Tumor Microenvironment, HLA Class I and APM Expression in HPV-Negative Oral Squamous Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Correlation of Clinicopathological Data with the Overall Survival of OSCC Patients
2.2. HLA-I/APM Component Expression in OSCC Tumors and Its Correlation to Tumor Staging
2.3. Impact of Tumoral HLA-I/APM Expression on the Intra-Tumoral Immune Cell Cross Talk
2.4. Impact of OSCC HLA-I/APM Expression on the Outcome of the Patients
3. Discussion
4. Materials and Methods
4.1. Basic Patient’s Characteristics, Inclusion Criteria and Study Approval
4.2. Standard and Multiplex Immunohistochemistry
4.3. Definition of the HLA-I/APM Phenotypes
4.4. Bioinformatics
4.5. Statistical Analyses
4.6. In Vitro Induction of HLA-I/APM Expression
4.7. RNA Isolation, Semi-Quantitative and Quantitative PCR
4.8. Western Blot Analyses
4.9. Flow Cytometry
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALAS 1 | delta-aminolevulinate synthase 1 |
APM | antigen processing machinery |
β2-m | beta-2-microglobulin |
CPI | checkpoint inhibitor |
CRC | colorectal cancer |
CSI | cumulative suppression index |
CTL | cytotoxic T lymphocyte |
DAB | 3,3′-diaminobenzidine |
FFPE | formalin-fixed paraffin-embedded |
FITC | fluorescein isothiocyanate |
FoxP3 | fork head-box-protein P3 |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
HC | heavy chain |
HLA | human leukocyte antigen |
HLA-I | human leukocyte antigen class I |
HNC | head and neck cancer |
HNSCC | head and neck squamous cell carcinoma |
HPV | human papilloma virus |
HRP | horseradish peroxidase |
IFN | interferon |
IHC | immunohistochemistry |
IM | invasive margin |
IRS | international rating score |
LMP | low molecular weight protein |
mAb | monoclonal antibody |
MFI | mean specific fluorescence intensity |
MSI | multispectral imaging |
OS | overall survival |
OSCC | oral squamous cell carcinoma |
PBMC | peripheral blood mononuclear cells |
PCR | polymerase chain reaction |
PD-L1 | programmed death-like receptor ligand 1 |
ROC curves | receiver–operating–characteristic curves |
RR | relative risk |
RT | room temperature |
STAT | signal transducer and activator of transcription |
TA | tumor antigen |
TAM | tumor associated macrophages |
TAP | transporter associated with antigen processing |
TC | tumor center |
TCGA | The Cancer Genome Atlas |
TIL | tumor infiltrating lymphocyte |
TME | tumor microenvironment |
Treg | regulatory T cell |
TSA | tyramide signal amplification |
UICC | Union Internationale Contre le Cancer |
References
- Tuccitto, A.; Shahaj, E.; Vergani, E.; Ferro, S.; Huber, V.; Rodolfo, M.; Castelli, C.; Rivoltini, L.; Vallacchi, V. Immunosuppressive circuits in tumor microenvironment and their influence on cancer treatment efficacy. Virchows Arch. Int. J. Pathol. 2019, 474, 407–420. [Google Scholar] [CrossRef]
- Draghi, A.; Chamberlain, C.A.; Furness, A.; Donia, M. Acquired resistance to cancer immunotherapy. Semin. Immunopathol. 2019, 41, 31–40. [Google Scholar] [CrossRef]
