Nephronectin as a Matrix Effector in Cancer
Abstract
:Simple Summary
Abstract
1. The Extracellular Matrix as a Regulator of Tissue Homeostasis
2. Nephronectin (NPNT)
3. NPNT Structure and Domain Related Functions
3.1. EGF-Like Repeats
3.2. Linker Region (RGD- and LFEIFEIER Peptide Sequences)
3.3. MAM Domain
4. Expression and Functional Roles of NPNT
5. The Metastasis-Promoting Protein NPNT
6. Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef]
- Hynes, R.O. The extracellular matrix: Not just pretty fibrils. Science 2009, 326, 1216–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilkes, D.M.; Semenza, G.L.; Wirtz, D. Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat. Rev. Cancer 2014, 14, 430–439. [Google Scholar] [CrossRef] [Green Version]
- Malandrino, A.; Mak, M.; Kamm, R.D.; Moeendarbary, E. Complex mechanics of the heterogeneous extracellular matrix in cancer. Extrem. Mech. Lett. 2018, 21, 25–34. [Google Scholar] [CrossRef]
- Walker, C.; Mojares, E.; Del Rio Hernandez, A. Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci. 2018, 19. [Google Scholar] [CrossRef] [Green Version]
- Longmate, W.; DiPersio, C.M. Beyond adhesion: Emerging roles for integrins in control of the tumor microenvironment. F1000Res 2017, 6, 1612. [Google Scholar] [CrossRef] [Green Version]
- Hynes, R.O. Integrins: Bidirectional, allosteric signaling machines. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef] [Green Version]
- Barczyk, M.; Carracedo, S.; Gullberg, D. Integrins. Cell Tissue Res. 2010, 339, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Giancotti, F.G.; Ruoslahti, E. Integrin signaling. Science 1999, 285, 1028–1032. [Google Scholar] [CrossRef]
- Morimura, N.; Tezuka, Y.; Watanabe, N.; Yasuda, M.; Miyatani, S.; Hozumi, N.; Tezuka Ki, K. Molecular cloning of POEM: A novel adhesion molecule that interacts with alpha8beta1 integrin. J. Biol. Chem. 2001, 276, 42172–42181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandenberger, R.; Schmidt, A.; Linton, J.; Wang, D.; Backus, C.; Denda, S.; Muller, U.; Reichardt, L.F. Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin alpha8beta1 in the embryonic kidney. J. Cell. Biol. 2001, 154, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Steigedal, T.S.; Toraskar, J.; Redvers, R.P.; Valla, M.; Magnussen, S.N.; Bofin, A.M.; Opdahl, S.; Lundgren, S.; Eckhardt, B.L.; Lamar, J.M.; et al. Nephronectin is correlated with poor prognosis in breast cancer and promotes metastasis via its integrin-binding motifs. Neoplasia 2018, 20, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Uemura, T.; Morimitsu, K.; Sato-Nishiuchi, R.; Manabe, R.; Takagi, J.; Yamada, M.; Sekiguchi, K. Molecular basis of the recognition of nephronectin by integrin alpha8beta1. J. Biol. Chem. 2009, 284, 14524–14536. [Google Scholar] [CrossRef] [Green Version]
- Yeung, G.; Mulero, J.J.; Berntsen, R.P.; Loeb, D.B.; Drmanac, R.; Ford, J.E. Cloning of a novel epidermal growth factor repeat containing gene EGFL6: Expressed in tumor and fetal tissues. Genomics 1999, 62, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Buchner, G.; Orfanelli, U.; Quaderi, N.; Bassi, M.T.; Andolfi, G.; Ballabio, A.; Franco, B. Identification of a new EGF-repeat-containing gene from human Xp22: A candidate for developmental disorders. Genomics 2000, 65, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Rao, Z.; Handford, P.; Mayhew, M.; Knott, V.; Brownlee, G.G.; Stuart, D. The structure of a Ca(2+)-binding epidermal growth factor-like domain: Its role in protein-protein interactions. Cell 1995, 82, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Swindle, C.S.; Tran, K.T.; Johnson, T.D.; Banerjee, P.; Mayes, A.M.; Griffith, L.; Wells, A. Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J. Cell. Biol. 2001, 154, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Handford, P.A. Fibrillin-1, a calcium binding protein of extracellular matrix. Biochim. Biophys. Acta 2000, 1498, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Morrissette, J.J.D.; Colliton, R.P.; Spinner, N.B. Defective intracellular transport and processing of JAG1 missense mutations in Alagille syndrome. Hum. Mol. Genet. 2001, 10, 405–413. [Google Scholar] [CrossRef]
- Handford, P.A.; Baron, M.; Mayhew, M.; Willis, A.; Beesley, T.; Brownlee, G.G.; Campbell, I.D. The first EGF-like domain from human factor IX contains a high-affinity calcium binding site. EMBO 1990, 9, 475–480. [Google Scholar] [CrossRef]
- Huang, J.T.; Lee, V. Identification and characterization of a novel human nephronectin gene in silico. Int. J. Mol. Med. 2005, 15, 719–724. [Google Scholar] [CrossRef]
- Arai, C.; Yoshizaki, K.; Miyazaki, K.; Saito, K.; Yamada, A.; Han, X.; Funada, K.; Fukumoto, E.; Haruyama, N.; Iwamoto, T.; et al. Nephronectin plays critical roles in Sox2 expression and proliferation in dental epithelial stem cells via EGF-like repeat domains. Sci. Rep. 2017, 7, 45181. [Google Scholar] [CrossRef]
- Fang, L.; Kahai, S.; Yang, W.; He, C.; Seth, A.; Peng, C.; Yang, B.B. Transforming growth factor-beta inhibits nephronectin-induced osteoblast differentiation. FEBS Lett. 2010, 584, 2877–2882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahai, S.; Lee, S.C.; Seth, A.; Yang, B.B. Nephronectin promotes osteoblast differentiation via the epidermal growth factor-like repeats. FEBS Lett. 2010, 584, 233–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuek, V.; Yang, Z.; Chim, S.M.; Zhu, S.; Xu, H.; Chow, S.T.; Tickner, J.; Rosen, V.; Erber, W.; Li, X.; et al. NPNT is expressed by osteoblasts and mediates angiogenesis via the activation of extracellular signal-regulated kinase. Sci. Rep. 2016, 6, 36210. [Google Scholar] [CrossRef] [Green Version]
- Chim, S.M.; Qin, A.; Tickner, J.; Pavlos, N.; Davey, T.; Wang, H.; Guo, Y.; Zheng, M.H.; Xu, J. EGFL6 promotes endothelial cell migration and angiogenesis through the activation of extracellular signal-regulated kinase. J. Biol. Chem. 2011, 286, 22035–22046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, Y.; Shimono, C.; Li, S.; Nakano, I.; Norioka, N.; Sugiura, N.; Kimata, K.; Yamada, M.; Sekiguchi, K. Nephronectin binds to heparan sulfate proteoglycans via its MAM domain. J. Int. Soc. Matrix Biol. 2013, 32, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Linden, S.K.; Sutton, P.; Karlsson, N.G.; Korolik, V.; McGuckin, M.A. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008, 1, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Toraskar, J.; Magnussen, S.N.; Hagen, L.; Sharma, A.; Hoang, L.; Bjorkoy, G.; Svineng, G.; Steigedal, T.S. A novel truncated form of nephronectin is present in small extracellular vesicles isolated from 66cl4 cells. J. Proteome Res. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Cortes, J.; Mrksich, M. Using self-assembled monolayers to understand alpha8beta1-mediated cell adhesion to RGD and FEI motifs in nephronectin. ACS Chem. Biol. 2011, 6, 1078–1086. [Google Scholar] [CrossRef]
