Role of Stem Cell Transplantation in Multiple Myeloma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patient Eligibility for Autologous SCT in MM
2.1. Patient Related Factors
2.2. Renal Insufficiency and ASCT
3. Induction Therapy—An Optimal Approach
4. Conditioning Chemotherapy
4.1. Evidence for the Role of SCT as Consolidation Therapy
4.2. Tandem Stem Cell Transplantation in Myeloma
4.3. Timing of ASCT in Multiple Myeloma
4.4. ASCT as Salvage Therapy
4.5. Role of Post-SCT Maintenance
4.6. Allogeneic Stem Cell Transplantation in MM
4.7. Role of MRD in Transplant
5. Conclusions
Funding
Conflicts of Interest
References
- Rajkumar, S.V. Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2016, 91, 719–734. [Google Scholar] [CrossRef] [Green Version]
- Girnius, S.; Munshi, N.C. Individualized therapy in multiple myeloma: Are we there? Semin. Oncol. 2013, 40, 567–576. [Google Scholar] [CrossRef]
- Sporn, J.R.; McLntyre, O.R. Chemotherapy of previously untreated multiple myeloma patients: An analysis of recent treatment results. Semin. Oncol. 1986, 13, 318–325. [Google Scholar]
- McElwain, T.J.; Powles, R.L. High-dose intravenous melphalan for plasma-cell leukaemia and myeloma. Lancet 1983, 2, 822–824. [Google Scholar] [CrossRef]
- Barlogie, B.; Hall, R.; Zander, A.; Dicke, K.; Alexanian, R. High-dose melphalan with autologous bone marrow transplantation for multiple myeloma. Blood 1986, 67, 1298–1301. [Google Scholar] [CrossRef] [Green Version]
- Attal, M.; Harousseau, J.L.; Stoppa, A.M.; Sotto, J.J.; Fuzibet, J.G.; Rossi, J.F.; Casassus, P.; Maisonneuve, H.; Facon, T.; Ifrah, N.; et al. Intergroupe Francais du Myelome. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N. Engl. J. Med. 1996, 335, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Koreth, J.; Cutler, C.S.; Djulbegovic, B.; Behl, R.; Schlossman, R.L.; Munshi, N.C.; Richardson, P.G.; Anderson, K.C.; Soiffer, R.J.; Alyea, E.P. High-dose therapy with single autologous transplantation versus chemotherapy for newly diagnosed multiple myeloma: A systematic review and meta-analysis of randomized controlled trials. Biol. Blood Marrow Transpl. 2007, 13, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.K.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Buadi, F.K.; Pandey, S.; Kapoor, P.; Dingli, D.; Hayman, S.R.; Leung, N.; et al. Continued improvement in survival in multiple myeloma: Changes in early mortality and outcomes in older patients. Leukemia 2014, 28, 1122–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attal, M.; Harousseau, J.L.; Leyvraz, S.; Doyen, C.; Hulin, C.; Benboubker, L.; Yakoub Agha, I.; Bourhis, J.H.; Garderet, L.; Pegourie, B.; et al. Maintenance therapy with thalidomide improves survival in patients with multiple myeloma. Blood 2006, 108, 3289–3294. [Google Scholar] [CrossRef]
- Stewart, A.K.; Chen, C.I.; Howson-Jan, K.; White, D.; Roy, J.; Kovacs, M.J.; Shustik, C.; Sadura, A.; Shepherd, L.; Ding, K.; et al. Results of a multicenter randomized phase II trial of thalidomide and prednisone maintenance therapy for multiple myeloma after autologous stem cell transplant. Clin. Cancer Res. 2004, 10, 8170–8176. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S. Stem cell transplantation for multiple myeloma. Curr. Opin. Oncol. 2009, 21, 162–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fermand, J.P.; Ravaud, P.; Chevret, S.; Divine, M.; Leblond, V.; Belanger, C.; Macro, M.; Pertuiset, E.; Dreyfus, F.; Mariette, X.; et al. High-dose therapy and autologous peripheral blood stem cell transplantation in multiple myeloma: Up-front or rescue treatment? Results of a multicenter sequential randomized clinical trial. Blood 1998, 92, 3131–3136. [Google Scholar] [CrossRef]
- Wildes, T.M.; Finney, J.D.; Fiala, M.; Gao, F.; Vij, R.; Stockerl-Goldstein, K.; Carson, K.R.; Mikhael, J.; Colditz, G. High-dose therapy and autologous stem cell transplant in older adults with multiple myeloma. Bone Marrow Transpl. 2015, 50, 1075–1082. [Google Scholar] [CrossRef] [Green Version]
- Muchtar, E.; Dingli, D.; Kumar, S.; Buadi, F.K.; Dispenzieri, A.; Hayman, S.R.; Wolf, R.C.; Gastineau, D.A.; Chakraborty, R.; Hogan, W.J.; et al. Autologous stem cell transplant for multiple myeloma patients 70 years or older. Bone Marrow Transpl. 2016, 51, 1449–1455. [Google Scholar] [CrossRef]
- D’Souza, A.; Lee, S.; Zhu, X.; Pasquini, M. Current Use and Trends in Hematopoietic Cell Transplantation in the United States. Biol. Blood Marrow Transplant. 2017, 23, 1417–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayden, P.J.; Eikema, D.-J.; Koster, L.; Goldschmidt, H.; Blaise, D.; Potter, M.; Touzeau, C.; Huynh, A.; Byrne, J.; Hulin, C.; et al. Trends in Autologous Transplantation for Myeloma in EBMT Centres between 1993 and 2017. Blood 2019, 134, 4575. [Google Scholar] [CrossRef]
- Berro, M.; Arbelbide, J.A.; Rivas, M.M.; Basquiera, A.L.; Ferini, G.; Vitriu, A.; Foncuberta, C.; Escobar, N.F.; Requejo, A.; Milovic, V.; et al. Hematopoietic Cell Transplantation-Specific Comorbidity Index Predicts Morbidity and Mortality in Autologous Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2017, 23, 1646–1650. [Google Scholar] [CrossRef]
- Jayani, R.; Rosko, A.; Olin, R.; Artz, A. Use of geriatric assessment in hematopoietic cell transplant. J. Geriatr. Oncol. 2020, 11, 225–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosko, A.E.; Huang, Y.; Benson, D.M.; Efebera, Y.A.; Hofmeister, C.; Jaglowski, S.; Devine, S.; Bhatt, G.; Wildes, T.M.; Dyko, A.; et al. Use of a comprehensive frailty assessment to predict morbidity in patients with multiple myeloma undergoing transplant. J. Geriatr. Oncol. 2019, 10, 479–485. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Sonneveld, P.; Leung, N.; Merlini, G.; Ludwig, H.; Kastritis, E.; Goldschmidt, H.; Joshua, D.; Orlowski, R.Z.; Powles, R.; et al. International Myeloma Working Group recommendations for the diagnosis and management of myeloma-related renal impairment. J. Clin. Oncol. 2016, 34, 1544–1557. [Google Scholar] [CrossRef] [Green Version]