- Kim, T.K.; Herbst, R.S.; Chen, L. Defining and Understanding Adaptive Resistance in Cancer Immunotherapy. Trends Immunol. 2018, 39, 624–631. [Google Scholar] [CrossRef]
- Fridman, W.H.; Zitvogel, L.; Sautes-Fridman, C.; Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 2017, 14, 717–734. [Google Scholar] [CrossRef]
- Mandal, R.; Senbabaoglu, Y.; Desrichard, A.; Havel, J.J.; Dalin, M.G.; Riaz, N.; Lee, K.W.; Ganly, I.; Hakimi, A.A.; Chan, T.A.; et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight 2016, 1, e89829. [Google Scholar] [CrossRef] [Green Version]
- Moy, J.D.; Moskovitz, J.M.; Ferris, R.L. Biological mechanisms of immune escape and implications for immunotherapy in head and neck squamous cell carcinoma. Eur. J. Cancer 2017, 76, 152–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Concha-Benavente, F.; Srivastava, R.; Ferrone, S.; Ferris, R.L. Immunological and clinical significance of HLA class I antigen processing machinery component defects in malignant cells. Oral. Oncol. 2016, 58, 52–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Respa, A.; Bukur, J.; Ferrone, S.; Pawelec, G.; Zhao, Y.; Wang, E.; Marincola, F.M.; Seliger, B. Association of IFN-gamma signal transduction defects with impaired HLA class I antigen processing in melanoma cell lines. Clin. Cancer Res. 2011, 17, 2668–2678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seliger, B. Novel insights into the molecular mechanisms of HLA class I abnormalities. Cancer Immunol. Immunother. 2012, 61, 249–254. [Google Scholar] [CrossRef] [PubMed]
- McGranahan, N.; Rosenthal, R.; Hiley, C.T.; Rowan, A.J.; Watkins, T.B.K.; Wilson, G.A.; Birkbak, N.J.; Veeriah, S.; Van Loo, P.; Herrero, J.; et al. Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell 2017, 171, 1259–1271.e1211. [Google Scholar] [CrossRef]
- Chowell, D.; Morris, L.G.T.; Grigg, C.M.; Weber, J.K.; Samstein, R.M.; Makarov, V.; Kuo, F.; Kendall, S.M.; Requena, D.; Riaz, N.; et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018, 359, 582–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, S.A.; Rooney, M.S.; Rajasagi, M.; Tiao, G.; Dixon, P.M.; Lawrence, M.S.; Stevens, J.; Lane, W.J.; Dellagatta, J.L.; Steelman, S.; et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 2015, 33, 1152–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichmuller, S.B.; Osen, W.; Mandelboim, O.; Seliger, B. Immune Modulatory microRNAs Involved in Tumor Attack and Tumor Immune Escape. J. Natl. Cancer Inst. 2017, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pages, F.; Mlecnik, B.; Marliot, F.; Bindea, G.; Ou, F.S.; Bifulco, C.; Lugli, A.; Zlobec, I.; Rau, T.T.; Berger, M.D.; et al. International validation of the consensus Immunoscore for the classification of colon cancer: A prognostic and accuracy study. Lancet 2018, 391, 2128–2139. [Google Scholar] [CrossRef]
