Mapping of Genomic Vulnerabilities in the Post-Translational Ubiquitination, SUMOylation and Neddylation Machinery in Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Copy Number Alterations in SUMOylation, Ubiquitination, and Neddylation in Breast Cancer
2.2. Filtering of Gene Amplifications in Search of Potentially Relevant Clinical Targets
2.3. Amplification of SUN Genes Predicts an Unfavorable Outcome in Breast Tumors
2.4. Amplification of UBE2T, UBE2C, and BIRC5 Genes Is Associated to a Worse Prognosis in Luminal and Basal-Like Breast Tumors
2.5. Amplification of UBE2T, UBE2C, and BIRC5 Genes Can Predict Response to (neo)adjuvant Therapy in Luminal A and Basal-Like Tumors
2.6. Mapping of Mutations Occurring in SUN Genes and Prognostic Impact
2.7. Exploring Genomic Vulnerabilities in a Large Panel of Breast Cancer Cell Lines
3. Discussion
4. Materials and Methods
4.1. Identification of SUN Genes Gene Ontology
4.2. Data Collection and Processing
4.3. Outcome Analyses
4.4. Co-Occurrence
4.5. Construction and Analysis of PPI Networks and Functional Annotation
4.6. Search for Predictive Biomarkers
4.7. Functional Characterization of Mutations
4.8. Analysis of Breast Cancer Cell Lines
4.9. Graphical Design
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lord, S.J.; Kiely, B.E.; Pearson, S.-A.; Daniels, B.; O’Connell, D.L.; Beith, J.; Bulsara, M.K.; Houssami, N. Metastatic Breast Cancer Incidence, Site and Survival in Australia, 2001–2016: A Population-Based Health Record Linkage Study Protocol. BMJ Open 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Cancer Genome Consortium; Hudson, T.J.; Anderson, W.; Artez, A.; Barker, A.D.; Bell, C.; Bernabé, R.R.; Bhan, M.K.; Calvo, F.; Eerola, I.; et al. International Network of Cancer Genome Projects. Nature 2010, 464, 993–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancer Genome Atlas Network. Comprehensive Molecular Portraits of Human Breast Tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.M.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer Analysis Project. Nat Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Pereira, B.; Chin, S.-F.; Rueda, O.M.; Vollan, H.-K.M.; Provenzano, E.; Bardwell, H.A.; Pugh, M.; Jones, L.; Russell, R.; Sammut, S.-J.; et al. The Somatic Mutation Profiles of 2433 Breast Cancers Refine Their Genomic and Transcriptomic Landscapes. Nat. Commun. 2016, 7, 11479. [Google Scholar] [CrossRef] [Green Version]
- Razavi, P.; Chang, M.T.; Xu, G.; Bandlamudi, C.; Ross, D.S.; Vasan, N.; Cai, Y.; Bielski, C.M.; Donoghue, M.T.A.; Jonsson, P.; et al. The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell 2018, 34, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular Portraits of Human Breast Tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef]
- Koboldt, D.C.; Fulton, R.S.; McLellan, M.D.; Schmidt, H.; Kalicki-Veizer, J.; McMichael, J.F.; Fulton, L.L.; Dooling, D.J.; Ding, L.; Mardis, E.R.; et al. Comprehensive Molecular Portraits of Human Breast Tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Condorelli, R.; Mosele, F.; Verret, B.; Bachelot, T.; Bedard, P.L.; Cortes, J.; Hyman, D.M.; Juric, D.; Krop, I.; Bieche, I.; et al. Genomic Alterations in Breast Cancer: Level of Evidence for Actionability According to ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT). Ann. Oncol. 2019, 30, 365–373. [Google Scholar] [CrossRef]
- Krueger, K.E.; Srivastava, S. Posttranslational Protein Modifications: Current Implications for Cancer Detection, Prevention, and Therapeutics. Mol. Cell. Proteomics 2006, 5, 1799–1810. [Google Scholar] [CrossRef] [Green Version]
