Cancer during Pregnancy: A Review of Preclinical and Clinical Transplacental Transfer of Anticancer Agents
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
3. Results
3.1. Recent Guidelines on the Use of Anticancer Agents for the Treatment of Solid Tumors Most Often Associated with Pregnancy
3.1.1. Breast Cancer
3.1.2. Cervical Cancer
3.1.3. Ovarian Cancer
3.1.4. Melanoma
3.1.5. Gastrointestinal Cancers
3.1.6. Brain Cancer
3.1.7. Other Cancers
Non-Small Cell Lung Cancer
Soft Tissue Sarcoma
3.2. Preclinical Data on the Placental Transfer of Anticancer Agents
3.2.1. Antimetabolite Agents: Fluorouracil
3.2.2. Antimitotic Agents
Vinca Alkaloids: Vincristine, Vinblastine
Taxanes: Paclitaxel, Docetaxel
3.2.3. Alkylating Agents
Cyclophosphamide
Platinum Derivatives: Cisplatin, Carboplatin, and Oxaliplatin
Dacarbazine
3.2.4. Topoisomerase II Inhibitors
Anthracyclines: Doxorubicin, Epirubicin
Etoposide
3.2.5. Topoisomerase I Inhibitors: Irinotecan
3.2.6. DNA-Cleaving Agent: Bleomycin
3.2.7. Therapeutic Monoclonal Antibodies: Bevacizumab, Cetuximab, Ipilimumab, Trastuzumab, Nivolumab, and Pembrolizumab
3.2.8. Protein Kinase Inhibitors: Gefitinib, Erlotinib, Osimertinib, and Vemurafenib
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smith, L.H.; Danielsen, B.; Allen, M.E.; Cress, R. Cancer associated with obstetric delivery: Results of linkage with the California cancer registry. Am. J. Obstet. Gynecol. 2003, 189, 1128–1135. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Roberts, C.L.; Dobbins, T.; Stavrou, E.; Black, K.; Morris, J.; Young, J. Incidence and outcomes of pregnancy-associated cancer in Australia, 1994-2008: A population-based linkage study. BJOG Int. J. Obstet. Gynaecol. 2012, 119, 1572–1582. [Google Scholar] [CrossRef] [Green Version]
- Parazzini, F.; Franchi, M.; Tavani, A.; Negri, E.; Peccatori, F.A. Frequency of Pregnancy Related Cancer: A Population Based Linkage Study in Lombardy, Italy. Int. J. Gynecol. Cancer 2017, 27, 613–619. [Google Scholar] [CrossRef]
- Eibye, S.; Kjær, S.K.; Mellemkjær, L. Incidence of pregnancy-associated cancer in Denmark, 1977–2006. Obstet. Gynecol. 2013, 122, 608–617. [Google Scholar] [CrossRef]
- Maggen, C.; Wolters, V.E.R.A.; Cardonick, E.; Fumagalli, M.; Halaska, M.J.; Lok, C.A.R.; de Haan, J.; Van Tornout, K.; Van Calsteren, K.; Amant, F. Pregnancy and Cancer: The INCIP Project. Curr. Oncol. Rep. 2020, 22. [Google Scholar] [CrossRef] [Green Version]
- De Haan, J.; Verheecke, M.; Van Calsteren, K.; Van Calster, B.; Shmakov, R.G.; Mhallem Gziri, M.; Halaska, M.J.; Fruscio, R.; Lok, C.A.R.; Boere, I.A.; et al. Oncological management and obstetric and neonatal outcomes for women diagnosed with cancer during pregnancy: A 20-year international cohort study of 1170 patients. Lancet Oncol. 2018, 19, 337–346. [Google Scholar] [CrossRef]
- Salani, R.; Billingsley, C.C.; Crafton, S.M. Cancer and pregnancy: An overview for obstetricians and gynecologists. Am. J. Obstet. Gynecol. 2014, 211, 7–14. [Google Scholar] [CrossRef]
- Seebacher, N.A.; Stacy, A.E.; Porter, G.M.; Merlot, A.M. Clinical Development of Targeted and Immune Based Anti-Cancer Therapies. J. Exp. Clin. Cancer Res. 2019, 38, 156. [Google Scholar]
- Pacifici, G.M.; Nottoli, R. Placental Transfer of Drugs Administered to the Mother. Clin. Pharmacokinet. 1995, 28, 235–269. [Google Scholar] [CrossRef]