- Jean-Luc, H.; Philippe, M. Autologous hematopoietic stem-cell transplantation for multiple myeloma. N. Engl. J. Med. 2013, 360, 2645–2654. [Google Scholar]
- Knudsen, L.M.; Nielsen, B.; Gimsing, P.; Geisler, C. Autologous stem cell transplantation in multiple myeloma: Outcome in patients with renal failure. Eur. J. Haematol. 2015, 75, 27–33. [Google Scholar] [CrossRef]
- Mahindra, A.; Hari, P.; Fraser, R.; Fei, M.; Huang, J.; Berdeja, J.; Callander, N.; Costa, L.; Diaz, M.A.; Freytes, C.; et al. Autologous hematopoietic cell transplantation for multiple myeloma patients with renal insufficiency: A center for international blood and marrow transplant research analysis. Bone Marrow Transplant. 2017, 52, 1616–1622. [Google Scholar] [CrossRef]
- Bernard, R.S.; Chodirker, L.; Masih-Khan, E.; Jiang, H.; Franke, N.; Kukreti, V.; Tiedemann, R.; Trudel, S.; Reece, D.; Chen, C.I. Efficacy, toxicity and mortality of autologous SCT in multiple myeloma patients with dialysis-dependent renal failure. Bone Marrow Transpl. 2015, 50, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Badros, A.; Barlogie, B.; Siegel, E.; Niesvizky, R.; Kolla, S.S.; Goloubeva, O.; Harris, C.; Zwiebel, J.; Wright, J.J.; Espinoza-Delgado, I.; et al. Results of autologous stem cell transplant in multiple myeloma patients with renal failure. Br. J. Haematol. 2001, 114, 822–829. [Google Scholar] [CrossRef]
- Tosi, P.; Zamagni, E.; Ronconi, S.; Benni, M.; Motta, M.R.; Rizzi, S.; Tura, S.; Cavo, M. Safety of autologous hematopoietic stem cell transplantation inpatients with multiple myeloma and chronic renal failure. Leukemia 2000, 14, 1310–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waszczuk-Gajda, A.; Lewandowski, Z.; Drozd-Sokołowska, J.; Boguradzki, P.; Dybko, J.; Wróbel, T.; Basak, G.W.; Jurczyszyn, A.; Mądry, K.; Snarski, E.; et al. Autologous peripheral blood stem cell transplantation in dialysis-dependent multiple myeloma patients—DAUTOS Study of the Polish Myeloma Study Group. Eur. J. Haematol. 2018, 101, 475–485. [Google Scholar] [CrossRef]
- Jackson, G.H.; Davies, F.E.; Pawlyn, C.; Cairns, D.A.; Striha, A.; Collett, C.; Hockaday, A.; Jones, J.R.; Kishore, B.; Garg, M.; et al. Lenalidomide maintenance versus observation for patients with newly diagnosed multiple myeloma (Myeloma XI): A multicentre, open-label, randomized, phase 3 trial. Lancet Oncol. 2019, 20, 57–73. [Google Scholar] [CrossRef] [Green Version]
- Cavo, M.; Di Raimondo, F.; Zamagni, E.; Patriarca, F.; Tacchetti, P.; Casulli, A.F.; Volpe, S.; Perrone, G.; Ledda, A.; Ceccolini, M.; et al. Short-term thalidomide incorporated into double autologous stem-cell transplantation improves outcomes in comparison with double autotransplantation for multiple myeloma. J. Clin. Oncol. 2009, 27, 5001–5007. [Google Scholar] [CrossRef]
- Durie, B.G.M.; Hoering, A.; Abidi, M.H.; Rajkumar, S.V.; Epstein, J.; Kahanic, S.P.; Thakuri, M.; Reu, F.; Reynolds, C.M.; Sexton, R.; et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): A randomised, open-label, phase 3 trial. Lancet 2017, 389, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Richardson, P.G.; Weller, E.; Lonial, S.; Jakubowiak, A.J.; Jagannath, S.; Raje, N.S.; Avigan, D.E.; Xie, W.; Ghobrial, I.M.; Schlossman, R.L.; et al. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 2010, 116, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Moreau, P.; Hulin, C.; Macro, M.; Caillot, D.; Chaleteix, C.; Roussel, M.; Garderet, L.; Royer, B.; Brechignac, S.; Tiab, M.; et al. Bortezomib, thalidomide and dexamethasone (VTD) is superior to bortezomib, cyclophosphamide and dexamethasone (VCD) prior to autologous stem cell transplantation for patients with de novo multiple myeloma. Results of the prospective IFM 2013–04 trial. Blood 2015, 126, 393. [Google Scholar] [CrossRef]
- Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): A randomised, open-label, phase 3 study. Lancet 2019, 6, 29–38. [Google Scholar] [CrossRef]
- Voorhees, P.M.; Kaufman, J.L.; Laubach, J.P.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D.; et al. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: The GRIFFIN trial. Blood 2020, 20, 936–945. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, K.; Cheong, J.-W.; Min, Y.H.; Suh, C.; Kim, H.; Jo, D.Y.; Ryoo, H.M.; Yoon, S.S.; Lee, J.H. Complete remission status before autologous stem cell transplantation is an important prognostic factor in patients with multiple myeloma undergoing upfront single autologous transplantation. Biol. Blood Marrow Transplant. 2009, 15, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-E.; Yoon, J.-H.; Shin, S.-H.; Cho, B.-S.; Eom, K.-S.; Kim, Y.-J.; Kim, H.-J.; Lee, S.; Cho, S.-G.; Kim, D.-W.; et al. Impact of failed response to novel agent induction in autologous stem cell transplantation for multiple myeloma. Ann. Hematol. 2014, 93, 627–634. [Google Scholar] [CrossRef]
- Rosiñol, L.; Garcia-Sanz, R.; Lahuerta, J.J.; Hernández-García, M.; Granell, M.; De La Rubia, J.; Oriol, A.; Hernández-Ruiz, B.; Rayón, C.; Navarro, I.; et al. Benefit from autologous stem cell transplantation in primary refractory myeloma? Different outcomes in progressive versus stable disease. Haematologica 2012, 97, 616–621. [Google Scholar] [CrossRef] [Green Version]