- Andersen, R.; Westergaard, M.C.W.; Kjeldsen, J.W.; Muller, A.; Pedersen, N.W.; Hadrup, S.R.; Met, O.; Seliger, B.; Kromann-Andersen, B.; Hasselager, T.; et al. T-cell Responses in the Microenvironment of Primary Renal Cell Carcinoma-Implications for Adoptive Cell Therapy. Cancer Immunol. Res. 2018, 6, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.S.; Zaretsky, J.M.; Escuin-Ordinas, H.; Garcia-Diaz, A.; Hu-Lieskovan, S.; Kalbasi, A.; Grasso, C.S.; Hugo, W.; Sandoval, S.; Torrejon, D.Y.; et al. Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. Cancer Discov. 2017, 7, 188–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaretsky, J.M.; Garcia-Diaz, A.; Shin, D.S.; Escuin-Ordinas, H.; Hugo, W.; Hu-Lieskovan, S.; Torrejon, D.Y.; Abril-Rodriguez, G.; Sandoval, S.; Barthly, L.; et al. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N. Engl. J. Med. 2016, 375, 819–829. [Google Scholar] [CrossRef]
- Perea, F.; Bernal, M.; Sanchez-Palencia, A.; Carretero, J.; Torres, C.; Bayarri, C.; Gomez-Morales, M.; Garrido, F.; Ruiz-Cabello, F. The absence of HLA class I expression in non-small cell lung cancer correlates with the tumor tissue structure and the pattern of T cell infiltration. Int. J. Cancer 2017, 140, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.E.W.; Bell, R.B.; Bifulco, C.B.; Burtness, B.; Gillison, M.L.; Harrington, K.J.; Le, Q.T.; Lee, N.Y.; Leidner, R.; Lewis, R.L.; et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). J. Immunother. Cancer 2019, 7, 184. [Google Scholar] [CrossRef] [Green Version]
- Pulte, D.; Brenner, H. Changes in survival in head and neck cancers in the late 20th and early 21st century: A period analysis. Oncologist 2010, 15, 994–1001. [Google Scholar] [CrossRef] [Green Version]
- Zini, A.; Czerninski, R.; Sgan-Cohen, H.D. Oral cancer over four decades: Epidemiology, trends, histology, and survival by anatomical sites. J. Oral. Pathol. Med. 2010, 39, 299–305. [Google Scholar] [CrossRef]
- Husain, N.; Neyaz, A. Human papillomavirus associated head and neck squamous cell carcinoma: Controversies and new concepts. J. Oral. Biol. Craniofac. Res. 2017, 7, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omura, K. Current status of oral cancer treatment strategies: Surgical treatments for oral squamous cell carcinoma. Int. J. Clin. Oncol. 2014, 19, 423–430. [Google Scholar] [CrossRef]
- Chow, L.Q.M.; Haddad, R.; Gupta, S.; Mahipal, A.; Mehra, R.; Tahara, M.; Berger, R.; Eder, J.P.; Burtness, B.; Lee, S.H.; et al. Antitumor Activity of Pembrolizumab in Biomarker-Unselected Patients with Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma: Results from the Phase Ib KEYNOTE-012 Expansion Cohort. J. Clin. Oncol. 2016, 34, 3838–3845. [Google Scholar] [CrossRef] [PubMed]
- Ferris, R.L.; Licitra, L.; Fayette, J.; Even, C.; Blumenschein, G.R.; Harrington, K.J.; Guigay, J.; Vokes, E.E.; Saba, N.F.; Haddad, R.I.; et al. Nivolumab in Patients with Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck: Efficacy and Safety in CheckMate 141 by Prior Cetuximab Use. Clin. Cancer Res. 2019, 25, 5221–5230. [Google Scholar] [CrossRef] [Green Version]