- Gâtel, P.; Piechaczyk, M.; Bossis, G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. Adv. Exp. Med. Biol. 2020, 1233, 29–54. [Google Scholar] [CrossRef]
- Scheffner, M.; Nuber, U.; Huibregtse, J.M. Protein Ubiquitination Involving an E1-E2-E3 Enzyme Ubiquitin Thioester Cascade. Nature 1995, 373, 81–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, L.H.; Ko, J.; Donoghue, D.J. The Importance of Regulatory Ubiquitination in Cancer and Metastasis. Cell Cycle 2017, 16, 634–648. [Google Scholar] [CrossRef] [Green Version]
- Bologna, S.; Ferrari, S. It Takes Two to Tango: Ubiquitin and SUMO in the DNA Damage Response. Front Genet 2013, 4, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naik, S.K.; Lam, E.W.-F.; Parija, M.; Prakash, S.; Jiramongkol, Y.; Adhya, A.K.; Parida, D.K.; Mishra, S.K. NEDDylation Negatively Regulates ERRβ Expression to Promote Breast Cancer Tumorigenesis and Progression. Cell Death Dis. 2020, 11, 703. [Google Scholar] [CrossRef]
- Hungria, V.T. de M.; Crusoé, E. de Q.; Bittencourt, R.I.; Maiolino, A.; Magalhães, R.J.P.; Sobrinho, J. do N.; Pinto, J.V.; Fortes, R.C.; Moreira, E. de S.; Tanaka, P.Y. New Proteasome Inhibitors in the Treatment of Multiple Myeloma. Hematol. Transfus. Cell Ther. 2019, 41, 76–83. [Google Scholar] [CrossRef]
- Wang, W.; Qin, J.-J.; Voruganti, S.; Srivenugopal, K.S.; Nag, S.; Patil, S.; Sharma, H.; Wang, M.-H.; Wang, H.; Buolamwini, J.K.; et al. The Pyrido[b]Indole MDM2 Inhibitor SP-141 Exerts Potent Therapeutic Effects in Breast Cancer Models. Nat. Commun. 2014, 5, 5086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemos, A.; Leão, M.; Soares, J.; Palmeira, A.; Pinto, M.; Saraiva, L.; Sousa, M.E. Medicinal Chemistry Strategies to Disrupt the P53-MDM2/MDMX Interaction. Med. Res. Rev. 2016, 36, 789–844. [Google Scholar] [CrossRef]
- Arvinas Receives Authorization to Proceed for ARV-471, a PROTAC® Protein Degrader to Treat Patients with Locally Advanced or Metastatic ER+/HER2− Breast Cancer. Available online: https://ir.arvinas.com/news-releases/news-release-details/arvinas-receives-authorization-proceed-arv-471-protacr-protein/ (accessed on 3 December 2020).
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The CBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the CBioPortal. Sci. Signal. 2013, 6, l1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An Enhanced Web Server for Large-Scale Expression Profiling and Interactive Analysis. Nucleic Acids Res. 2019, 47, W556–W560. [Google Scholar] [CrossRef] [Green Version]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef]
- Jézéquel, P.; Frénel, J.-S.; Campion, L.; Guérin-Charbonnel, C.; Gouraud, W.; Ricolleau, G.; Campone, M. Bc-GenExMiner 3.0: New Mining Module Computes Breast Cancer Gene Expression Correlation Analyses. Database (Oxford) 2013, 2013. [Google Scholar] [CrossRef]
- Györffy, B.; Lanczky, A.; Eklund, A.C.; Denkert, C.; Budczies, J.; Li, Q.; Szallasi, Z. An Online Survival Analysis Tool to Rapidly Assess the Effect of 22,277 Genes on Breast Cancer Prognosis Using Microarray Data of 1,809 Patients. Breast Cancer Res. Treat. 2010, 123, 725–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fekete, J.T.; Győrffy, B. ROCplot.Org: Validating Predictive Biomarkers of Chemotherapy/Hormonal Therapy/Anti-HER2 Therapy Using Transcriptomic Data of 3,104 Breast Cancer Patients. Int. J. Cancer 2019, 145, 3140–3151. [Google Scholar] [CrossRef]