- Vij, R.; Kumar, S.; Zhang, M.-J.; Zhong, X.; Huang, J.; Dispenzieri, A.; Abidi, M.H.; Bird, J.M.; Freytes, C.O.; Gale, R.P.; et al. Impact of pretransplant therapy and depth of disease response before autologous transplantation for multiple myeloma. Biol. Blood Marrow Transplant. 2015, 21, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Selby, P.J.; McElwain, T.J.; Nandi, A.C.; Perren, T.J.; Powles, R.L.; Tillyer, C.R.; Osborne, R.J.; Slevin, M.L.; Malpas, J.S. Multiple myeloma treated with high dose intravenous melphalan. Br. J. Haematol. 1987, 66, 55–62. [Google Scholar] [CrossRef]
- Barlogie, B.; Alexanian, R.; Dicke, K.A.; Zagars, G.; Spitzer, G.; Jagannath, S.; Horwitz, L. High-dose chemoradiotherapy and autologous bone marrow transplantation for resistant multiple myeloma. Blood 1987, 70, 869–872. [Google Scholar] [CrossRef] [Green Version]
- Veeraputhiran, M.; Jain, T.; Deol, A.; Ayash, L.; Kim, S.; Dyson, G.; Bhutani, D.; Lum, L.G.; Ratanatharathorn, V.; Uberti, J.P.; et al. BEAM conditioning regimen has higher toxicity compared with high-dose melphalan for salvage autologous hematopoietic stem cell transplantation in multiple myeloma. Clin. Lymphoma Myeloma Leuk. 2015, 15, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Fenk, R.; Schneider, P.; Kropff, M.; Huenerlituerkoglu, A.N.; Steidl, U.; Aul, C.; Hildebrandt, B.; Haas, R.; Heyll, A.; Kobbe, G.; et al. High-dose idarubicin, cyclophosphamide and melphalan as conditioning for autologous stem cell transplantation increases treatment-related mortality in patients with multiple myeloma:results of a randomised study. Br. J. Haematol. 2005, 130, 588–594. [Google Scholar] [CrossRef]
- Anagnostopoulos, A.; Aleman, A.; Ayers, G.; Donato, M.; Champlin, R.; Weber, D.; Alexanian, R.; Giralt, S. Comparison of high-dose melphalan with a more intensive regimen of thiotepa, busulfan, and cyclophosphamide for patients with multiple myeloma. Cancer 2004, 100, 2607–2612. [Google Scholar] [CrossRef] [PubMed]
- Blanes, M.; Lahuerta, J.J.; González, J.D.; Ribas, P.; Solano, C.; Alegre, A.; Bladé, J.; Miguel, J.F.S.; Sanz, M.A.; De La Rubia, J. Intravenous busulfan and melphalan as a conditioning regimen for autologous stem cell transplantation in patients with newly diagnosed multiple myeloma: A matched comparison to a melphalan-only approach. Biol. Blood Marrow Transpl. 2013, 19, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Qazilbash, M.H.; Thall, P.; Fox, P.S.; Kebriaei, P.; Bashir, Q.; Shah, N.; Patel, K.; Andersson, B.S.; Nieto, Y.L.; Valdez, B.C.; et al. A Randomized Phase III Trial of Busulfan + Melphalan Vs Melphalan Alone for Multiple Myeloma. Blood 2017, 130 (Suppl. S1), 399. [Google Scholar] [CrossRef] [Green Version]
- Martino, M.; Tripepi, G.; Messina, G.; Vincelli, I.D.; Console, G.; Recchia, A.G.; Gentile, M.; Molica, S.; Morabito, F. A phase II, single-arm, prospective study of bendamustine plus melphalan conditioning for second autologous stem cell transplantation in de novo multiple myeloma patients through a tandem transplant strategy. Bone Marrow Transpl. 2016, 51, 1197–1203. [Google Scholar] [CrossRef] [Green Version]
- Farag, S.; Jeker, B.; Bacher, U.; Taleghani, B.M.; Mueller, B.U.; Novak, U.; Pabst, T. Dose-intensified bendamustine and melphalan (BenMel) conditioning before second autologous transplantation in myeloma patients. Hematol. Oncol. 2018, 36, 671–678. [Google Scholar] [CrossRef]
- Gomez-Arteaga, A.; Mark, T.M.; Guarneri, D.; Christos, P.J.; Gergis, U.; Greenberg, J.D.; Hsu, J.; Mayer, S.A.; Niesvizky, R.; Pearse, R.N.; et al. High-dose bendamustine and melphalan conditioning for autologous stem cell transplantation for patients with multiple myeloma. Bone Marrow Transplant. 2019, 54, 2027–2038. [Google Scholar] [CrossRef]
- Roussel, M.; Moreau, P.; Huynh, A.; Mary, J.-Y.; Danho, C.; Caillot, D.; Hulin, C.; Fruchart, C.; Marit, G.; Pégourié, B.; et al. Bortezomib and high-dose Melphalan vs. high-dose melphalan as conditioning regimen before autologous stem cell transplantation in de novo multiple myeloma patients: A phase 3 study of the Intergroupe Francophone Du Myelome (IFM 2014–02). Blood 2017, 130 (Suppl. S1), 398. [Google Scholar]
- Mark, T.M.; Guarneri, D.; Forsberg, P.; Rossi, A.; Pearse, R.; Perry, A.; Pekle, K.; Tegnestam, L.; Greenberg, J.; Shore, T.; et al. A phase I trial of high-dose lenalidomide and melphalan as conditioning for autologous stem cell transplantation in relapsed or refractory multiple myeloma. Biol. Blood Marrow Transplant. 2017, 23, 930–937. [Google Scholar] [CrossRef] [Green Version]
- Barlogie, B.; Kyle, R.A.; Anderson, K.C.; Greipp, P.R.; Lazarus, H.M.; Hurd, D.D.; McCoy, J.; Moore, D.F., Jr.; Dakhil, S.R.; Lanier, K.S.; et al. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: Final results of phase III US Intergroup Trial S9321. J. Clin. Oncol. 2006, 24, 929–936. [Google Scholar] [CrossRef]
- Child, J.A.; Morgan, G.J.; Davies, F.E.; Owen, R.G.; Bell, S.E.; Hawkins, K.; Brown, J.; Drayson, M.T.; Selby, P.J. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N. Engl. J. Med. 2003, 348, 1875–1883. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, A.; Cavallo, F.; Gay, F.; Di Raimondo, F.; Ben Yehuda, D.; Petrucci, M.T.; Pezzatti, S.; Caravita, T.; Cerrato, C.; Ribakovsky, E.; et al. Autologous transplantation and maintenance therapy in multiple myeloma. N. Engl. J. Med. 2014, 371, 895–905. [Google Scholar] [CrossRef]