- Syme, M.R.; Paxton, J.W.; Keelan, J. A Human Placenta. Clin. Pharmacokinet. 2004, 43, 487–514. [Google Scholar]
- Amant, F.; Berveiller, P.; Boere, I.A.; Cardonick, E.; Fruscio, R.; Fumagalli, M.; Halaska, M.J.; Hasenburg, A.; Johansson, A.L.V.; Lambertini, M.; et al. Gynecologic cancers in pregnancy: Guidelines based on a third international consensus meeting. Ann. Oncol. 2019, 30, 1601–1612. [Google Scholar] [CrossRef] [Green Version]
- Maher, J.E.; Goldenberg, R.L.; Tamura, T.; Cliver, S.P.; Hoffman, H.J.; Davis, R.O.; Boots, L. Albumin levels in pregnancy: A hypothesis-decreased levels of albumin are related to increased levels of alpha-fetoprotein. Early Hum. Dev. 1993, 34, 209–215. [Google Scholar] [CrossRef]
- Anderson, G.D. Pregnancy-induced changes in pharmacokinetics: A mechanistic-based approach. Clin. Pharmacokinet. 2005, 44, 989–1008. [Google Scholar] [CrossRef]
- Bouazza, N.; Foissac, F.; Hirt, D.; Urien, S.; Benaboud, S.; Lui, G.; Treluyer, J.-M. Methodological Approaches to Evaluate Fetal Drug Exposure. Curr. Pharm. Des. 2019, 25, 496–504. [Google Scholar] [CrossRef]
- Marnitz, S.; Schmittel, A.; Bolbrinker, J.; Schmidt, F.P.; Fons, G.; Kalache, K.; Schneider, A.; Köhler, C. The therapeutic management of a twin pregnancy complicated by the presence of cervical cancer, following laparoscopic staging and chemotherapy, with an emphasis on cisplatin concentrations in the fetomaternal compartments amnion fluid, umbilical cord, and maternal serum. Fertil. Steril. 2009, 92, 1748.e1–1748.e4. [Google Scholar] [CrossRef]
- Schneider, H.; Panigel, M.; Dancis, J. Transfer across the perfused human placenta of antipyrine, sodium, and leucine. Am. J. Obstet. Gynecol. 1972, 114, 822–828. [Google Scholar] [CrossRef]
- Peccatori, F.A.; Azim, J.A.; Orecchia, R.; Hoekstra, H.J.; Pavlidis, N.; Kesic, V.; Pentheroudakis, G. Cancer, pregnancy and fertility: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013, 24. [Google Scholar] [CrossRef]
- Amant, F.; Von Minckwitz, G.; Han, S.N.; Bontenbal, M.; Ring, A.E.; Giermek, J.; Wildiers, H.; Fehm, T.; Linn, S.C.; Schlehe, B.; et al. Prognosis of women with primary breast cancer diagnosed during pregnancy: Results from an international collaborative study. J. Clin. Oncol. 2013, 31, 2532–2539. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.E.; Mayer, E.L.; Partridge, A. Prognosis of pregnancy-associated breast cancer. Breast Cancer Res. Treat. 2017, 163, 417–421. [Google Scholar] [CrossRef]
- O’Sullivan, C.C.; Irshad, S.; Wang, Z.; Tang, Z.; Umbricht, C.; Rosner, G.L.; Christianson, M.S.; Stearns, V.; Smith, K.L. Clinico-pathologic features, treatment and outcomes of breast cancer during pregnancy or the post-partum period. Breast Cancer Res. Treat. 2020, 180, 695–706. [Google Scholar] [CrossRef]
- Schuurman, T.N.; Witteveen, P.O.; van der Wall, E.; Passier, J.L.M.; Huitema, A.D.R.; Amant, F.; Lok, C.A.R. Tamoxifen and pregnancy: An absolute contraindication? Breast Cancer Res. Treat. 2019, 175, 17–25. [Google Scholar] [CrossRef]
- Zagouri, F.; Sergentanis, T.N.; Chrysikos, D.; Papadimitriou, C.A.; Dimopoulos, M.A.; Bartsch, R. Trastuzumab administration during pregnancy: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2013, 137, 349–357. [Google Scholar] [CrossRef]