- Haddad, R.; Concha-Benavente, F.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Kasper, S.; Vokes, E.E.; Worden, F.; et al. Nivolumab treatment beyond RECIST-defined progression in recurrent or metastatic squamous cell carcinoma of the head and neck in CheckMate 141: A subgroup analysis of a randomized phase 3 clinical trial. Cancer 2019, 125, 3208–3218. [Google Scholar] [CrossRef] [Green Version]
- Cavalieri, S.; Rivoltini, L.; Bergamini, C.; Locati, L.D.; Licitra, L.; Bossi, P. Immuno-oncology in head and neck squamous cell cancers: News from clinical trials, emerging predictive factors and unmet needs. Cancer Treat. Rev. 2018, 65, 78–86. [Google Scholar] [CrossRef]
- Foy, J.P.; Bertolus, C.; Michallet, M.C.; Deneuve, S.; Incitti, R.; Bendriss-Vermare, N.; Albaret, M.A.; Ortiz-Cuaran, S.; Thomas, E.; Colombe, A.; et al. The immune microenvironment of HPV-negative oral squamous cell carcinoma from never-smokers and never-drinkers patients suggests higher clinical benefit of IDO1 and PD1/PD-L1 blockade. Ann. Oncol. 2017, 28, 1934–1941. [Google Scholar] [CrossRef]
- Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pages, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006, 313, 1960–1964. [Google Scholar] [CrossRef] [Green Version]
- Mlecnik, B.; Bindea, G.; Angell, H.K.; Maby, P.; Angelova, M.; Tougeron, D.; Church, S.E.; Lafontaine, L.; Fischer, M.; Fredriksen, T.; et al. Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability. Immunity 2016, 44, 698–711. [Google Scholar] [CrossRef] [Green Version]
- Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Bethmann, D.; Kappler, M.; Ballesteros-Merino, C.; Eckert, A.; Bell, R.B.; Cheng, A.; Bui, T.; Leidner, R.; Urba, W.J.; et al. Multiparametric immune profiling in HPV- oral squamous cell cancer. JCI Insight 2017, 2, 2. [Google Scholar] [CrossRef]
- Horton, J.D.; Knochelmann, H.M.; Day, T.A.; Paulos, C.M.; Neskey, D.M. Immune Evasion by Head and Neck Cancer: Foundations for Combination Therapy. Trends Cancer 2019, 5, 208–232. [Google Scholar] [CrossRef]
- Muller, S. Update from the 4th Edition of the World Health Organization of Head and Neck Tumours: Tumours of the Oral Cavity and Mobile Tongue. Head Neck Pathol. 2017, 11, 33–40. [Google Scholar] [CrossRef]
- Remmele, W.; Stegner, H.E. [Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue]. Pathologe 1987, 8, 138–140. [Google Scholar] [PubMed]
- Stam, N.J.; Vroom, T.M.; Peters, P.J.; Pastoors, E.B.; Ploegh, H.L. HLA-A- and HLA-B-specific monoclonal antibodies reactive with free heavy chains in western blots, in formalin-fixed, paraffin-embedded tissue sections and in cryo-immuno-electron microscopy. Int. Immunol. 1990, 2, 113–125. [Google Scholar] [CrossRef]