- Gay, F.; Oliva, S.; Petrucci, M.T.; Conticello, C.; Catalano, L.; Corradini, P.; Siniscalchi, A.; Magarotto, V.; Pour, L.; Carella, A.M.; et al. Chemotherapy plus lenalidomide versus autologous transplantation, followed by lenalidomide plus prednisone versus lenalidomide maintenance, in patients with multiple myeloma: A randomised, multicentre, phase 3 trial. Lancet Oncol. 2015, 16, 1617–1629. [Google Scholar] [CrossRef]
- Perrot, A.; Lauwers-Cances, V.; Cazaubiel, T.; Facon, T.; Caillot, D.; Clement-Filliatre, L.; Macro, M.; Decaux, O.; Belhadj, K.; Mohty, M.; et al. Early Versus Late Autologous Stem Cell Transplant in Newly Diagnosed Multiple Myeloma: Long-Term Follow-up Analysis of the IFM 2009 Trial. Blood 2020, 136, 39. [Google Scholar] [CrossRef]
- Cavo, M.; Gay, F.; Beksac, M.; Pantani, L.; Petrucci, M.T.; Dimopoulos, M.A.; Dozza, L.; Van Der Holt, B.; Zweegman, S.; Oliva, S.; et al. Autologous haematopoietic stem-cell transplantation versus bortezomib–melphalan–prednisone, with or without bortezomib–lenalidomide–dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): A multicentre, randomised, open-label, phase 3 study. Lancet Haematol. 2020, 7, e456–e468. [Google Scholar]
- Barlogie, B.; Jagannath, S.; Desikan, K.R.; Mattox, S.; Vesole, D.; Siegel, D.; Tricot, G.; Munshi, N.; Fassas, A.; Singhal, S.; et al. Total therapy with tandem transplants for newly diagnosed multiple myeloma. Blood 1999, 93, 55–65. [Google Scholar] [CrossRef]
- Attal, M.; Harousseau, J.-L.; Facon, T.; Guilhot, F.; Doyen, C.; Fuzibet, J.-G.; Monconduit, M.; Hulin, C.; Caillot, D.; Bouabdallah, R.; et al. Single versus double autologous stem-cell transplantation for multiple myeloma. N. Engl. J. Med. 2004, 350, 26–28. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kharfan-Dabaja, M.A.; Glasmacher, A.; Djulbegovic, B. Tandem versus single autologous hematopoietic cell transplantation for the treatment of multiple myeloma: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2009, 101, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Naumann-Winter, F.; Greb, A.; Borchmann, P.; Bohlius, J.; Engert, A.; Schnell, R. First-line tandem high-dose chemotherapy and autologous stem cell transplantation versus single high-dose chemotherapy and autologous stem cell transplantation in multiple myeloma, a systematic review of controlled studies. Cochrane Database Syst. Rev. 2012, 10, CD004626. [Google Scholar] [CrossRef] [Green Version]
- Cavo, M.; Tosi, P.; Zamagni, E.; Cellini, C.; Tacchetti, P.; Patriarca, F.; Di Raimondo, F.; Volpe, E.; Ronconi, S.; Cangini, D.; et al. Prospective, randomized study of single compared with double autologous stem-cell transplantation for multiple myeloma: Bologna 96 clinical study. J. Clin. Oncol. 2007, 25, 2434–2441. [Google Scholar] [CrossRef]
- Mai, E.K.; Benner, A.; Bertsch, U.; Brossart, P.; Hänel, A.; Kunzmann, V.; Naumann, R.; Neben, K.; Egerer, G.; Ho, A.D.; et al. Single versus tandem high-dose melphalan followed by autologous blood stem cell transplantation in multiple myeloma: Long-term results from the phase III GMMG-HD2 trial. Br. J. Haematol. 2016, 173, 731–741. [Google Scholar] [CrossRef] [Green Version]
- Stadtmauer, E.A.; Pasquini, M.C.; Blackwell, B.; Hari, P.; Bashey, A.; Devine, S.; Efebera, Y.; Ganguly, S.; Gasparetto, C.; Geller, N.; et al. Autologous Transplantation, Consolidation, and Maintenance Therapy in Multiple Myeloma: Results of the BMT CTN 0702 Trial. J. Clin. Oncol. 2019, 37, 589–597. [Google Scholar] [CrossRef]
- Nishimura, K.K.; Barlogie, B.; Van Rhee, F.; Zangari, M.; Walker, B.A.; Rosenthal, A.; Schinke, C.; Thanendrarajan, S.; Davies, F.E.; Hoering, A.; et al. Long-term outcomes after autologous stem cell transplantation for multiple myeloma. Blood Adv. 2020, 4, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Gertz, M.A.; Ansell, S.M.; Dingli, D.; Dispenzieri, A.; Buadi, F.K.; Elliott, M.A.; Gastineau, D.A.; Hayman, S.R.; Hogan, W.J.; Inwards, D.J.; et al. Autologous stem cell transplantation in 716 patients with multiple myeloma: Low treatment-related mortality, feasibility of outpatient transplant, and impact of a multidisciplinary quality initiative. Mayo Clin. Proc. 2008, 83, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Roussel, M.; Hebraud, B.; Hulin, C.; Perrot, A.; Caillot, D.; Macro, M.; Arnulf, B.; Belhadj, K.; Garderet, L.; Facon, T.; et al. The Impact of Lenalidomide, Bortezomib, and Dexamethasone Treatment on Health-Related Quality of Life in Transplant-Eligible Patients with Newly Diagnosed Multiple Myeloma: Results from the IFM/DFCI 2009 Trial. Blood 2018, 132 (Suppl. S1), 716. [Google Scholar] [CrossRef]
- Corso, A.; Mangiacavalli, S.; Cocito, F.; Pascutto, C.; Ferretti, V.V.; Pompa, A.; Ciampichini, R.; Pochintesta, L.; Mantovani, L.G. Long-term evaluation of the impact of autologous peripheral blood stem cell transplantation in multiple myeloma: A cost-effectiveness analysis. PLoS ONE 2013, 8, e75047. [Google Scholar] [CrossRef]
- Gay, F.; Oliva, S.; Petrucci, M.; Montefusco, V.; Conticello, C.; Musto, P.; Catalano, L.; Evangelista, A.; Spada, S.; Campbell, P.; et al. Autologous transplant vs oral chemotherapy and lenalidomide in newly diagnosed young myeloma patients: A pooled analysis. Leuk. 2016, 31, 1727–1734. [Google Scholar] [CrossRef] [PubMed]
- Holstein, S.A.; Richardson, P.G.; Laubach, J.P.; McCarthy, P.L. Management of Relapsed Multiple Myeloma after Autologous Stem Cell Transplant. Biol. Blood Marrow Transplant. 2015, 21, 793–798. [Google Scholar] [CrossRef] [Green Version]
- Muta, T.; Miyamoto, T.; Kamimura, T.; Kanda, Y.; Nohgawa, M.; Ueda, Y.; Iwato, K.; Sasaki, O.; Mori, T.; Uchida, N.; et al. Significance of Salvage Autologous Stem Cell Transplantation for Relapsed Multiple Myeloma: A Nationwide Retrospective Study in Japan. Acta Haematol. 2018, 139, 35–44. [Google Scholar] [CrossRef]