- Muller, U.; Wang, D.; Denda, S.; Meneses, J.J.; Pedersen, R.A.; Reichardt, L.F. Integrin alpha8beta1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell 1997, 88, 603–613. [Google Scholar] [CrossRef] [Green Version]
- Linton, J.M.; Martin, G.R.; Reichardt, L.F. The ECM protein nephronectin promotes kidney development via integrin alpha8beta1-mediated stimulation of Gdnf expression. Development 2007, 134, 2501–2509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, C.; Ricciardi, F.; Engel, F.B. The functional properties of nephronectin: An adhesion molecule for cardiac tissue engineering. Biomaterials 2012, 33, 4327–4335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnussen, S.N.; Toraskar, J.; Wilhelm, I.; Hasko, J.; Figenschau, S.L.; Molnar, J.; Seppola, M.; Steigen, S.E.; Steigedal, T.S.; Hadler-Olsen, E.; et al. Nephronectin promotes breast cancer brain metastatic colonization via its integrin-binding domains. Sci. Rep. 2020, 10, 12237. [Google Scholar] [CrossRef] [PubMed]
- Kon, S.; Honda, M.; Ishikawa, K.; Maeda, M.; Segawa, T. Antibodies against nephronectin ameliorate anti-type II collagen-induced arthritis in mice. FEBS Open. Biol. 2020, 10, 107–117. [Google Scholar] [CrossRef]
- Inagaki, F.F.; Tanaka, M.; Inagaki, N.F.; Yagai, T.; Sato, Y.; Sekiguchi, K.; Oyaizu, N.; Kokudo, N.; Miyajima, A. Nephronectin is upregulated in acute and chronic hepatitis and aggravates liver injury by recruiting CD4 positive cells. Biochem. Biophys. Res. Commun. 2013, 430, 751–756. [Google Scholar] [CrossRef]
- Osada, A.; Kiyozumi, D.; Tsutsui, K.; Ono, Y.; Weber, C.N.; Sugimoto, N.; Imai, T.; Okada, A.; Sekiguchi, K. Expression of MAEG, a novel basement membrane protein, in mouse hair follicle morphogenesis. Exp. Cell Res. 2005, 303, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, G.; Bork, P. An adhesive domain detected in functionally diverse receptors. Trends Biochem. Sci. 1993, 18, 40–41. [Google Scholar] [CrossRef]
- Cismasiu, V.B.; Denes, S.A.; Reilander, H.; Michel, H.; Szedlacsek, S.E. The MAM (meprin/A5-protein/PTPmu) domain is a homophilic binding site promoting the lateral dimerization of receptor-like protein-tyrosine phosphatase mu. J. Biol. Chem. 2004, 279, 26922–26931. [Google Scholar] [CrossRef] [Green Version]
- Yelland, T.; Djordjevic, S. Crystal structure of the neuropilin-1 MAM domain: Completing the neuropilin-1 ectodomain picture. Structure 2016, 24, 2008–2015. [Google Scholar] [CrossRef] [Green Version]
- Kiyozumi, D.; Takeichi, M.; Nakano, I.; Sato, Y.; Fukuda, T.; Sekiguchi, K. Basement membrane assembly of the integrin alpha8beta1 ligand nephronectin requires Fraser syndrome-associated proteins. J. Cell. Biol. 2012, 197, 677–689. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, H.; Ferreira, M.; Donati, G.; Marciano, D.K.; Linton, J.M.; Sato, Y.; Hartner, A.; Sekiguchi, K.; Reichardt, L.F.; Watt, F.M. The basement membrane of hair follicle stem cells is a muscle cell niche. Cell 2011, 144, 577–589. [Google Scholar] [CrossRef] [Green Version]
