ||||
Oxyphilic | 11 (0.8%) | 2 (0.8%) | 0 (0.0%) | 2 (4.5%) | ||||
Diffuse sclerosing | 7 (0.5%) | 2 (0.8%) | 1 (0.5%) | 0 (0.0%) | ||||
Tall cell | 3 (0.2%) | 1 (0.4%) | 0 (0.0%) | 1 (2.3%) | ||||
Other * | 39 (3.0%) | 8 (3.3%) | 6 (3.3%) | 2 (4.5%) | ||||
Multifocality | 0.4894 | 0.7426 | 0.5754 | 0.7264 | ||||
No | 970 (74.2%) | 173 (72.1%) | 133 (73.1%) | 31 (70.5%) | ||||
Yes | 337 (25.8%) | 67 (27.9%) | 49 (26.9%) | 13 (29.5%) | ||||
Nodal metastases ** | 0.7774 | 0.8779 | 0.4645 | 0.7084 | ||||
N0a | 681 (52.1%) | 120 (50.0%) | 92 (50.5%) | 19 (43.2%) | ||||
N0b | 439 (33.6%) | 82 (34.2%) | 62 (34.1%) | 16 (36.4%) | ||||
N1a | 101 (7.7%) | 23 (9.6%) | 17 (9.3%) | 5 (11.4%) | ||||
N1b | 86 (6.6%) | 15 (6.2%) | 11 (6.0%) | 4 (9.1%) | ||||
Distant metastases | 0.1475 | 0.2402 | 1 | NA | ||||
No | 1292 (98.9%) | 240 (100.0%) | 182 (100.0%) | 44 (100.0%) | ||||
Yes | 15 (1.1%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||||
Extrathyroidal extension | 0.6242 | 0.8426 | 0.1330 | 0.1736 | ||||
Negative | 1061 (81.2%) | 189 (78.8%) | 146 (80.2%) | 32 (72.7%) | ||||
Microscopic | 225 (17.2%) | 47 (19.6%) | 34 (18.7%) | 10 (22.7%) | ||||
Gross | 21 (1.6%) | 4 (1.7%) | 2 (1.1%) | 2 (4.5%) | ||||
Vascular invasion | 0.2017 | 0.5039 | 0.0002 | 0.0004 | ||||
No | 1250 (95.6%) | 225 (93.8%) | 176 (96.7%) | 35 (79.5%) | ||||
Yes | 57 (4.4%) | 15 (6.2%) | 6 (3.3%) | 9 (20.5%) | ||||
Tumor stage | 0.7318 | 0.9086 | 0.0728 | 0.0850 | ||||
pT1a | 827 (63.3%) | 153 (63.8%) | 116 (63.7%) | 28 (63.6%) | ||||
pT1b | 300 (23.0%) | 49 (20.4%) | 41 (22.5%) | 5 (11.4%) | ||||
pT2 | 126 (9.6%) | 26 (10.8%) | 16 (8.8%) | 8 (18.2%) | ||||
pT3a | 34 (2.6%) | 8 (3.3%) | 7 (3.8%) | 1 (2.3%) | ||||
pT3b | 13 (1.0%) | 4 (1.7%) | 2 (1.1%) | 2 (4.5%) | ||||
pT4a | 6 (0.5%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||||
pT4b | 1 (0.1%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||||
TNM (8th edition) | 0.8089 | 1 | 0.6076 | 0.4514 | ||||
I | 1238 (94.7%) | 228 (95.0%) | 174 (95.6%) | 41 (93.2%) | ||||
II | 59 (4.5%) | 12 (5.0%) | 8 (4.4%) | 3 (6.8%) | ||||
III | 2 (0.2%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||||
IVa | 1 (0.1%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||||
IVb | 7 (0.5%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||||
ATA initial risk stratification system | 0.24710 | 0.74383 | 0.0207 | 0.0567 | ||||
Low | 899 (68.8%) | 156 (65.0%) | 123 (67.6%) | 23 (52.3%) | ||||
Intermediate + High | 408 (31.2%) | 84 (35.0%) | 59 (32.4%) | 21 (47.7%) | ||||
Radioactive iodine therapy (I-131) | 0.4057 | 0.2474 | 0.7893 | 0.4399 | ||||
No | 411 (31.4%) | 82 (34.2%) | 65 (35.7%) | 13 (29.5%) | ||||