- Morice, P.; Uzan, C.; Gouy, S.; Verschraegen, C.; Haie-Meder, C. Gynaecological cancers in pregnancy. Lancet 2012, 379, 558–569. [Google Scholar] [CrossRef]
- Halaska, M.J.; Uzan, C.; Han, S.N.; Fruscio, R.; Dahl Steffensen, K.; Van Calster, B.; Stankusova, H.; Marchette, M.D.; Mephon, A.; Rouzier, R.; et al. Characteristics of patients with cervical cancer during pregnancy: A multicenter matched cohort study. An initiative from the International Network on Cancer, Infertility and Pregnancy. Int. J. Gynecol. Cancer 2019, 29, 676–682. [Google Scholar] [CrossRef]
- Hunter, M.I.; Tewari, K.; Monk, B.J. Cervical neoplasia in pregnancy. Part 2: Current treatment of invasive disease. Am. J. Obstet. Gynecol. 2008, 199, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Liu, Y.; Lin, M.; Sheng, B.; Zhu, X. Efficacy of neoadjuvant platinum-based chemotherapy during the second and third trimester of pregnancy in women with cervical cancer: An updated systematic review and meta-analysis. Drug Des. Devel. Ther. 2019, 13, 79–102. [Google Scholar] [CrossRef] [Green Version]
- Mir, O.; Berveiller, P.; Ropert, S.; Goffinet, F.; Goldwasser, F. Use of platinum derivatives during pregnancy. Cancer 2008, 113, 3069–3074. [Google Scholar] [CrossRef]
- Geijteman, E.C.T.; Wensveen, C.W.M.; Duvekot, J.J.; Van Zuylen, L. A child with severe hearing loss associated with maternal cisplatin treatment during pregnancy. Obstet. Gynecol. 2014, 124, 454–456. [Google Scholar] [CrossRef]
- Amant, F.; Vandenbroucke, T.; Verheecke, M.; Fumagalli, M.; Halaska, M.J.; Boere, I.; Han, S.; Gziri, M.M.; Peccatori, F.; Rob, L.; et al. Pediatric outcome after maternal cancer diagnosed during pregnancy. N. Engl. J. Med. 2015, 373, 1824–1834. [Google Scholar] [CrossRef]
- Amant, F.; Halaska, M.J.; Fumagalli, M.; Steffensen, K.D.; Lok, C.; Van Calsteren, K.; Han, S.N.; Mir, O.; Fruscio, R.; Uzan, C.; et al. Gynecologic cancers in pregnancy: Guidelines of a second international consensus meeting. Int. J. Gynecol. Cancer 2014, 24, 394–403. [Google Scholar] [CrossRef]
- Ghaemmaghami, F.; Abbasi, F.; Abadi, A.G.N. A favorable maternal and neonatal outcome following chemotherapy with etoposide, bleomycin, and cisplatin for management of grade 3 immature teratoma of the ovary. J. Gynecol. Oncol. 2009, 20, 257–259. [Google Scholar] [CrossRef] [Green Version]
- Cardonick, E.; Usmani, A.; Ghaffar, S. Perinatal outcomes of a pregnancy complicated by cancer, including neonatal follow-up after in utero exposure to chemotherapy: Results of an international registry. Am. J. Clin. Oncol. Cancer Clin. Trials 2010, 33, 221–228. [Google Scholar] [CrossRef]
- Han, J.Y.; Nava-Ocampo, A.A.; Kim, T.J.; Shim, J.U.; Park, C.T. Pregnancy outcome after prenatal exposure to bleomycin, etoposide and cisplatin for malignant ovarian germ cell tumors: Report of 2 cases. Reprod. Toxicol. 2005, 19, 557–561. [Google Scholar] [CrossRef]
- De Haan, J.; Lok, C.A.; De Groot, C.J.; Crijns, M.B.; Van Calsteren, K.; Dahl Steffensen, K.; Halaska, M.J.; Altintas, S.; Boere, I.A.; Fruscio, R.; et al. Melanoma during pregnancy: A report of 60 pregnancies complicated by melanoma. Melanoma Res. 2017, 27, 218–223. [Google Scholar] [CrossRef]
- Swetter, S.M.; Tsao, H.; Bichakjian, C.K.; Curiel-Lewandrowski, C.; Elder, D.E.; Gershenwald, J.E.; Guild, V.; Grant-Kels, J.M.; Halpern, A.C.; Johnson, T.M.; et al. Guidelines of care for the management of primary cutaneous melanoma. J. Am. Acad. Dermatol. 2019, 80, 208–250. [Google Scholar] [CrossRef] [Green Version]