- Pongor, L.; Kormos, M.; Hatzis, C.; Pusztai, L.; Szabó, A.; Győrffy, B. A Genome-Wide Approach to Link Genotype to Clinical Outcome by Utilizing next Generation Sequencing and Gene Chip Data of 6,697 Breast Cancer Patients. Genome Med. 2015, 7, 104. [Google Scholar] [CrossRef] [Green Version]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia Enables Predictive Modelling of Anticancer Drug Sensitivity. Nature 2012, 483, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Cheng, H.; Bai, Z.; Li, J. Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J. Cancer 2017, 8, 3131–3141. [Google Scholar] [CrossRef] [Green Version]
- Kao, J.; Salari, K.; Bocanegra, M.; Choi, Y.-L.; Girard, L.; Gandhi, J.; Kwei, K.A.; Hernandez-Boussard, T.; Wang, P.; Gazdar, A.F.; et al. Molecular Profiling of Breast Cancer Cell Lines Defines Relevant Tumor Models and Provides a Resource for Cancer Gene Discovery. PLOS ONE 2009, 4, e6146. [Google Scholar] [CrossRef]
- Dastsooz, H.; Cereda, M.; Donna, D.; Oliviero, S. A Comprehensive Bioinformatics Analysis of UBE2C in Cancers. Int. J. Mol. Sci. 2019, 20, 2228. [Google Scholar] [CrossRef] [Green Version]
- Psyrri, A.; Kalogeras, K.T.; Kronenwett, R.; Wirtz, R.M.; Batistatou, A.; Bournakis, E.; Timotheadou, E.; Gogas, H.; Aravantinos, G.; Christodoulou, C.; et al. Prognostic Significance of UBE2C MRNA Expression in High-Risk Early Breast Cancer. A Hellenic Cooperative Oncology Group (HeCOG) Study. Ann. Oncol. 2012, 23, 1422–1427. [Google Scholar] [CrossRef] [PubMed]
- Loussouarn, D.; Campion, L.; Leclair, F.; Campone, M.; Charbonnel, C.; Ricolleau, G.; Gouraud, W.; Bataille, R.; Jézéquel, P. Validation of UBE2C Protein as a Prognostic Marker in Node-Positive Breast Cancer. Br. J. Cancer 2009, 101, 166–173. [Google Scholar] [CrossRef]
- Mo, C.; Gao, L.; Zhu, X.; Wei, K.; Zeng, J.; Chen, G.; Feng, Z. The Clinicopathological Significance of UBE2C in Breast Cancer: A Study Based on Immunohistochemistry, Microarray and RNA-Sequencing Data. Cancer Cell International 2017, 17, 83. [Google Scholar] [CrossRef] [Green Version]
- Perez-Peña, J.; Corrales-Sánchez, V.; Amir, E.; Pandiella, A.; Ocana, A. Ubiquitin-Conjugating Enzyme E2T (UBE2T) and Denticleless Protein Homolog (DTL) Are Linked to Poor Outcome in Breast and Lung Cancers. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Lee, G.; Han, J.; Song, K.; Choi, J.-S.; Choi, Y.-L.; Shin, Y.K. UBE2C Overexpression Aggravates Patient Outcome by Promoting Estrogen-Dependent/Independent Cell Proliferation in Early Hormone Receptor-Positive and HER2-Negative Breast Cancer. Front. Oncol. 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Rawat, A.; Gopal, G.; Selvaluxmy, G.; Rajkumar, T. Inhibition of Ubiquitin Conjugating Enzyme UBE2C Reduces Proliferation and Sensitizes Breast Cancer Cells to Radiation, Doxorubicin, Tamoxifen and Letrozole. Cell. Oncol. (Dordr) 2013, 36, 459–467. [Google Scholar] [CrossRef]
- Ueki, T.; Park, J.-H.; Nishidate, T.; Kijima, K.; Hirata, K.; Nakamura, Y.; Katagiri, T. Ubiquitination and Downregulation of BRCA1 by Ubiquitin-Conjugating Enzyme E2T Overexpression in Human Breast Cancer Cells. Cancer Res. 2009, 69, 8752–8760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, J.; Zhu, B.; Lin, W.; Gao, H.; Dai, H.; Zheng, L.; Shi, W.; Chen, W. Identification of Prognostic Significance of BIRC5 in Breast Cancer Using Integrative Bioinformatics Analysis. Biosci. Rep. 2020, 40. [Google Scholar] [CrossRef] [Green Version]
- Hamy, A.S.; Bieche, I.; Lehmann-Che, J.; Scott, V.; Bertheau, P.; Guinebretière, J.M.; Matthieu, M.C.; Sigal-Zafrani, B.; Tembo, O.; Marty, M.; et al. BIRC5 (Survivin): A Pejorative Prognostic Marker in Stage II/III Breast Cancer with No Response to Neoadjuvant Chemotherapy. Breast Cancer Res. Treat. 2016, 159, 499–511. [Google Scholar] [CrossRef]