Yes | 896 (68.6%) | 158 (65.8%) | 117 (64.3%) | 31 (70.5%) | ||||
More than on course of I-131 | 0.1632 | 0.1505 | 0.7204 | 0.2581 | ||||
No | 1152 (88.1%) | 219 (91.2%) | 167 (91.8%) | 38 (86.4%) | ||||
Yes | 155 (11.9%) | 21 (8.8%) | 15 (8.2%) | 6 (13.6%) | ||||
Response to therapy | 0.7652 | 0.2369 | 0.1903 | 0.0225 | ||||
Excellent | 1060 (81.1%) | 199 (82.9%) | 156 (85.7%) | 32 (72.7%) | ||||
Indeterminate | 198 (15.1%) | 36 (15.0%) | 24 (13.2%) | 9 (20.5%) | ||||
Biochemically incomplete | 20 (1.5%) | 2 (0.8%) | 0 (0.0%) | 2 (4.5%) | ||||
Structurally incomplete | 29 (2.2%) | 3 (1.2%) | 2 (1.1%) | 1 (2.3%) | ||||
Final follow-up (31 May 2020) | 0.1122 | 0.2731 | 0.4120 | 0.1553 | ||||
Remission (NED) | 1198 (91.7%) | 225 (93.8%) | 173 (95.1%) | 39 (88.6%) | ||||
No remission *** | 109 (8.3%) | 15 (6.2%) | 9 (4.9%) | 5 (11.4%) | ||||
Follow-up, recurrence | 0.7547 | 1 | 1 | 1 | ||||
No | 1290 (98.7%) | 238 (99.2%) | 180 (98.9%) | 44 (100.0%) | ||||
Yes | 17 (1.3%) | 2 (0.8%) | 2 (1.1%) | 0 (0.0%) | ||||
Death | 0.4914 | 0.7094 | 1 | 1 | ||||
No | 1292 (98.9%) | 239 (99.6%) | 181 (99.5%) | 44 (100.0%) | ||||
TC-unrelated | 15 (1.1%) | 1 (0.4%) | 1 (0.5%) | 0 (0.0%) | ||||
Follow-up (years) | 0.9494 | 0.8180 | 0.7305 | 0.6735 | ||||
Mean (SD) | 7.5 (5.4) | 7.7 (5.9) | 7.7 (5.8) | 7.9 (6.9) | ||||
Median (Q1, Q3) | 6.0 (3.0, 11.0) | 6.0 (3.0, 12.0) | 6.0 (3.0, 12.0) | 5.0 (2.8, 12.0) | ||||
Range | 1.0–32.0 | 1.0–34.0 | 1.0–34.0 | 1.0–25.0 |
Feature | Details | Univariable OR | 95% CI | p | Multivariable OR | 95% CI | p |
---|---|---|---|---|---|---|---|
Male gender | no | Ref. level | Ref. level | ||||
yes | 2 | 1.11–3.61 | 0.0216 | 1.23 | 0.61–2.49 | 0.5592 | |
Age at diagnosis (years) | 0.99 | 0.97–1.01 | 0.3112 | ||||
Tumor diameter (mm) | 1.05 | 1.03–1.06 | <0.0001 | 1.03 | 1.01–1.04 | 0.002 | |
Papillary cancer histologic variant | 1. Classic | Ref. level | Ref. level | ||||
2. Follicular | 0.87 | 0.48–1.57 | 0.643 | 1.34 | 0.69–2.57 | 0.3876 | |
3. Oxyphilic | NA (0 in cell) | NA (0 in cell) | |||||
4. Diffuse sclerosing | 6.71 | 1.32–34.06 | 0.0216 | 5.21 | 0.85–31.74 | 0.0736 | |
5. Tall cell | NA (0 in cell) | NA (0 in cell) | |||||
6. Other | 1.37 | 0.41–4.57 | 0.6055 | 1.14 | 0.3–4.34 | 0.8462 | |
Extrathyroidal extension | 1. Negative | Ref. level | Ref. level | ||||
2. Micro | 5.64 | 3.4–9.35 | <0.0001 | 3.06 | 1.73–5.44 | 0.0001 | |
3. Gross | 15.15 | 5.9–38.91 | <0.0001 | 3.62 | 1.2–10.92 | 0.0222 | |
Multifocality | no | Ref. level | Ref. level | ||||
yes | 1.99 | 1.22–3.23 | 0.0055 | 1.32 | 0.76–2.3 | 0.3184 | |
Nodal metastases N1a or N1b | no | Ref. level | Ref. level | ||||
yes | 8.68 | 5.32–14.16 | <0.0001 | 4.55 | 2.57–8.05 | <0.0001 | |