- Jimenez-Zepeda, V.H.; Mikhael, J.; Winter, A.; Franke, N.; Masih-Khan, E.; Trudel, S.; Chen, C.; Kukreti, V.; Reece, D.E. Second autologous stem cell transplantation as salvage therapy for multiple myeloma: Impact on progression-free and overall survival. Biol. Blood Marrow Transpl. 2012, 18, 773–779. [Google Scholar] [CrossRef] [Green Version]
- Garderet, L.; Iacobelli, S.; Koster, L.; Goldschmidt, H.; Johansson, J.-E.; Bourhis, J.H.; Krejci, M.; Leleu, X.; Potter, M.; Blaise, D.; et al. Outcome of a Salvage Third Autologous Stem Cell Transplantation in Multiple Myeloma. Biol. Blood Marrow Transplant. 2018, 24, 1372–1378. [Google Scholar] [CrossRef] [Green Version]
- Michaelis, L.C.; Saad, A.; Zhong, X.; Le-Rademacher, J.; Freytes, C.O.; Marks, D.I.; Lazarus, H.M.; Bird, J.M.; Holmberg, L.; Kamble, R.T.; et al. Salvage second hematopoietic cell transplantation in myeloma. Biol. Blood Marrow Transpl. 2013, 19, 760–766. [Google Scholar] [CrossRef] [Green Version]
- Cook, G.; Ashcroft, A.J.; Cairns, D.A.; Williams, C.D.; Brown, J.M.; Cavenagh, J.D.; Snowden, J.A.; Parrish, C.; Yong, K.; Cavet, J.; et al. The effect of salvage autologous stem-cell transplantation on overall survival in patients with relapsed multiple myeloma (final results from BSBMT/UKMF Myeloma X Relapse [Intensive]): A randomised, open-label, phase 3 trial. Lancet Haematol. 2016, 3, e340–e351. [Google Scholar] [CrossRef] [Green Version]
- Lokhorst, H.M.; Van Der Holt, B.; Zweegman, S.; Vellenga, E.; Croockewit, S.; Van Oers, M.H.; Borne, P.V.D.; Wijermans, P.; Schaafsma, R.; De Weerdt, O.; et al. A randomized phase 3 study on the effect of thalidomide combined with adriamycin, dexamethasone, and high-dose melphalan, followed by thalidomide maintenance in patients with multiple myeloma. Blood 2010, 115, 1113–1120. [Google Scholar] [CrossRef] [Green Version]
- Hicks, L.K.; Haynes, A.E.; Reece, N.E.; Walker, I.R.; Herst, J.A.; Meyer, R.M.; Imrie, K. A meta-analysis and systematic review of thalidomide for patients with previously untreated multiple myeloma. Cancer Treat Rev. 2008, 34, 442–452. [Google Scholar] [CrossRef]
- Sahebi, F.; Spielberger, R.; Kogut, N.M.; Fung, H.; Falk, P.M.; Parker, P.; Krishnan, A.; Rodríguez, R.; Nakamura, R.; Nademanee, A.; et al. Maintenance thalidomide following single cycle autologous peripheral blood stem cell transplant in patients with multiple myeloma. Bone Marrow Transpl. 2006, 37, 825–829. [Google Scholar] [CrossRef] [Green Version]
- Morgan, G.J.; Davies, F.E.; Gregory, W.M.; Bell, S.E.; Szubert, A.J.; Cook, G.; Drayson, M.T.; Owen, R.G.; Ross, F.M.; Jackson, G.H.; et al. Long-term follow-up of MRC Myeloma IX trial: Survival outcomes with bisphosphonate and thalidomide treatment. Clin. Cancer Res. 2013, 19, 6030–6038. [Google Scholar] [CrossRef] [Green Version]
- Attal, M.; Lauwers-Cances, V.; Marit, G.; Caillot, D.; Moreau, P.; Facon, T.; Stoppa, A.M.; Hulin, C.; Benboubker, L.; Garderet, L.; et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N. Engl. J. Med. 2012, 366, 1782–1791. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, P.L.; Owzar, K.; Hofmeister, C.C.; Hurd, D.D.; Hassoun, H.; Richardson, P.G.; Giralt, S.; Stadtmauer, E.A.; Weisdorf, D.J.; Vij, R.; et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N. Engl. J. Med. 2012, 366, 1770–1781. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, P.L.; Holstein, S.A.; Petrucci, M.T.; Richardson, P.G.; Hulin, C.; Tosi, P.; Bringhen, S.; Musto, P.; Anderson, K.C.; Caillot, D.; et al. Lenalidomide Maintenance After Autologous Stem-Cell Transplantation in Newly Diagnosed Multiple Myeloma: A Meta-Analysis. J. Clin. Oncol. 2017, 35, 3279–3289. [Google Scholar] [CrossRef]
- Sonneveld, P.; Schmidt-Wolf, I.G.; Van Der Holt, B.; El Jarari, L.; Bertsch, U.; Salwender, H.; Zweegman, S.; Vellenga, E.; Broyl, A.; Blau, I.W.; et al. Bortezomib Induction and Maintenance Treatment in Patients With Newly Diagnosed Multiple Myeloma: Results of the Randomized Phase III HOVON-65/ GMMG-HD4 Trial. J. Clin. Oncol. 2012, 30, 2946–2955. [Google Scholar] [CrossRef]
- Baertsch, M.-A.; German-Speaking Myeloma Multicenter Group (GMMG); Mai, E.K.; Hielscher, T.; Bertsch, U.; Salwender, H.J.; Munder, M.; Fuhrmann, S.; Dührsen, U.; Brossart, P.; et al. Lenalidomide versus bortezomib maintenance after frontline autologous stem cell transplantation for multiple myeloma. Blood Cancer J. 2021, 11, 1. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Gay, F.; Schjesvold, F.; Beksac, M.; Hajek, R.; Weisel, K.C.; Goldschmidt, H.; Maisnar, V.; Moreau, P.; Min, C.K.; et al. Oral ixazomib maintenance following autologous stem cell transplantation (TOURMALINE-MM3): A double-blind, randomized, placebo-controlled phase 3 trial. Lancet 2019, 393, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Vij, R.; Martin, T.G.; Nathwani, N.; Fiala, M.A.; Gao, F.; Deol, A.; Buadi, F.K.; Kaufman, J.L.; Hofmeister, C.C.; Gregory, T.K.; et al. Ixazomib or Lenalidomide Maintenance Following Autologous Stem Cell Transplantation and Ixazomib, Lenalidomide, and Dexamethasone (IRD) Consolidation in Patients with Newly Diagnosed Multiple Myeloma: Results from a Large Multi-Center Randomized Phase II Trial. Blood 2019, 134, 602. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (USA). 29 February 2000. Identifier NCT03224507. In Monoclonal Antibody-Based Sequential Therapy for Deep Remission in Multiple Myeloma-MASTER Trial; 21 July 2017. Available online: https://clinicaltrials.gov/ct2/show/NCT03224507 (accessed on 15 December 2020).