- Abu-Daya, A.; Nishimoto, S.; Fairclough, L.; Mohun, T.J.; Logan, M.P.; Zimmerman, L.B. The secreted integrin ligand nephronectin is necessary for forelimb formation in Xenopus tropicalis. Dev. Biol. 2011, 349, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Schnapp, L.M.; Breuss, J.M.; Ramos, D.M.; Sheppard, D.; Pytela, R. Sequence and tissue distribution of the human integrin alpha 8 subunit: A beta 1-associated alpha subunit expressed in smooth muscle cells. J. Cell Sci. 1995, 108, 537–544. [Google Scholar] [PubMed]
- Zargham, R. Tensegrin in context: Dual role of alpha8 integrin in the migration of different cell types. Cell Adhes. Migr. 2010, 4, 485–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnapp, L.M.; Hatch, N.; Ramos, D.M.; Klimanskaya, I.V.; Sheppard, D.; Pytela, R. The human integrin alpha 8 beta 1 functions as a receptor for tenascin, fibronectin, and vitronectin. J. Biol. Chem. 1995, 270, 23196–23202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humbert, C.; Silbermann, F.; Morar, B.; Parisot, M.; Zarhrate, M.; Masson, C.; Tores, F.; Blanchet, P.; Perez, M.J.; Petrov, Y.; et al. Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans. Am. J. Hum. Genet. 2014, 94, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Muller, U.; Bossy, B.; Venstrom, K.; Reichardt, L.F. Integrin alpha 8 beta 1 promotes attachment, cell spreading, and neurite outgrowth on fibronectin. Mol. Biol. Cell 1995, 6, 433–448. [Google Scholar] [CrossRef] [Green Version]
- Varnum-Finney, B.; Venstrom, K.; Muller, U.; Kypta, R.; Backus, C.; Chiquet, M.; Reichardt, L.F. The integrin receptor alpha 8 beta 1 mediates interactions of embryonic chick motor and sensory neurons with tenascin-C. Neuron 1995, 14, 1213–1222. [Google Scholar] [CrossRef] [Green Version]
- Denda, S.; Reichardt, L.F.; Muller, U. Identification of osteopontin as a novel ligand for the integrin alpha8 beta1 and potential roles for this integrin-ligand interaction in kidney morphogenesis. Mol. Biol. Cell 1998, 9, 1425–1435. [Google Scholar] [CrossRef]
- Scherberich, A.; Tucker, R.P.; Samandari, E.; Brown-Luedi, M.; Martin, D.; Chiquet-Ehrismann, R. Murine tenascin-W: A novel mammalian tenascin expressed in kidney and at sites of bone and smooth muscle development. J. Cell Sci. 2004, 117, 571–581. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Munger, J.S.; Steadele, M.; Busald, C.; Tellier, M.; Schnapp, L.M. Integrin alpha8beta1 mediates adhesion to LAP-TGFbeta1. J. Cell Sci. 2002, 115, 4641–4648. [Google Scholar] [CrossRef] [Green Version]
- Patra, C.; Diehl, F.; Ferrazzi, F.; van Amerongen, M.J.; Novoyatleva, T.; Schaefer, L.; Muhlfeld, C.; Jungblut, B.; Engel, F.B. Nephronectin regulates atrioventricular canal differentiation via Bmp4-Has2 signaling in zebrafish. Development 2011, 138, 4499–4509. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Honda, M.; Yamamoto, S.; Kumagai-Takei, N.; Yoshitome, K.; Nishimura, Y.; Sada, N.; Kon, S.; Otsuki, T. Role of nephronectin in pathophysiology of silicosis. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, P.J.; Cho, M.H.; Litonjua, A.A.; Bakke, P.; Gulsvik, A.; Lomas, D.A.; Anderson, W.; Beaty, T.H.; Hokanson, J.E.; Crapo, J.D.; et al. The association of genome-wide significant spirometric loci with chronic obstructive pulmonary disease susceptibility. Am.J. Respir. Cell Mol. Biol. 2011, 45, 1147–1153. [Google Scholar] [CrossRef] [Green Version]