- Lyu, H.; Huang, J.; He, Z.; Liu, B. Epigenetic Mechanism of Survivin Dysregulation in Human Cancer. Sci. China Life Sci. 2018, 61, 808–814. [Google Scholar] [CrossRef]
- Nabilsi, N.H.; Broaddus, R.R.; Loose, D.S. DNA Methylation Inhibits P53-Mediated Survivin Repression. Oncogene 2009, 28, 2046–2050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Zheng, X.; Shen, C.; Shi, Y. MicroRNA-203 Suppresses Cell Proliferation and Migration by Targeting BIRC5 and LASP1 in Human Triple-Negative Breast Cancer Cells. J. Exp. Clin. Cancer Res. 2012, 31, 58. [Google Scholar] [CrossRef] [Green Version]
- Véquaud, E.; Desplanques, G.; Jézéquel, P.; Juin, P.; Barillé-Nion, S. Survivin Contributes to DNA Repair by Homologous Recombination in Breast Cancer Cells. Breast Cancer Res. Treat. 2016, 155, 53–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Q.; Zhang, F.-L.; Lu, D.-Y.; Shao, Z.-M.; Li, D.-Q. USP9X Stabilizes BRCA1 and Confers Resistance to DNA-Damaging Agents in Human Cancer Cells. Cancer Med. 2019, 8, 6730–6740. [Google Scholar] [CrossRef]
- Oosterkamp, H.M.; Hijmans, E.M.; Brummelkamp, T.R.; Canisius, S.; Wessels, L.F.A.; Zwart, W.; Bernards, R. USP9X Downregulation Renders Breast Cancer Cells Resistant to Tamoxifen. Cancer Res. 2014, 74, 3810–3820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Song, N.; Liu, L.; Liu, X.; Ding, X.; Song, X.; Yang, S.; Shan, L.; Zhou, X.; Su, D.; et al. USP9X Regulates Centrosome Duplication and Promotes Breast Carcinogenesis. Nat. Commun. 2017, 8, 14866. [Google Scholar] [CrossRef]
- Li, L.; Liu, T.; Li, Y.; Wu, C.; Luo, K.; Yin, Y.; Chen, Y.; Nowsheen, S.; Wu, J.; Lou, Z.; et al. The Deubiquitinase USP9X Promotes Tumor Cell Survival and Confers Chemoresistance through YAP1 Stabilization. Oncogene 2018, 37, 2422–2431. [Google Scholar] [CrossRef]
- Giovinazzi, S.; Morozov, V.M.; Summers, M.K.; Reinhold, W.C.; Ishov, A.M. USP7 and Daxx Regulate Mitosis Progression and Taxane Sensitivity by Affecting Stability of Aurora-A Kinase. Cell Death Differ. 2013, 20, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Pérez, S.; Cabrera, E.; Salido, E.; Lim, M.; Reid, L.; Lakhani, S.R.; Khanna, K.K.; Saunus, J.M.; Freire, R. DUB3 and USP7 De-Ubiquitinating Enzymes Control Replication Inhibitor Geminin: Molecular Characterization and Associations with Breast Cancer. Oncogene 2017, 36, 4802–4809. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Liao, Y.; Huang, C.; Liu, Y.; He, J.; Shao, Z.; Jiang, L.; Dou, Q.P.; Liu, J.; Huang, H. Deubiquitination and Stabilization of Estrogen Receptor α by Ubiquitin-Specific Protease 7 Promotes Breast Tumorigenesis. Cancer Letters 2019, 465, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Cappadocia, L.; Lima, C.D. Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism. Chem. Rev. 2018, 118, 889–918. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Aljahdali, I.; Ling, X. Cancer Therapeutics Using Survivin BIRC5 as a Target: What Can We Do after over Two Decades of Study? J. Exp. Clin. Cancer Res. 2019, 38, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, L.; Meng, T.; Chen, L.; Wei, W.; Wang, P. The Role of Ubiquitination in Tumorigenesis and Targeted Drug Discovery. Signal Transduct. Target. Ther. 2020, 5, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Science-Mission Therapeutics. Available online: https://missiontherapeutics.com/science/ (accessed on 8 January 2021).