- Keilholz, U.; Ascierto, P.A.; Dummer, R.; Robert, C.; Lorigan, P.; van Akkooi, A.; Arance, A.; Blank, C.U.; Chiarion Sileni, V.; Donia, M.; et al. ESMO consensus conference recommendations on the management of metastatic melanoma: Under the auspices of the ESMO Guidelines Committee. Ann. Oncol. 2020, 31, 1435–1448. [Google Scholar] [CrossRef]
- Pagan, M.; Jinks, H.; Sewell, M. Treatment of metastatic malignant melanoma during pregnancy with a BRAF kinase inhibitor. Case Rep. Women’s Health 2019, 24, e00142. [Google Scholar] [CrossRef]
- Marcé, D.; Cornillier, H.; Denis, C.; Jonville-Bera, A.-P.; Machet, L. Partial response of metastatic melanoma to BRAF-inhibitor-monotherapy in a pregnant patient with no fetal toxicity. Melanoma Res. 2019, 29, 446–447. [Google Scholar] [CrossRef]
- De Haan, J.; Van Thienen, J.V.; Casaer, M.; Hannivoort, R.A.; Van Calsteren, K.; Van Tuyl, M.; Van Gerwen, M.M.; Debeer, A.; Amant, F.; Painter, R.C. Severe Adverse Reaction to Vemurafenib in a Pregnant Woman with Metastatic Melanoma. Case Rep. Oncol. 2018, 11, 119–124. [Google Scholar] [CrossRef]
- Maleka, A.; Enblad, G.; Sjörs, G.; Lindqvist, A.; Ullenhag, G.J. Treatment of metastatic malignant melanoma with vemurafenib during pregnancy. J. Clin. Oncol. 2013, 31, e192–e193. [Google Scholar] [CrossRef]
- Xu, W.; Moor, R.J.; Walpole, E.T.; Atkinson, V.G. Pregnancy with successful foetal and maternal outcome in a melanoma patient treated with nivolumab in the first trimester: Case report and review of the literature. Melanoma Res. 2019, 29, 333–337. [Google Scholar] [CrossRef]
- Menzer, C.; Beedgen, B.; Rom, J.; Duffert, C.M.; Volckmar, A.-L.; Sedlaczek, O.; Richtig, E.; Enk, A.; Jäger, D.; Hassel, J.C. Immunotherapy with ipilimumab plus nivolumab in a stage IV melanoma patient during pregnancy. Eur. J. Cancer 2018, 104, 239–242. [Google Scholar] [CrossRef]
- Burotto, M.; Gormaz, J.G.; Samtani, S.; Valls, N.; Silva, R.; Rojas, C.; Portiño, S.; de la Jara, C. Viable Pregnancy in a patient with metastatic melanoma treated with double checkpoint immunotherapy. Semin. Oncol. 2018, 45, 164–169. [Google Scholar] [CrossRef]
- Mehta, A.; Kim, K.B.; Minor, D.R. Case Report of a Pregnancy During Ipilimumab Therapy. J. Glob. Oncol. 2018, 4, 1–3. [Google Scholar] [CrossRef]
- Glynne-Jones, R.; Wyrwicz, L.; Tiret, E.; Brown, G.; Rödel, C.; Cervantes, A.; Arnold, D. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv22–iv40. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Cervantes, A.; Nordlinger, B.; Arnold, D.; The ESMO Guidelines Working Group. Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25, iii1–iii9. [Google Scholar] [CrossRef]
- Dunkelberg, J.C.; Barakat, J.; Deutsch, J. Gastrointestinal, pancreatic, and hepatic cancer during pregnancy. Obstet. Gynecol. Clin. N. Am. 2005, 32, 641–660. [Google Scholar] [CrossRef]
- Pellino, G.; Simillis, C.; Kontovounisios, C.; Baird, D.L.; Nikolaou, S.; Warren, O.; Tekkis, P.P.; Rasheed, S. Colorectal cancer diagnosed during pregnancy: Systematic review and treatment pathways. Eur. J. Gastroenterol. Hepatol. 2017, 29, 743–753. [Google Scholar] [CrossRef]