- Kumar, S.K.; Rajkumar, S.V.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Zeldenrust, S.R.; Dingli, D.; Russell, S.J.; Lust, J.A.; et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008, 111, 2516–2520. [Google Scholar] [CrossRef] [Green Version]
- De Lavallade, H.; El-Cheikh, J.; Faucher, C.; Furst, S.; Stoppa, A.-M.; Coso, D.; Bouabdallah, R.; Chabannon, C.; Gastaut, J.-A.; Blaise, D.; et al. Reduced-intensity conditioning allogeneic SCT as salvage treatment for relapsed multiple myeloma. Bone Marrow Transpl. 2008, 41, 953–960. [Google Scholar] [CrossRef]
- Björkstrand, B.; Ljungman, P.; Svensson, H.; Hermans, J.; Alegre, A.; Apperley, J.; Blade, J.; Carlson, K.; Cavo, M.; Ferrant, A.; et al. Allogeneic bone marrow transplantation versus autologous stem cell transplantation in multiple myeloma-A retrospective case-matched study from the European Group for Blood and Marrow transplantation. Blood 1996, 88, 4711–4718. [Google Scholar] [CrossRef] [Green Version]
- Gratwohl, A.; Stern, M.; Brand, R.; Apperley, J.; Baldomero, H.; de Witte, T.; Dini, G.; Rocha, V.; Passweg, J.; Sureda, A.; et al. Risk score for outcome after allogeneic hematopoietic stem cell transplantation: A retrospective analysis. Cancer 2009, 115, 4715–4726. [Google Scholar] [CrossRef]
- Bensinger, W.; Buckner, C.; Anasetti, C.; Clift, R.; Storb, R.; Barnett, T.; Chauncey, T.; Shulman, H.; Appelbaum, F. Allogeneic marrow transplantation for multiple myeloma: An analysis of risk factors on outcome. Blood 1996, 88, 2787–2793. [Google Scholar] [CrossRef] [Green Version]
- Majolino, I.; Corradini, P.; Scimè, R.; Santoro, A.; Tarella, C.; Cavallaro, A.M.; Palumbo, A.; Indovina, A.; Caracciolo, D.; Boccadoro, M.; et al. Allogeneic transplantation of unmanipulated peripheral blood stem cells in patients with multiple myeloma. Bone Marrow Transpl. 1998, 22, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Michallet, M.; Sobh, M.; El-Cheikh, J.; Morisset, S.; Sirvent, A.; Reman, O.; Cornillon, J.; Tabrizi, R.; Milpied, N.; Harousseau, J.-L.; et al. Evolving strategies with immunomodulating drugs and tandem autologous/allogeneic hematopoietic stem cell transplantation in first line high risk multiple myeloma patients. Exp. Hematol. 2013, 41, 1008–1015. [Google Scholar] [CrossRef]
- Kröger, N.; Schwerdtfeger, R.; Kiehl, M.; Sayer, H.G.; Renges, H.; Zabelina, T.; Fehse, B.; Tögel, F.; Wittkowsky, G.; Kuse, R.; et al. Autologous stem cell transplantation followed by a dose-reduced allograft induces high complete remission rate in multiple myeloma. Blood 2002, 100, 755–760. [Google Scholar] [CrossRef]
- Crawley, C.; Lalancette, M.; Szydlo, R.; Gilleece, M.; Peggs, K.; MacKinnon, S.; Juliusson, G.; Ahlberg, L.; Nagler, A.; Shimoni, A.; et al. Outcomes for reduced-intensity allogeneic transplantation for multiple myeloma: An analysis of prognostic factors from the Chronic Leukaemia Working Party of the EBMT. Blood 2005, 105, 4532–4539. [Google Scholar] [CrossRef] [Green Version]
- Kröger, N.; Sayer, H.G.; Schwerdtfeger, R.; Kiehl, M.; Nagler, A.; Renges, H.; Zabelina, T.; Fehse, B.; Ayuk, F.; Wittkowsky, G.; et al. Unrelated stem cell transplantation in multiple myeloma after a reduced-intensity conditioning with pretransplantation antithymocyte globulin is highly effective with low transplantation-related mortality. Blood 2002, 100, 3919–3924. [Google Scholar] [CrossRef] [Green Version]
- Garban, F.; Attal, M.; Michallet, M.; Hulin, C.; Bourhis, J.H.; Yakoub-Agha, I.; Lamy, T.; Marit, G.; Maloisel, F.; Berthou, C.; et al. Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99-03 trial) with tandem autologous stem cell transplantation (IFM99-04 trial) in high-risk de novo multiple myeloma. Blood 2006, 107, 3474–3480. [Google Scholar] [CrossRef] [Green Version]
- Rosiñol, L.; Perez-Simón, J.A.; Sureda, A.; De La Rubia, J.; De Arriba, F.; Lahuerta, J.J.; González, J.D.; Diaz-Mediavilla, J.; Hernández, B.; García-Frade, J.; et al. A prospective PETHEMA study of tandem autologous transplantation versus autograft followed by reduced-intensity conditioning allogeneic transplantation in newly diagnosed multiple myeloma. Blood 2008, 112, 3591–3593. [Google Scholar] [CrossRef] [Green Version]
- Bruno, B.; Rotta, M.; Patriarca, F.; Mattei, D.; Allione, B.; Carnevale-Schianca, F.; Sorasio, R.; Rambaldi, A.; Casini, M.; Parma, M.; et al. Nonmyeloablative allografting for newly diagnosed multiple myeloma: The experience of the Gruppo Italiano Trapianti di Midollo. Blood 2009, 113, 3375–3382. [Google Scholar] [CrossRef]
- Giaccone, L.; Storer, B.; Patriarca, F.; Rotta, M.; Sorasio, R.; Allione, B.; Carnevale-Schianca, F.; Festuccia, M.; Brunello, L.; Omedè, P.; et al. Long-term follow-up of a comparison of nonmyeloablative allografting with autografting for newly diagnosed myeloma. Blood 2011, 117, 6721–6727. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Zhang, M.-J.; Li, P.; Dispenzieri, A.; Milone, G.A.; Lonial, S.; Krishnan, A.; Maiolino, A.; Wirk, B.; Weiss, B.; et al. Trends in allogeneic stem cell transplantation for multiple myeloma: A CIBMTR analysis. Blood 2011, 118, 1979–1988. [Google Scholar] [CrossRef]
- Schilling, G.; Hansen, T.; Shimoni, A.; Zabelina, T.; Simon-Perez, J.-A.; Gutierrez, N.C.; Bethge, W.; Liebisch, P.; Schwerdtfeger, R.; Bornhäuser, M.; et al. Impact of genetic abnormalities on survival after allogeneic hematopoietic stem cell transplantation in multiple myeloma. Leukemia 2008, 22, 1250–1255. [Google Scholar] [CrossRef] [Green Version]
- Roos-Weil, D.; Moreau, P.; Avet-Loiseau, H.; Golmard, J.-L.; Kuentz, M.; Vigouroux, S.; Socié, G.; Furst, S.; Soulier, J.; Le Gouill, S.; et al. Impact of genetic abnormalities after allogeneic stem cell transplantation in multiple myeloma: A report of the Société Française de Greffe de Moelle et de Thérapie Cellulaire. Haematologica 2011, 96, 1504–1511. [Google Scholar] [CrossRef]