- Smyth, M.J.; Ngiow, S.F.; Ribas, A.; Teng, M.W. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 2016, 13, 143–158. [Google Scholar] [CrossRef]
- Aptsiauri, N.; Ruiz-Cabello, F.; Garrido, F. The transition from HLA-I positive to HLA-I negative primary tumors: The road to escape from T-cell responses. Curr. Opin. Immunol. 2018, 51, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Paulson, K.G.; Voillet, V.; McAfee, M.S.; Hunter, D.S.; Wagener, F.D.; Perdicchio, M.; Valente, W.J.; Koelle, S.J.; Church, C.D.; Vandeven, N.; et al. Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA. Nat. Commun. 2018, 9, 3868. [Google Scholar] [CrossRef] [Green Version]
- Seliger, B. Molecular mechanisms of HLA class I-mediated immune evasion of human tumors and their role in resistance to immunotherapies. HLA 2016, 88, 213–220. [Google Scholar] [CrossRef]
- Botticelli, A.; Mezi, S.; Pomati, G.; Cerbelli, B.; Di Rocco, C.; Amirhassankhani, S.; Sirgiovanni, G.; Occhipinti, M.; Napoli, V.; Emiliani, A.; et al. The 5-Ws of immunotherapy in head and neck cancer. Crit. Rev. Oncol. Hematol. 2020, 153, 103041. [Google Scholar] [CrossRef]
- Krishna, S.; Ulrich, P.; Wilson, E.; Parikh, F.; Narang, P.; Yang, S.; Read, A.K.; Kim-Schulze, S.; Park, J.G.; Posner, M.; et al. Human Papilloma Virus Specific Immunogenicity and Dysfunction of CD8(+) T Cells in Head and Neck Cancer. Cancer Res. 2018, 78, 6159–6170. [Google Scholar] [CrossRef] [Green Version]
- Gettinger, S.; Choi, J.; Hastings, K.; Truini, A.; Datar, I.; Sowell, R.; Wurtz, A.; Dong, W.; Cai, G.; Melnick, M.A.; et al. Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer. Cancer Discov. 2017, 7, 1420–1435. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Michelakos, T.; Yamada, T.; Fan, S.; Wang, X.; Schwab, J.H.; Ferrone, C.R.; Ferrone, S. Defective HLA class I antigen processing machinery in cancer. Cancer Immunol. Immunother. 2018, 67, 999–1009. [Google Scholar] [CrossRef]
- Spranger, S.; Luke, J.J.; Bao, R.; Zha, Y.; Hernandez, K.M.; Li, Y.; Gajewski, A.P.; Andrade, J.; Gajewski, T.F. Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc. Natl. Acad. Sci. USA 2016, 113, E7759–E7768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, T.; Levin, I.; Niska, A.; Koren, R.; Gal, R.; Schachter, J.; Kfir, B.; Narinski, R.; Warchaizer, S.; Klein, B. Correlation between tumour and serum beta 2m expression in patients with breast cancer. Eur. J. Immunogenet. 1996, 23, 417–423. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Kantarjian, H.M.; Wen, S.; O’Brien, S.; Cortes, J.; Wierda, W.G.; Koller, C.; Pierce, S.; Brandt, M.; Freireich, E.J.; et al. The prognostic significance of serum beta2 microglobulin levels in acute myeloid leukemia and prognostic scores predicting survival: Analysis of 1,180 patients. Clin. Cancer Res. 2008, 14, 721–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.H.; Su, C.Y.; Chien, C.Y.; Huang, C.C.; Chuang, H.C.; Fang, F.M.; Huang, H.Y.; Chen, C.M.; Chiou, S.J. Overexpression