- Jeppesen, J.B.; Østerlind, K. Successful twin pregnancy outcome after in utero exposure to folfox for metastatic colon cancer: A case report and review of the literature. Clin. Colorectal Cancer 2011, 10, 348–352. [Google Scholar] [CrossRef]
- Makoshi, Z.; Perrott, C.; Al-Khatani, K.; Al-Mohaisen, F. Chemotherapeutic treatment of colorectal cancer in pregnancy: Case report. J. Med. Case Rep. 2015, 9. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.; Amanze, A.; Di Federico, E.; Verschraegen, C. Irinotecan use during pregnancy. Obstet. Gynecol. 2009, 114, 451–452. [Google Scholar] [CrossRef]
- Cirillo, M.; Musola, M.; Cassandrini, P.A.; Lunardi, G.; Venturini, M. Irinotecan during pregnancy in metastatic colon cancer. Tumori 2012, 98, e155–e157. [Google Scholar] [CrossRef]
- Stupp, R.; Brada, M.; van den Bent, M.J.; Tonn, J.C.; Pentheroudakis, G. High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25, 93–101. [Google Scholar] [CrossRef]
- Helal, M.A.M. Prenatal effects of transplacental exposure to ifosfamide in rats. Biotech. Histochem. 2016, 91, 357–368. [Google Scholar] [CrossRef]
- Blumenthal, D.T.; Parreño, M.G.H.; Batten, J.; Chamberlain, M.C. Management of malignant gliomas during pregnancy: A case series. Cancer 2008, 113, 3349–3354. [Google Scholar] [CrossRef]
- Bellido, C.; Barbero, P.; Forcén, L.; Blanco, M.; Alonso-Riaño, M.; Galindo, A. Lung adenocarcinoma during pregnancy: Clinical case and literature review. J. Matern. Neonatal Med. 2019, 32, 3300–3302. [Google Scholar] [CrossRef]
- Jovelet, C.; Seck, A.; Mir, O.; Simasotchi, C.; Broutin, S.; Goffinet, F.; Bidart, J.M.; Paci, A.; Gil, S. Variation in transplacental transfer of tyrosine kinase inhibitors in the human perfused cotyledon model. Ann. Oncol. 2015, 26, 1500–1504. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Yang, J.C.H.; Lee, C.K.; Kurata, T.; Kim, D.W.; John, T.; Nogami, N.; Ohe, Y.; Mann, H.; Rukazenkov, Y.; et al. Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer. J. Clin. Oncol. 2018, 36, 841–849. [Google Scholar] [CrossRef] [Green Version]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef]
- Mir, O.; Berrada, N.; Domont, J.; Cioffi, A.; Boulet, B.; Terrier, P.; Bonvalot, S.; Trichot, C.; Lokiec, F.; Le Cesne, A. Doxorubicin and ifosfamide for high-grade sarcoma during pregnancy. Cancer Chemother. Pharmacol. 2012, 69, 357–367. [Google Scholar] [CrossRef]
- Boike, G.M.; Deppe, G.; Young, J.D.; Malone, J.M.; Malviya, V.K.; Sokol, R.J. Chemotherapy in a pregnant rat model. Gynecol. Oncol. 1989, 34, 191–194. [Google Scholar] [CrossRef]
- Van Calsteren, K.; Verbesselt, R.; Van Bree, R.; Heyns, L.; De Bruijn, E.; De Hoon, J.; Amant, F. Substantial variation in transplacental transfer of chemotherapeutic agents in a mouse model. Reprod. Sci. 2011, 18, 57–63. [Google Scholar] [CrossRef]
- Van Calsteren, K.; Verbesselt, R.; Beijnen, J.; Devlieger, R.; De Catte, L.; Chai, D.C.; Van Bree, R.; Heyns, L.; De Hoon, J.; Amant, F. Transplacental transfer of anthracyclines, vinblastine, and 4-hydroxy-cyclophosphamide in a baboon model. Gynecol. Oncol. 2010, 119, 594–600. [Google Scholar] [CrossRef]
- Van Calsteren, K.; Heyns, L.; Amant, F.; Van Calsteren, K.; Van Bree, R.; Heyns, L.; Amant, F.; Verbesselt, R.; Demarsin, S.; de Hoon, J.; et al. Transplacental transfer of paclitaxel, docetaxel, carboplatin, and trastuzumab in a baboon model. Int. J. Gynecol. Cancer 2010, 20, 9329. [Google Scholar] [CrossRef]