Distant metastases | no | Ref. level | Ref. level | ||||
yes | 7.75 | 2.41–24.98 | 0.0006 | 3.23 | 0.79–13.3 | 0.1042 | |
CHEK2 mutation status | 1. CHEK2 WT | Ref. level | Ref. level | ||||
2. heterozygous truncating mutation | 5.64 | 2.59–12.29 | <0.0001 | 6.91 | 2.81–17.03 | <0.0001 | |
3. Missense CHEK2 I157T heterozygous | 0.75 | 0.32–1.76 | 0.5053 | 0.69 | 0.28–1.72 | 0.4263 |
Feature | Details | Univariable OR | 95% CI | p | Multivariable OR | 95% CI | p |
---|---|---|---|---|---|---|---|
Male gender | no | Ref. level | Ref. level | ||||
yes | 2.06 | 1.46–2.91 | <0.0001 | 1.63 | 1.11–2.39 | 0.013 | |
Age at diagnosis (years) | 0.99 | 0.98–0.99 | 0.0021 | 0.99 | 0.98–1 | 0.0156 | |
Tumor diameter (mm) | 1.04 | 1.03–1.05 | <0.0001 | 1.02 | 1.01–1.03 | 0.0001 | |
Papillary cancer histologic variant | 1. Classic | Ref. level | Ref. level | ||||
2. Follicular | 0.69 | 0.5–0.96 | 0.0256 | 0.84 | 0.6–1.19 | 0.3361 | |
3. Oxyphilic | 2.51 | 0.81–7.75 | 0.1093 | 2.41 | 0.73–7.95 | 0.148 | |
4. Diffuse sclerosing | 1.34 | 0.27–6.68 | 0.7215 | 0.74 | 0.13–4.12 | 0.7304 | |
5. Tall cell | NA (0 in cell) | NA (0 in cell) | |||||
6. Other | 0.59 | 0.25–1.4 | 0.2313 | 0.45 | 0.17–1.18 | 0.105 | |
Extrathyroidal extension | 1. Negative | Ref. level | Ref. level | ||||
2. Microscopic | 2.74 | 2.03–3.7 | <0.0001 | 1.89 | 1.35–2.64 | 0.0002 | |
3. Gross | 7.3 | 3.26–16.32 | <0.0001 | 3.21 | 1.28–8.09 | 0.0132 | |
Vascular invasion | no | Ref. level | Ref. level | ||||
yes | 4.06 | 2.5–6.58 | <0.0001 | 1.68 | 0.97–2.91 | 0.0665 | |
Multifocality | no | Ref. level | Ref. level | ||||
yes | 1.89 | 1.44–2.49 | <0.0001 | 1.64 | 1.22–2.21 | 0.0011 | |
Nodal metastases N1a or N1b | no | Ref. level | Ref. level | ||||
yes | 4.13 | 3.04–5.61 | <0.0001 | 2.23 | 1.56–3.19 | <0.0001 | |
Distant metastases | no | Ref. level | |||||
yes | NA (0 in cell) | ||||||
ATA initial risk (intermediate or high) | no | Ref. level | |||||
yes | 5.03 | 3.83–6.61 | <0.0001 | ||||
CHEK2 mutation status | 1. CHEK2 WT | Ref. level | |||||
2. heterozygous truncating mutation | 1.61 | 0.82–3.17 | 0.1688 | ||||
3. Missense CHEK2 I157T heterozygous | 0.72 | 0.46–1.11 | 0.1334 |
Feature | Details | Univariable OR | 95% CI | p | Multivariable OR | 95% CI | p |
---|---|---|---|---|---|---|---|
Male gender | no | Ref. level | Ref. level | ||||
yes | 2.61 | 1.68–4.07 | <0.0001 | 1.88 | 1.15–3.08 | 0.0124 | |
Age at diagnosis (years) | 0.99 | 0.98–1.01 | 0.2978 | ||||
Tumor diameter (mm) | 1.04 | 1.03–1.05 | <0.0001 | 1.02 | 1–1.03 | 0.0109 | |
Papillary cancer histologic variant | 1. Classic | Ref. level | |||||
2. Follicular | 0.63 | 0.39–1.02 | 0.0621 | ||||
3. Oxyphilic | 0.85 | 0.11–6.62 | 0.8776 | ||||