- Kröger, N.; Badbaran, A.; Zabelina, T.; Ayuk, F.; Wolschke, C.; Alchalby, H.; Klyuchnikov, E.; Atanackovic, D.; Schilling, G.; Hansen, T.; et al. Impact of high-risk cytogenetics and achievement of molecular remission on long-term freedom from disease after autologous-allogeneic tandem transplantation in patients with multiple myeloma. Biol. Blood Marrow Transpl. 2013, 19, 398–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knop, S.; Myelom, O.B.O.D.S.M.; Engelhardt, M.; Liebisch, P.; Meisner, C.; Holler, E.; Metzner, B.; Peest, D.; Kaufmann, M.; Bunjes, D.; et al. Allogeneic transplantation in multiple myeloma: Long-term follow-up and cytogenetic subgroup analysis. Leukemia 2019, 33, 2710–2719. [Google Scholar] [CrossRef]
- Costa, L.J.; Iacobelli, S.; Pasquini, M.C.; Modi, R.; Giaccone, L.; Blade, J.; Schonland, S.; Evangelista, A.; Perez-Simon, J.A.; Hari, P.; et al. Long-term survival of 1338 MM patients treated with tandem autologous vs. autologous-allogeneic transplantation. Bone Marrow Transplant. 2020, 55, 1810–1816. [Google Scholar] [CrossRef]
- Efebera, Y.A.; Qureshi, S.R.; Cole, S.M.; Saliba, R.; Pelosini, M.; Patel, R.M.; Koca, E.; Mendoza, F.L.; Wang, M.; Shah, J.; et al. Reduced-intensity allogeneic hematopoietic stem cell transplantation for relapsed multiple myeloma. Biol. Blood Marrow Transpl. 2010, 16, 1122–1129. [Google Scholar] [CrossRef] [Green Version]
- Patriarca, F.; Bruno, B.; Einsele, H.; Spina, F.; Giaccone, L.; Montefusco, V.; Isola, M.; Nozzoli, C.; Nozza, A.; Morabito, F.; et al. Long-Term Follow-Up of a Donor versus No-Donor Comparison in Patients with Multiple Myeloma in First Relapse after Failing Autologous Transplantation. Biol. Blood Marrow Transpl. 2018, 24, 406–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greil, C.; Engelhardt, M.; Ihorst, G.; Schoeller, K.; Bertz, H.; Marks, R.; Zeiser, R.; Duyster, J.; Einsele, H.; Finke, J.; et al. Allogeneic transplantation of multiple myeloma patients may allow long-term survival in carefully selected patients with acceptable toxicity and preserved quality of life. Haematologica 2019, 104, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Castagna, L.; Mussetti, A.; Devillier, R.; Dominietto, A.; Marcatti, M.; Milone, G.; Maura, F.; de Philippis, C.; Bruno, B.; Furst, S.; et al. Haploidentical Allogeneic Hematopoietic Cell Transplantation for Multiple Myeloma Using Post-Transplantation Cyclophosphamide Graft-versus-Host Disease Prophylaxis. Biol. Blood Marrow Transpl. 2017, 23, 1549–1554. [Google Scholar] [CrossRef] [Green Version]
- Brunstein, C.G.; Fuchs, E.J.; Carter, S.L.; Karanes, C.; Costa, L.J.; Wu, J.; Devine, S.M.; Wingard, J.R.; Aljitawi, O.S.; Cutler, C.S.; et al. Alternative donor transplantation after reduced intensity conditioning: Results of parallel phase 2 trials using partially HLA mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood 2011, 118, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Luznik, L.; O’Donnell, P.V.; Symons, H.J.; Chen, A.R.; Leffell, M.S.; Zahurak, M.; Gooley, T.A.; Piantadosi, S.; Kaup, M.; Ambinder, R.F.; et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol. Blood Marrow Transpl. 2008, 14, 641–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luznik, L.; Fuchs, E.J. High-dose, post-transplantation cyclophosphamide to promote graft-host tolerance after allogeneic hematopoietic stem cell transplantation. Immunol. Res. 2010, 47, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Donato, M.L.; Siegel, D.S.; Vesole, D.H.; McKiernan, P.; Nyirenda, T.; Pecora, A.L.; Baker, M.; Goldberg, S.L.; Mato, A.; Goy, A.; et al. The graft-versus-myeloma effect: Chronic graft-versus-host disease but not acute graft-versus-host disease prolongs survival in patients with multiple myeloma receiving allogeneic transplantation. Biol. Blood Marrow Transpl. 2014, 20, 1211–1216. [Google Scholar] [CrossRef] [Green Version]
- Giralt, S.; Garderet, L.; Durie, B.G.M.; Cook, G.; Gahrton, G.; Bruno, B.; Hari, P.; Lokhorst, H.; McCarthy, P.; Krishnan, A.; et al. American Society of Blood and Marrow Transplantation, European Society of Blood and Marrow Transplantation, Blood and Marrow Transplant Clinical Trials Network, and International Myeloma Working Group Consensus Conference on Salvage Hematopoietic Cell Transplantation in Patients with Relapsed Multiple Myeloma. Biol. Blood Marrow Transpl. 2015, 21, 2039–2051. [Google Scholar] [CrossRef] [Green Version]
- S1803, Phase III Study of Daratumumab/rHuPH20 (NSC-810307) + Lenalidomide or Lenalidomide as Post-Autologous Stem Cell Transplant Maintenance Therapy in Patients with Multiple Myeloma (MM) Using Minimal Residual Disease to Direct Therapy Duration (DRAMMATIC Study); Southwest Oncology Group: San Antonio, TX, USA, 2019; NCT04071457.
- Zhou, X.; Einsele, H.; Danhof, S. Bispecific Antibodies: A New Era of Treatment for Multiple Myeloma. J. Clin. Med. 2020, 9, 2166. [Google Scholar] [CrossRef] [PubMed]
- Caraccio, C.; Krishna, S.; Phillips, D.J.; Schürch, C.M. Bispecific Antibodies for Multiple Myeloma: A Review of Targets, Drugs, Clinical Trials, and Future Directions. Front. Immunol. 2020, 11, 501. [Google Scholar] [CrossRef]
- Ross, T.; Reusch, U.; Wingert, S.; Haneke, T.; Klausz, K.; Otte, A.K. Preclinical Characterization of AFM26, a Novel B Cell Maturation Antigen (BCMA)-Directed Tetravalent Bispecific Antibody for High Affinity Retargeting of NK Cells Against Myeloma. Blood 2018, 132 (Suppl. S1), 1927. [Google Scholar] [CrossRef]
Study | Induction | ASCT/Chemo Regimen | Post-SCT Maintenance | PFS | OS |
---|---|---|---|---|---|