- Probert, K.; Miller, S.; Kheirallah, A.K.; Hall, I.P. Developmental genetics of the COPD lung. COPD Res. Pract. 2015, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Saferali, A.; Xu, Z.; Sheynkman, G.M.; Hersh, C.P.; Cho, M.H.; Silverman, E.K.; Laederach, A.; Vollmers, C.; Castaldi, P.J. Characterization of a COPD-associated NPNT functional splicing genetic variant in human lung tissue via long-read sequencing. Med. Rxiv. 2020. [Google Scholar] [CrossRef]
- Nakatani, S.; Wei, M.; Ishimura, E.; Kakehashi, A.; Mori, K.; Nishizawa, Y.; Inaba, M.; Wanibuchi, H. Proteome analysis of laser microdissected glomeruli from formalin-fixed paraffin-embedded kidneys of autopsies of diabetic patients: Nephronectin is associated with the development of diabetic glomerulosclerosis. Nephrol. Dial. Transplant. 2012, 27, 1889–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakatani, S.; Ishimura, E.; Mori, K.; Fukumoto, S.; Yamano, S.; Wei, M.; Emoto, M.; Wanibuchi, H.; Inaba, M. Nephronectin expression in glomeruli of renal biopsy specimens from various kidney diseases: Nephronectin is expressed in the mesangial matrix expansion of diabetic nephropathy. Nephrol. Clin. Pract. 2012, 122, 114–121. [Google Scholar] [CrossRef]
- Watany, M.M.; El-Horany, H.E. Nephronectin (NPNT) and the prediction of nephrotic syndrome response to steroid treatment. Eur. J. Hum. Genet. 2018, 26, 1354–1360. [Google Scholar] [CrossRef]
- Sun, Y.; Kuek, V.; Qiu, H.; Tickner, J.; Chen, L.; Wang, H.; He, W.; Xu, J. The emerging role of NPNT in tissue injury repair and bone homeostasis. J. Cell. Physiol. 2018, 233, 1887–1894. [Google Scholar] [CrossRef]
- Tsukasaki, M.; Yamada, A.; Suzuki, D.; Aizawa, R.; Miyazono, A.; Miyamoto, Y.; Suzawa, T.; Takami, M.; Yoshimura, K.; Morimura, N.; et al. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-alpha. Biochem. Biophys. Res. Commun. 2011, 410, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Tsukasaki, M.; Yamada, A.; Yoshimura, K.; Miyazono, A.; Yamamoto, M.; Takami, M.; Miyamoto, Y.; Morimura, N.; Kamijo, R. Nephronectin expression is regulated by SMAD signaling in osteoblast-like MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 2012, 425, 390–392. [Google Scholar] [CrossRef] [PubMed]
- Miyazono, A.; Yamada, A.; Morimura, N.; Takami, M.; Suzuki, D.; Kobayashi, M.; Tezuka, K.; Yamamoto, M.; Kamijo, R. TGF-beta suppresses POEM expression through ERK1/2 and JNK in osteoblasts. FEBS Lett. 2007, 581, 5321–5326. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Yamada, A.; Ikehata, M.; Yoshida, Y.; Sasa, K.; Morimura, N.; Sakashita, A.; Iijima, T.; Chikazu, D.; Ogata, H.; et al. FGF-2 suppresses expression of nephronectin via JNK and PI3K pathways. FEBS Open. Biol. 2018, 8, 836–842. [Google Scholar] [CrossRef] [Green Version]
- Iezumi, Y.; Yamada, A.; Minami, E.; Ikehata, M.; Yoshida, Y.; Kato, T.; Morimura, N.; Ogata, H.; Sakashita, A.; Iijima, T.; et al. IL-1beta suppresses nephronectin expression in osteoblasts via ERK1/2 and JNK. Biochem. Biophys. Res. Commun. 2017, 493, 773–775. [Google Scholar] [CrossRef]
- Kurosawa, T.; Yamada, A.; Takami, M.; Suzuki, D.; Saito, Y.; Hiranuma, K.; Enomoto, T.; Morimura, N.; Yamamoto, M.; Iijima, T.; et al. Expression of nephronectin is inhibited by oncostatin M via both JAK/STAT and MAPK pathways. FEBS Open. Biol. 2015, 5, 303–307. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Yamada, A.; Sasa, K.; Yoshimura, K.; Morimura, N.; Ogata, H.; Sakashita, A.; Kamijo, R. Nephronectin expression is inhibited by inorganic phosphate in osteoblasts. Calcif. Tissue Int. 2019, 104, 201–206. [Google Scholar] [CrossRef]