4. Diffuse sclerosing | 1.46 | 0.18–11.98 | 0.725 | ||||
5. Tall cell | NA (0 in cell) | ||||||
6. Other | 0.45 | 0.11–1.9 | 0.2796 | ||||
Extrathyroidal extension | 1. Negative | Ref. level | Ref. level | ||||
2. Micro | 2.87 | 1.91–4.32 | <0.0001 | 1.64 | 1.03–2.6 | 0.0357 | |
3. Gross | 8.98 | 3.84–21.02 | <0.0001 | 2.58 | 0.93–7.16 | 0.0679 | |
Vascular invasion | no | Ref. level | Ref. level | ||||
yes | 4.68 | 2.67–8.2 | <0.0001 | 1.53 | 0.79–2.95 | 0.2032 | |
Multifocality | no | Ref. level | Ref. level | ||||
yes | 1.72 | 1.17–2.53 | 0.0059 | 1.25 | 0.82–1.92 | 0.2952 | |
Nodal metastases N1a or N1b | no | Ref. level | Ref. level | ||||
yes | 6.18 | 4.18–9.12 | <0.0001 | 3.61 | 2.31–5.65 | <0.0001 | |
Distant metastases | no | Ref. level | Ref. level | ||||
yes | 7.98 | 2.79–22.81 | 0.0001 | 3.14 | 0.92–10.71 | 0.0678 | |
ATA initial risk (intermediate or high) | no | Ref. level | |||||
yes | 5.83 | 3.9–8.71 | <0.0001 | ||||
CHEK2 mutation status | 1. CHEK2 WT | Ref. level | |||||
2. heterozygous truncating mutation | 1.41 | 0.54–3.65 | 0.4799 | ||||
3. Missense CHEK2 I157T heterozygous | 0.57 | 0.28–1.15 | 0.1166 |
Characteristic | I157T Missense CHEK2 Mutation (Homozygous Variants)(n = 7) | Coexistence of Two CHEK2 Mutations IVS2 + 1G and Del5395 (n = 2), IVS2 + 1G > A and I157T (n = 3), Del5395 and I157T (n = 2) * | p-Value |
---|---|---|---|
Sex | 1 | ||
Female | 5 (71.4%) | 5 (71.4%) | |
Male | 2 (28.6%) | 2 (28.6%) | |
Age at diagnosis (years) | 0.7494 | ||
Mean (SD) | 48.6 (15.3) | 50.0 (19.4) | |
Median (Q1–Q3) | 51.0 (43.0, 58.0) | 56.0 (37.5, 64.5) | |
Range | 21.0–66.0 | 19.0–71.0 | |
Age (years) | 1 | ||
<55 | 4 (57.1%) | 3 (42.9%) | |
≥55 | 3 (42.9%) | 4 (57.1%) | |
Tumor diameter (mm) | 0.4382 | ||
Mean (SD) | 14.3 (11.7) | 9.2 (5.3) | |
Median (Q1–Q3) | 10.0 (7.0, 20.5) | 6.0 (6.0, 11.2) | |
Range | 3.0–32.0 | 5.0–19.0 | |
Tumor diameter groups | 0.5594 | ||
≤10 mm | 4 (57.1%) | 5 (71.4%) | |
>10–20 mm | 1 (14.3%) | 2 (28.6%) | |
>20–40 mm | 2 (28.6%) | 0 (0.0%) | |
Papillary cancer histologic variant | 0.4615 | ||
Classic | 5 (71.4%) | 7 (100.0%) | |
Follicular | 1 (14.3%) | 0 (0.0%) | |
Diffuse sclerosing | 1 (14.3%) | 0 (0.0%) | |
Multifocality | 1 | ||
No | 5 (71.4%) | 4 (57.1%) | |
Yes | 2 (28.6%) | 3 (42.9%) | |
Nodal metastases | 0.5594 | ||
N0a | 5 (71.4%) | 4 (57.1%) | |
N0b | 1 (14.3%) | 3 (42.9%) | |
N1a | 1 (14.3%) | 0 (0.0%) | |
Distant metastases | |||
No | 7 (100.0%) | 7 (100.0%) | |
Extrathyroidal extension | 1 | ||
Negative | 5 (71.4%) | 6 (85.7%) | |
Microscopic | 2 (28.6%) | 1 (14.3%) | |
Vascular invasion | |||
No | 7 (100.0%) | 7 (100.0%) | |
Tumor stage | 0.5594 | ||