of beta2-microglobulin is associated with poor survival in patients with oral cavity squamous cell carcinoma and contributes to oral cancer cell migration and invasion. Br. J. Cancer 2008, 99, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, S.; Floros, T.; Theodoraki, M.N.; Hong, C.S.; Jackson, E.K.; Lang, S.; Whiteside, T.L. Suppression of Lymphocyte Functions by Plasma Exosomes Correlates with Disease Activity in Patients with Head and Neck Cancer. Clin. Cancer Res. 2017, 23, 4843–4854. [Google Scholar] [CrossRef] [Green Version]
- Kiewe, P.; Mansmann, V.; Scheibenbogen, C.; Buhr, H.J.; Thiel, E.; Nagorsen, D. HLA-A2 expression, stage, and survival in colorectal cancer. Int. J. Colorectal Dis. 2008, 23, 767–772. [Google Scholar] [CrossRef]
- Eckert, A.W.; Wickenhauser, C.; Salins, P.C.; Kappler, M.; Bukur, J.; Seliger, B. Clinical relevance of the tumor microenvironment and immune escape of oral squamous cell carcinoma. J. Transl. Med. 2016, 14, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Y.F.; Rong, Y.M.; Tan, Y.X.; Xiao, J.; Yu, Z.L.; Chen, Y.F.; Ke, J.; Li, C.H.; Chen, X.; Wu, X.J.; et al. A signature of hypoxia-related factors reveals functional dysregulation and robustly predicts clinical outcomes in stage I/II colorectal cancer patients. Cancer Cell Int. 2019, 19, 243. [Google Scholar] [CrossRef] [PubMed]
- Restifo, N.P.; Smyth, M.J.; Snyder, A. Acquired resistance to immunotherapy and future challenges. Nat. Rev. Cancer 2016, 16, 121–126. [Google Scholar] [CrossRef] [PubMed]
Category | No. of Cases | Overall Survival (OS): All Tumors | |
---|---|---|---|
Univariable Analysis | Multivariable Analysis * | ||
RR; p-Value | RR; p-Value | ||
gender | |||
men | 124 | ||
women | 36 | 0.79; p = 0.4 | 0.87; p = 0.64 |
age (years) | |||
≤60 | 91 | ||
>60 | 69 | 1.17; p = 0.49 | 1.29; p = 0.26 |
T stage | |||
I | 32 | ||
II | 49 | 2.54; p = 0.025 | 2.75; p = 0.02 |
III | 24 | 3.04; p = 0.018 | 3.10; p = 0.028 |
IV | 55 | 6.99; p < 0.0001 | 6.92; p < 0.0001 |
N stage | |||
N0 | 71 | ||
N1–3 | 89 | 2.22; p = 0.001 | 1.26; p = 0.4 |
M stage | |||
M0 | 154 | ||
M1 | 6 | 2.41; p = 0.057 | 3.16; p = 0.017 |
grading | |||
1 | 18 | ||
2 | 107 | 0.96; p = 0.92 | 0.65; p = 0.24 |
3 | 35 | 0.85; p = 0.69 | 0.58; p = 0.2 |
UICC T Stage | Number of Cases | Adjuvant Radiation Therapy Received | Median Dosage (gy) | Adjuvant Standard Chemotherapy Received |
---|---|---|---|---|
I | 32 | 14 (44%) | 50.2 | 24 (75%) |
II | 49 | 26 (53%) | 50.0 | 12 (25%) |
III | 24 | 17 (71%) | 64.0 | 9 (38%) |
IV | 55 | 40 (73%) | 64.0 | 31 (56%) |
HLA-I/APM Phenotype | Patients (n = 160) | HC | β2-m | TAP1 | TAP2 | LMP2 | LMP10 | Expression Pattern |
---|---|---|---|---|---|---|---|---|
I [HLA-Ihigh–APMhigh] | 57 (36%) | + | + | + | + | + | + | concordant HLA-I/APM expression |
II [HLA-Ilow–APMlow] | 12 (8%) | − | − | − | − | − | − | |
III [HLA-Idiscordant high/low–APMhigh] | 89 (56%) | + | − | + | + | + | + | discordant HLA-I/APM expression |