- Lee, S.C.; Fang, L.; Wang, C.H.; Kahai, S.; Deng, Z.; Yang, B.B. A non-coding transcript of nephronectin promotes osteoblast differentiation by modulating microRNA functions. FEBS Lett. 2011, 585, 2610–2616. [Google Scholar] [CrossRef]
- Ikehata, M.; Yamada, A.; Morimura, N.; Itose, M.; Suzawa, T.; Shirota, T.; Chikazu, D.; Kamijo, R. Wnt/beta-catenin signaling activates nephronectin expression in osteoblasts. Biochem. Biophys. Res. Commun. 2017, 484, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Teo, A.E.; Garg, S.; Johnson, T.I.; Zhao, W.; Zhou, J.; Gomez-Sanchez, C.E.; Gurnell, M.; Brown, M.J. Physiological and pathological roles in human adrenal of the glomeruli-defining matrix protein NPNT (Nephronectin). Hypertension 2017, 69, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Kurosawa, T.; Yamada, A.; Suzuki, D.; Morimura, N.; Sasagane, Y.; Itabe, H.; Kamijo, R. Nephronectin expression is up-regulated by BMP-2. Biol. Pharm. Bull. 2016, 39, 1211–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiranuma, K.; Yamada, A.; Kurosawa, T.; Aizawa, R.; Suzuki, D.; Saito, Y.; Nagahama, R.; Ikehata, M.; Tsukasaki, M.; Morimura, N.; et al. Expression of nephronectin is enhanced by 1alpha,25-dihydroxyvitamin D3. FEBS Open. Biol. 2016, 6, 914–918. [Google Scholar] [CrossRef]
- Sarfstein, R.; Lapkina-Gendler, L.; Nagaraj, K.; Laron, Z.; Werner, H. Identification of nephronectin as a new target for IGF1 action. Eur. J. Cancer 2020, 141, 115–127. [Google Scholar] [CrossRef]
- Sunadome, K.; Yamamoto, T.; Ebisuya, M.; Kondoh, K.; Sehara-Fujisawa, A.; Nishida, E. ERK5 regulates muscle cell fusion through Klf transcription factors. Dev. Cell 2011, 20, 192–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonewald, L.F.; Dallas, S.L. Role of active and latent transforming growth factor beta in bone formation. J. Cell. Biochem. 1994, 55, 350–357. [Google Scholar] [CrossRef]
- Kahai, S.; Vary, C.P.; Gao, Y.; Seth, A. Collagen, type V, alpha1 (COL5A1) is regulated by TGF-beta in osteoblasts. J. Int. Soc. Matrix Biol. 2004, 23, 445–455. [Google Scholar] [CrossRef]
- Kahai, S.; Lee, S.C.; Lee, D.Y.; Yang, J.; Li, M.; Wang, C.H.; Jiang, Z.; Zhang, Y.; Peng, C.; Yang, B.B. MicroRNA miR-378 regulates nephronectin expression modulating osteoblast differentiation by targeting GalNT-7. PLoS ONE 2009, 4, e7535. [Google Scholar] [CrossRef]
- Mei, D.; Zhao, B.; Zhang, J.; Xu, H.; Huang, B. Nephronectin is a prognostic biomarker and promotes gastric cancer cell proliferation, migration and invasion. Histol. Histopathol. 2020, 18260. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, C.; Gao, L.; Wang, Y.; Gao, X.; Tang, L.; Zhang, K.; Li, Z.; Han, J.; Xiao, J. NPNT promotes early-stage bone metastases in breast cancer by regulation of the osteogenic niche. J. Bone Oncol. 2018, 13, 91–96. [Google Scholar] [CrossRef]
- Kuphal, S.; Wallner, S.; Bosserhoff, A.K. Loss of nephronectin promotes tumor progression in malignant melanoma. Cancer Sci. 2008, 99, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Eckhardt, B.L.; Parker, B.S.; van Laar, R.K.; Restall, C.M.; Natoli, A.L.; Tavaria, M.D.; Stanley, K.L.; Sloan, E.K.; Moseley, J.M.; Anderson, R.L. Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol. Cancer Res. MCR 2005, 3, 1–13. [Google Scholar]