pT1a | 4 (57.1%) | 5 (71.4%) | |
pT1b | 1 (14.3%) | 2 (28.6%) | |
pT2 | 2 (28.6%) | 0 (0.0%) | |
TNM (8th edition) | 1 | ||
I | 6 (85.7%) | 7 (100.0%) | |
II | 1 (14.3%) | 0 (0.0%) | |
ATA | 0.5594 | ||
Low | 4 (57.1%) | 6 (85.7%) | |
Intermediate | 3 (42.9%) | 1 (14.3%) | |
Radioactive iodine therapy (I-131) | 1 | ||
No | 2 (28.6%) | 2 (28.6%) | |
Yes | 5 (71.4%) | 5 (71.4%) | |
More than one course of I-131 | |||
No | 7 (100.0%) | 7 (100.0%) | |
Response to therapy | 1 | ||
Excellent | 6 (85.7%) | 5 (71.4%) | |
Indeterminate | 1 (14.3%) | 2 (28.6%) | |
Final follow-up 31 May 2020 | 1 | ||
NED | 6 (85.7%) | 7 (100.0%) | |
Indeterminate | 1 (14.3%) | 0 (0.0%) | |
Follow-up, recurrence | |||
No | 7 (100.0%) | 7 (100.0%) | |
Death | |||
No | 7 (100.0%) | 7 (100.0%) | |
Follow-up (years) | 0.3358 | ||
Mean (SD) | 6.1 (5.3) | 8.1 (3.6) | |
Median (Q1, Q3) | 3.0 (2.0, 10.5) | 6.0 (5.5, 11.0) | |
Range | 1.0–14.0 | 5.0–13.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gąsior-Perczak, D.; Kowalik, A.; Gruszczyński, K.; Walczyk, A.; Siołek, M.; Pałyga, I.; Trepka, S.; Mikina, E.; Trybek, T.; Kopczyński, J.; et al. Incidence of the CHEK2 Germline Mutation and Its Impact on Clinicopathological Features, Treatment Responses, and Disease Course in Patients with Papillary Thyroid Carcinoma. Cancers 2021, 13, 470. https://doi.org/10.3390/cancers13030470
Gąsior-Perczak D, Kowalik A, Gruszczyński K, Walczyk A, Siołek M, Pałyga I, Trepka S, Mikina E, Trybek T, Kopczyński J, et al. Incidence of the CHEK2 Germline Mutation and Its Impact on Clinicopathological Features, Treatment Responses, and Disease Course in Patients with Papillary Thyroid Carcinoma. Cancers. 2021; 13(3):470. https://doi.org/10.3390/cancers13030470
Chicago/Turabian StyleGąsior-Perczak, Danuta, Artur Kowalik, Krzysztof Gruszczyński, Agnieszka Walczyk, Monika Siołek, Iwona Pałyga, Sławomir Trepka, Estera Mikina, Tomasz Trybek, Janusz Kopczyński, and et al. 2021. "Incidence of the CHEK2 Germline Mutation and Its Impact on Clinicopathological Features, Treatment Responses, and Disease Course in Patients with Papillary Thyroid Carcinoma" Cancers 13, no. 3: 470. https://doi.org/10.3390/cancers13030470
APA StyleGąsior-Perczak, D., Kowalik, A., Gruszczyński, K., Walczyk, A., Siołek, M., Pałyga, I., Trepka, S., Mikina, E., Trybek, T., Kopczyński, J., Suligowska, A., Ślusarczyk, R., Gonet, A., Jaskulski, J., Orłowski, P., Chrapek, M., Góźdź, S., & Kowalska, A. (2021). Incidence of the CHEK2 Germline Mutation and Its Impact on Clinicopathological Features, Treatment Responses, and Disease Course in Patients with Papillary Thyroid Carcinoma. Cancers, 13(3), 470. https://doi.org/10.3390/cancers13030470