− | + | |||||||
IV [HLA-Idiscordant high/low–APMlow] * | 2 (<1%) | + | − | − | − | − | − | |
− | + |
HLA-I/APM Phenotype | T1 | T2 | T3 | T4 | all Ts |
---|---|---|---|---|---|
I [HLA-Ihigh/ APMhigh] | 16 (50%) | 15 (31%) | 12 (50%) | 14 (26%) | 57 (36%) |
II [HLA-Ilow/ APMlow] | 3 (9%) | 2 (4%) | 3 (13%) | 4 (7%) | 12 (8%) |
III [HLA-Idiscordant high/low/APMhigh] | 12 (38%) | 31 (63%) | 9 (37%) | 37 (67%) | 89 (55%) |
IV [HLA-Idiscordant high/low/APMlow] * | 1 (3%) | 1 (2%) | - | - | 2 (1%) |
Intra-Tumoral T Cell Infiltrate | HLA-I HC | β2-m | TAP1 | TAP2 | LMP2 | LMP10 | JAK1 | |
---|---|---|---|---|---|---|---|---|
N | rs (p-Value) | rs (p-Value) | rs (p-Value) | rs (p-Value) | rs (p-Value) | rs (p-Value) | rs (p-Value) | |
CD4+/mm2 | 108 | 0.150 (0.12) | 0.216 (0.03) * | −0.142 (0.14) | 0.168 (0.08) * | 0.229 (0.017) * | 0.120 (0.22) | 0.027 (0.78) |
CD8+/mm2 | 119 | 0.242 (0.008) ** | 0.272 (0.003) ** | −0.172 (0.08) * | 0.118 (0.20) | 0.270 (0.003) ** | 0.095 (0.30) | 0.178 (0.06) * |
FoxP3+/mm2 | 119 | 0.190 (0.04) * | 0.246 (0.007) ** | −0.239 (0.01) * | 0.198 (0.03) * | 0.146 (0.11) | 0.012 (0.90) | 0.115 (0.24) |
CD8+ to FoxP3+ within 30 µm | 119 | −0.238 (0.009) ** | −0.248 (0.007) ** | −0.034 (0.73) | −0.043 (0.64) | −0.223 (0.015) * | −0.024 (0.79) | −0.097 (0.318) |
HLA-A | β2-m | TAP1 | TAP2 | LMP2 | LMP10 | |
---|---|---|---|---|---|---|
CD4 | rs = 0.351 (p = 2.3 × 10−3) | rs = 0.458 (p = 4.6 × 10−5) | rs = 0.394 (p = 5.6 × 10−4) | rs = 0.372 (p = 1.2 × 10−3) | rs = 0.328 (p = 4.6 × 10−3) | rs = 0.474 (p = 2.3 × 10−5) |
CD8A | rs = 0.506 (p = 5.0 × 10−6) | rs = 0.698 (p = 7.0 × 10−12) | rs = 0.699 (p = 1.5 × 10−11) | rs = 0.642 (p = 9.4 × 10−10) | rs = 0.653 (p = 3.7 × 10−10) | rs = 0.671 (p = 7.9 × 10−11) |
FoxP3 | rs = 0.347 (p = 2.7 × 10−3) | rs = 0.460 (p = 4.2 × 10−5) | rs = 0.445 (p = 7.9 × 10−5) | rs = 0.45 (p = 6.4 × 10−5) | rs = 0.342 (p = 3.1 × 10−3) | rs = 0.392 (p = 6.0 × 10−4) |
No. of Cases | Overall Survival (OS) | ||||||
---|---|---|---|---|---|---|---|
All Tumors | T1–2 Stage Tumors | T3–4 Stage Tumors | |||||
Univariable Analysis | Multivariable Analysis * | No. of Cases | Multivariable Analysis * | No. of Cases | Multivariable Analysis * | ||
RR; p-Value | RR; p-Value | RR; p-Value | RR; p-Value | ||||
HLA-APM phenotype cytoplasmic and membranous I [HLA-Ihigh-APMhigh] II [HLA-Ilow-APMlow] III [HLA-Ihigh/low-APMhigh] IV [HLA-Ihigh/low-APMlow] | 57 12 89 2 | I vs. III: 0.59; p = 0.63 | I vs. III: 1.29; p = 0.55 | 31 5 43 2 | I vs.III: 1.86; p = 0.11 | 26 7 46 0 | I vs. III: 1.08; p = 0.82 |
HLA-I HC | |||||||
cytoplasmic | |||||||
IRS 0–3 | 64 | 34 | 30 | ||||
IRS 4–12 | 96 | 1.53; p = 0.07 | 1.52; p = 0.08 | 51 | 1.86; p = 0.11 | 49 | 1.25; p = 0.47 |
membranous | |||||||
IRS 0–4 | 100 | 51 | 49 | ||||
IRS 6–12 | 60 | 1.13; p = 0.59 | 1.04; p = 0.86 | 30 | 1.85; p = 0.10 | 30 | 0.72; p = 0.26 |
β2-m | |||||||