- Engstrom, M.J.; Opdahl, S.; Hagen, A.I.; Romundstad, P.R.; Akslen, L.A.; Haugen, O.A.; Vatten, L.J.; Bofin, A.M. Molecular subtypes, histopathological grade and survival in a historic cohort of breast cancer patients. Breast Cancer Res. Treat. 2013, 140, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Costa-Silva, B.; Aiello, N.M.; Ocean, A.J.; Singh, S.; Zhang, H.; Thakur, B.K.; Becker, A.; Hoshino, A.; Mark, M.T.; Molina, H.; et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 2015, 17, 816–826. [Google Scholar] [CrossRef]
- Goodman, S.L.; Picard, M. Integrins as therapeutic targets. Trends Pharmacol. Sci. 2012, 33, 405–412. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.E.; Gorlia, T.; Erridge, S.C.; Perry, J.; Hong, Y.K.; Aldape, K.D.; Lhermitte, B.; Pietsch, T.; Grujicic, D.; et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071–22072 study): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014, 15, 1100–1108. [Google Scholar] [CrossRef] [Green Version]
- Nabors, L.B.; Fink, K.L.; Mikkelsen, T.; Grujicic, D.; Tarnawski, R.; Nam, D.H.; Mazurkiewicz, M.; Salacz, M.; Ashby, L.; Zagonel, V.; et al. Two cilengitide regimens in combination with standard treatment for patients with newly diagnosed glioblastoma and unmethylated MGMT gene promoter: Results of the open-label, controlled, randomized phase II CORE study. Neuro-Oncol. 2015, 17, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Toraskar, J.; Magnussen, S.N.; Chawla, K.; Svineng, G.; Steigedal, T.S. Nephronectin mediates p38 MAPK-induced cell viability via its integrin-binding enhancer motif. FEBS Open. Biol. 2018, 8, 1992–2001. [Google Scholar] [CrossRef] [PubMed]
Regulatory Effect on NPNT | Initiator(s) | Downstream Effector(s) | References |
---|---|---|---|
Down-regulation | Tumour necrosis factor α (TNFα) | Nuclear factor-κB (NF-κB) | [62] |
Transforming growth factor β (TGF-β) | ALK5, Smad2 ERK1/2, JNK, MAPK | [23,63,64] | |
Fibroblast growth factor-2 (FGF-2) | JNK PI3K | [65] | |
Interleukin-1β (IL-1β) | JNK ERK1/2 | [66] | |
Oncostatin M (OSM) | JAK/STAT MAPK | [67] | |
Inorganic Phosphate | FGFRs (via Pit) | [68] | |
Mmu-miRNAs 23a, 101a, 296-5p, 328, 425 | GSK3β, Cyclin D, ERK | [69] | |
Up-regulation | Wnt3a Wnt | β-catenin, TCF/LEF | [42,70,71] |
Bone morphogenetic protein-2 (BMP-2) | [72] | ||
Vitamin D3 | Vitamin D receptor (VDR) | [73] | |
Fibroblast growth factor 10 (FGF10) | transcription factor T box 5 (Tbx5) | [43] | |
Insulin growth factor (IGF) | IGFR—ERK1/2 | [74] | |
? | ERK5—Sp1—Klf2/4 | [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magnussen, S.N.; Toraskar, J.; Hadler-Olsen, E.; Steigedal, T.S.; Svineng, G. Nephronectin as a Matrix Effector in Cancer. Cancers 2021, 13, 959. https://doi.org/10.3390/cancers13050959
Magnussen SN, Toraskar J, Hadler-Olsen E, Steigedal TS, Svineng G. Nephronectin as a Matrix Effector in Cancer. Cancers. 2021; 13(5):959. https://doi.org/10.3390/cancers13050959
Chicago/Turabian StyleMagnussen, Synnøve Norvoll, Jimita Toraskar, Elin Hadler-Olsen, Tonje S. Steigedal, and Gunbjørg Svineng. 2021. "Nephronectin as a Matrix Effector in Cancer" Cancers 13, no. 5: 959. https://doi.org/10.3390/cancers13050959
APA StyleMagnussen, S. N., Toraskar, J., Hadler-Olsen, E., Steigedal, T. S., & Svineng, G. (2021). Nephronectin as a Matrix Effector in Cancer. Cancers, 13(5), 959. https://doi.org/10.3390/cancers13050959