Gene (Process) | Alteration | Prognostic Implication | Intrinsic Subtype | Predictive Implication | Intrinsic Subtype | Previous Clinical Evidence | Previous Preclinical Evidence | Potential Therapeutic Avenues | Refs. |
---|---|---|---|---|---|---|---|---|---|
UBE2T (Ubi) | Amp | Poorer survival | Luminal Basal-like | Resistance to neoadjuvant Cx | Basal-like | shorter RFS (basal-like) | Impairment of DNA repair (FANCD2, BRCA1 degradation) | - Targeted inhibition. - Combination strategies (Cx, PARPi) | [36,39] |
UBE2C (Ubi) | Amp | Poorer survival | Luminal | Resistance to adjuvant ET and Cx | Luminal | Shorter RFS and OS (all subtypes) | Resistance to ET, Cx, and RT (mitotic cyclins degradation) | - Targeted inhibition. - Combination strategies (ET, Cx, RT) | [33,34,35,37,38] |
BIRC5 (Nedd) | Amp | Poorer survival | Luminal | Resistance to adjuvant ET and Cx | Luminal | shorter RFS/OS (all subtypes) shorter RFS stage II/III (all subtypes) | Apoptosis inhibitor | - Targeted inhibition. - Combination strategies (ET, Cx, PARPi) | [40,41,42,43,44,45] |
USP9X (Ubi) | Mut (deleterious) | Poorer survival | Luminal HER2 Basal-like | - | - | - | - BRCA1 stabilization - Sensitivity to tamoxifen | - Predictor of resistance to ET and sensitivity to Cx and PARPi - Explore actionability in upregulated signature | [46,47,48,49] |
USP7 (Ubi) | Mut (deleterious) | Poorer survival | Luminal | - | - | - | Impairment of mitotic progression | - Predictor of sensitivity to Cx - Explore actionability in upregulated signature | [50,51,52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes-Antrás, J.; Alcaraz-Sanabria, A.L.; Morafraile, E.C.; Noblejas-López, M.d.M.; Galán-Moya, E.M.; Baliu-Pique, M.; López-Cade, I.; García-Barberán, V.; Pérez-Segura, P.; Manzano, A.; et al. Mapping of Genomic Vulnerabilities in the Post-Translational Ubiquitination, SUMOylation and Neddylation Machinery in Breast Cancer. Cancers 2021, 13, 833. https://doi.org/10.3390/cancers13040833
Fuentes-Antrás J, Alcaraz-Sanabria AL, Morafraile EC, Noblejas-López MdM, Galán-Moya EM, Baliu-Pique M, López-Cade I, García-Barberán V, Pérez-Segura P, Manzano A, et al. Mapping of Genomic Vulnerabilities in the Post-Translational Ubiquitination, SUMOylation and Neddylation Machinery in Breast Cancer. Cancers. 2021; 13(4):833. https://doi.org/10.3390/cancers13040833
Chicago/Turabian StyleFuentes-Antrás, Jesús, Ana Lucía Alcaraz-Sanabria, Esther Cabañas Morafraile, María del Mar Noblejas-López, Eva María Galán-Moya, Mariona Baliu-Pique, Igor López-Cade, Vanesa García-Barberán, Pedro Pérez-Segura, Aránzazu Manzano, and et al. 2021. "Mapping of Genomic Vulnerabilities in the Post-Translational Ubiquitination, SUMOylation and Neddylation Machinery in Breast Cancer" Cancers 13, no. 4: 833. https://doi.org/10.3390/cancers13040833
APA StyleFuentes-Antrás, J., Alcaraz-Sanabria, A. L., Morafraile, E. C., Noblejas-López, M. d. M., Galán-Moya, E. M., Baliu-Pique, M., López-Cade, I., García-Barberán, V., Pérez-Segura, P., Manzano, A., Pandiella, A., Győrffy, B., & Ocaña, A. (2021). Mapping of Genomic Vulnerabilities in the Post-Translational Ubiquitination, SUMOylation and Neddylation Machinery in Breast Cancer. Cancers, 13(4), 833. https://doi.org/10.3390/cancers13040833