cytoplasmic | |||||||
IRS 0–3 | 48 | 27 | 21 | ||||
IRS 4–12 | 112 | 1.80; p = 0.026 | 1.66; p = 0.056 | 54 | 2.29; p = 0.061 | 58 | 1.41; p = 0.31 |
membranous | |||||||
IRS 0–4 | 105 | 56 | 53 | ||||
IRS 6–12 | 55 | 0.97; p = 0.9 | 0.93; p = 0.75 | 25 | 1.53; p = 0.28 | 26 | 0.8; p = 0.49 |
TAP1 | |||||||
cytoplasmic | |||||||
IRS 0–2 | 18 | 8 | 10 | ||||
IRS 3–12 | 49 | 0.57; p = 0.09 | 0.57; p = 0.13 | 25 | 0.89; p = 0.87 | 24 | 0.56; p = 0.20 |
TAP2 | |||||||
cytoplasmic | |||||||
IRS 0–4 | 49 | 26 | 23 | ||||
IRS 6–12 | 111 | 1.31; p = 0.27 | 1.42; p = 0.17 | 55 | 1.02; p = 0.96 | 56 | 2.35; p = 0.02 |
LMP2 | |||||||
cytoplasmic | |||||||
IRS 0–4 | 105 | 53 | 52 | ||||
IRS 6–12 | 55 | 0.99; p = 0.96 | 0.99; p = 0.99 | 28 | 1.02; p = 0.96 | 27 | 1.06; p = 0.84 |
nuclear | |||||||
IRS 0–4 | 69 | 34 | 35 | ||||
IRS 6–12 | 91 | 1.52; p = 0.07 | 1.56; p = 0.054 | 47 | 2.4; p = 0.04 | 44 | 1.44; p = 0.2 |
LMP10 | |||||||
cytoplasmic | |||||||
IRS 0–2 | 32 | 22 | 10 | ||||
IRS 3–12 | 128 | 1.54; p = 0.15 | 1.27; p = 0.43 | 59 | 1.34; p = 0.5 | 69 | 1.33; p = 0.51 |
nuclear | |||||||
IRS 0–4 | 21 | 12 | 9 | ||||
IRS 6–12 | 139 | 1.63; p = 0.18 | 1.57; p = 0.21 | 69 | 1.26; p = 0.65 | 70 | 2.1; p = 0.16 |
High HLA-A, HLA-B or β2-m (Phenotype I) | TAP1 | TAP2 | LMP2 | LMP10 |
HLA-A | p = 0.028 | p = 0.04 | p = 0.068 | p = 0.131 |
HLA-B | p = 0.479 | p = 0.195 | p = 0.045 | p = 0.077 |
β2-m | p = 0.019 | p = 0.067 | p = 0.074 | p = 0.145 |
low HLA-A, HLA-B or β2-m (phenotype II) | TAP1 | TAP2 | LMP2 | LMP10 |
HLA-A | p = 0.679 | p = 0.04 | p = 0.059 | p = 0.557 |
HLA-B | p = 0.884 | p = 0.094 | p = 0.028 | p = 0.624 |
β2-m | p = 0.873 | p = 0.058 | p = 0.055 | p = 0.801 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wickenhauser, C.; Bethmann, D.; Kappler, M.; Eckert, A.W.; Steven, A.; Bukur, J.; Fox, B.A.; Beer, J.; Seliger, B. Tumor Microenvironment, HLA Class I and APM Expression in HPV-Negative Oral Squamous Cell Carcinoma. Cancers 2021, 13, 620. https://doi.org/10.3390/cancers13040620
Wickenhauser C, Bethmann D, Kappler M, Eckert AW, Steven A, Bukur J, Fox BA, Beer J, Seliger B. Tumor Microenvironment, HLA Class I and APM Expression in HPV-Negative Oral Squamous Cell Carcinoma. Cancers. 2021; 13(4):620. https://doi.org/10.3390/cancers13040620
Chicago/Turabian StyleWickenhauser, Claudia, Daniel Bethmann, Matthias Kappler, Alexander Walter Eckert, André Steven, Jürgen Bukur, Bernard Aloysius Fox, Jana Beer, and Barbara Seliger. 2021. "Tumor Microenvironment, HLA Class I and APM Expression in HPV-Negative Oral Squamous Cell Carcinoma" Cancers 13, no. 4: 620. https://doi.org/10.3390/cancers13040620
APA StyleWickenhauser, C., Bethmann, D., Kappler, M., Eckert, A. W., Steven, A., Bukur, J., Fox, B. A., Beer, J., & Seliger, B. (2021). Tumor Microenvironment, HLA Class I and APM Expression in HPV-Negative Oral Squamous Cell Carcinoma. Cancers, 13(4), 620. https://doi.org/10.3390/cancers13040620