IFM 90 [6] | 4–6 alternating cycles of VMCP/BVAP | Mel 140 + TBI vs. total 18 cycles of VMCP/BVAP | Interferon-alfa | Median EFS: 27 mo (ASCT) vs. 18 mo (chemo) p = 0.01 | 5-year OS: 52% (ASCT) vs. 12% (chemo) p = 0.03 |
SWOG 9321 [51] | 4 cycles of VAD | Mel 140 + TBI vs. VBMCP for response reaches a plateau or progression | Interferon for 4 yrs vs. observation | 7-yr EFS: 17% (ASCT) vs. 14% (chemo) p = 0.16 | 7-yr OS: 38% (ASCT) vs. 39% (Chemo) p = 0.78 |
MRC VII [52] | Intensive therapy (VCAP) vs. Standard therapy (BCAM) | Mel 200 or Mel 140+TBI vs. BCAM up to 12 cycles Stem cell mob with HD CTX | Interferon | Median PFS: 31.6 mo (ASCT) vs. 19.6 mo (chemo) p ≤ 0.001 | Median OS: 54.1 mo (ASCT) vs. 42.3 mo (Chemo) p = 0.04 |
GIMEMA RV-209 [53] | 4 cycles of Rd | Tandem ASCT with Mel 200 vs. MPR × 6 | Randomization to R (Len) vs. observation in each arm | Median PFS: 43 mo (ASCT) vs. 22.4 mo (chemo) p < 0.001 | 4-yr OS: 81.6% (ASCT) vs. 65.3% (chemo) p = 0.02 |
RV-MM-EMN-441 [54] | 4 cycles of Rd | Single or tandem ASCT vs. CRD × 6 | Randomization to R (Len) or R plus prednisone until progression in each arm | Median PFS: 43.3 mo (Mel200) vs. 28.6 mo (CRD) p < 0.001 | 4-yr OS: 86% (Mel200) vs. 73% (CRD) p = 0.004 |
IFM/DFCI 2009 [55] | 3 cycles of RVd | RVd × 2 following ASCT vs. RVd × 5 | Len maintenance in both arms until progression (US) or for 1 year (France) | Median PFS: 47.3 mo (ASCT) vs. 35 mo (chemo) p < 0.001 | 8-yr OS: 62.2%% (ASCT) vs. 60.2%% (chemo) p = 0.81 |
EMN02/HO95 [56] | 3–4 cycles of VCd | R1: Mel 200 ASCT (single or double) vs. VMP R2: VRd × 2 or no consolidation | Len maintenance for both arms until progression | 3-yr PFS: 66% (ASCT) vs. 57.5% (VMP) | NR |
Study | First ASCT | Second ASCT | Maintenance | PFS | OS | Salvage ASCT at Relapse |
---|---|---|---|---|---|---|
EMN/H095 [56] | MEL100 | None vs. Mel100 | Len in both arms until progression | 3-yr PFS: 73% (tandem) vs.60% single p = 0.03 | 3-yr OS: 89% (tandem) vs. 85% (single) | NR |
IFM94 [58] | MEL140 + TBI (single ASCT arm) vs. MEL140 (tandem arm) | None vs. Mel 140 + TBI | Interferon α | Median PFS: 25 mo (single) vs. 30 mo (tandem) p = 0.03 | Median OS: 48 mo(single) vs. 58 mo (tandem) p = 0.01 | 22% (single arm) vs. 28% (tandem arm) |
BOLOGNA 96 [61] | MEL200 | None vs. Mel120 + busulfan | Interferon α | Median PFS: 23 mo (single) vs. 25 mo (tandem) p = 0.001 | 7-yr OS: 46% (single) vs. 43% (tandem) p = 0.9 | 33% (single) vs. 10% (tandem) |
GMMG HD2 [62] | MEL200 | None vs. Mel200 in tandem arm | Interferon α | Median PFS: 25 mo (single) vs. 28.7 mo (tandem) p = 0.53 | Median OS: 73 mo (single) vs. 75.3 mo (tandem) p = 0.33 | 26% (single) vs. 10% (tandem) |
BMT CTN 0702 [63] | MEL200 | None vs. VRd × 4 vs. tandem with MEL 200 | Len until progression in all 3 arms | 38-mo PFS: 58.5%-tandem 57.8%-single ASCT→VRd consolidation 53.9%-single ASCT | OS: Tandem—81.8% Single ASCT followed by VRd consolidation—85.4% Single ASCT—83.7% | NR |
Study | Induction Therapy | Drug and Dosage of Maintenance | Duration of Maintenance | PFS/EFS (Maintenance vs. Observation) | OS (Maintenance vs. Observation) |
---|---|---|---|---|---|
GIMEMA RV-209 [53] | 4 cycles of Rd followed by either tandem ASCT(Mel200) or MPR | Len 10 mg (3 weeks on, 1 week off) | Until progression | Cumulative median PFS: 42 vs. 22 mo (p < 0.001) | 3-yr OS: 88% vs. 79% (p = 0.14) |
MRC IX [78] | Up to 6 cycles of CTD or CVAD | Thal 50 mg daily for 4 weeks, increased to 100 mg daily if tolerated | Until progression | Median PFS: 22 mo vs. 15 mo (p < 0.0001) | Median OS: 60 mo in both arms (p = 0.70) |
IFM 2005-02 [79] | VAD, Bort/dex Induction intensification with DCEP in 25% | Len 10 mg continuous, can increase to 15 mg preceded by Consolidation with Len 25 mg 3 out of 4 weeks for 2 cycles | Discontinued at a median time of 2 yr (range 1-3 yr) due to concerns about SPMs | Median PFS: 46 mo vs. 24 mo (p < 0.001) | At a median follow-up of 77 mo: 82 mo vs. 81 mo (p = 0.8) |
CALGB 100104 [80] | Len, Thal, and/or Bort containing regimen | Len 10 mg continuous, increased to 15 mg after 3 months | Until progression or toxicity | Median PFS: 57.3 mo vs. 28.9 mo (p < 0.001) | 5-yr OS: 76% vs. 64% (p < 0.0004) |
MRC XI [28] | 4 cycles of CTD or CRD or KCRD. Consolidation with VCD for < VGPR prior to ASCT if induction was CTD or CRD | Len 10 mg (3 weeks on, 1 week off) vs. obs | Until progression | After median f/u of 31 mo, Median PFS: 39 mo vs. 20 mo (p < 0.0001) | 5-yr OS: 61.3% vs. 56.6% (p = 0.15) |
TOURMALINE-MM3 [84] | Ixa 3 mg on d 1, 8, 15 out of 28 days (4 mg from cycle 5 if 3mg was tolerated) vs. placebo | 2 yrs | Median PFS: 26.5 mo vs. 21.3 mo (p = 0.0023) | NR | |
NCT02253316 [85] | With PI+ IMiD in 85%, PI based (without IMiD) in 14% | Ixa 4 mg (d 1, 8, 15 out of 28-days) vs. Len 10 mg (daily for 3 mo) followed by 15 mg (daily from 4 mo onwards) | Until progression | 30% on Ixa arm and 12% on Len arm progressed at a median f/u of 11.2 and 12.3 mo respectively | NR |
FORTE (NCT03224507) [86] | KCdx4→ASCT→KCdx4 KRdx4→ASCT→KRdx4 KCd→stem cell collection→KRdx8 | Len vs. Len +Car | Until progression | Ongoing | Ongoing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devarakonda, S.; Efebera, Y.; Sharma, N. Role of Stem Cell Transplantation in Multiple Myeloma. Cancers 2021, 13, 863. https://doi.org/10.3390/cancers13040863
Devarakonda S, Efebera Y, Sharma N. Role of Stem Cell Transplantation in Multiple Myeloma. Cancers. 2021; 13(4):863. https://doi.org/10.3390/cancers13040863
Chicago/Turabian StyleDevarakonda, Srinivas, Yvonne Efebera, and Nidhi Sharma. 2021. "Role of Stem Cell Transplantation in Multiple Myeloma" Cancers 13, no. 4: 863. https://doi.org/10.3390/cancers13040863
APA StyleDevarakonda, S., Efebera, Y., & Sharma, N. (2021). Role of Stem Cell Transplantation in Multiple Myeloma. Cancers, 13(4), 863. https://doi.org/10.3390/cancers13040863