- Nekhayeva, I.A.; Nanovskaya, T.N.; Hankins, G.D.V.; Ahmed, M.S. Role of human placental efflux transporter P-glycoprotein in the transfer of buprenorphine, levo-α-acetylmethadol, and paclitaxel. Am. J. Perinatol. 2006, 23, 423–430. [Google Scholar] [CrossRef]
- Lee, N.-Y.; Lee, H.-E.; Kang, Y.-S. Identification of p-glycoprotein and transport mechanism of Paclitaxel in syncytiotrophoblast cells. Biomol. Ther. 2014, 22, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Nanovskaya, T.; Nekhayeva, I.; Karunaratne, N.; Audus, K.; Hankins, G.D.V.; Ahmed, M.S. Role of P-glycoprotein in transplacental transfer of methadone. Biochem. Pharmacol. 2005, 69, 1869–1878. [Google Scholar] [CrossRef] [Green Version]
- Berveiller, P.; Vinot, C.; Mir, O.; Broutin, S.; Deroussent, A.; Seck, A.; Camps, S.; Paci, A.; Gil, S.; Tréluyer, J.M. Comparative transplacental transfer of taxanes using the human perfused cotyledon placental model. Am. J. Obstet. Gynecol. 2012, 207, 514.e1–514.e7. [Google Scholar] [CrossRef]
- Ali, S.; Albekairi, N.; Wang, X.M.; Patrikeeva, S.; Nanovskaya, T.N.; Ahmed, M.S.; Rytting, E. Determination of the transplacental transfer of paclitaxel and antipyrine by high performance liquid chromatography coupled with photodiode array detector. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 232–238. [Google Scholar] [CrossRef]
- Cardonick, E.; Broadrup, R.; Xu, P.; Doan, M.T.; Jiang, H.; Snyder, N.W. Preliminary results of identification and quantification of paclitaxel and its metabolites in human meconium from newborns with gestational chemotherapeutic exposure. PLoS ONE 2019, 14, 4–13. [Google Scholar] [CrossRef] [Green Version]
- D’Incalci, M.; Sessa, C.; Colombo, N.; de Palo, G.; Semprini, A.E.; Pardi, G. Transplacental passage of cyclophosphamide. Cancer Treat. Rep. 1982, 66, 1681–1682. [Google Scholar]
- Köpf-Maier, P. Stage of pregnancy-dependent transplacental passage of 195mPt after cis-platinum treatment. Eur. J. Cancer Clin. Oncol. 1983, 19, 533–536. [Google Scholar]
- Shamkhani, H.; Anderson, L.M.; Henderson, C.E.; Moskal, T.J.; Runowicz, C.D.; Dove, L.F.; Jones, A.B.; Chaney, S.G.; Rice, J.M.; Poirier, M.C. DNA adducts in human and patas monkey material and fetal tissues induced by platinum drug chemotherapy. Reprod. Toxicol. 1994, 8, 207–216. [Google Scholar]
- Pascual, M.J.; Macias, R.I.; Garcia-Del-Pozo, J.; Serrano, M.A.; Marin, J.J. Enhanced efficiency of the placental barrier to cisplatin through binding to glycocholic acid. Anticancer Res. 2001, 21, 2703–2707. [Google Scholar]
- Al-Saleh, E.; Al-Harmi, J.; Nandakumaran, M.; Al-Shammari, M. Transport kinetics of cisplatin in the perfused human placental lobule in vitro. J. Matern. Neonatal Med. 2008, 21, 726–731. [Google Scholar] [CrossRef]
- Lanowska, M.; Köhler, C.; Oppelt, P.; Schmittel, A.; Gottschalk, E.; Hasenbein, K.; Schneider, A.; Marnitz, S. Addressing concerns about cisplatin application during pregnancy. J. Perinat. Med. 2011, 39, 279–285. [Google Scholar] [CrossRef]
- Marnitz, S.; Köhler, C.; Oppelt, P.; Schmittel, A.; Favero, G.; Hasenbein, K.; Schneider, A.; Markman, M. Cisplatin application in pregnancy: First in vivo analysis of 7 patients. Oncology 2010, 79, 72–77. [Google Scholar] [CrossRef]
- Al-Saleh, E.; Nandakumaran, M.; Al-Rashdan, I.; Al-Harmi, J.; Al-Shammari, M. Maternal-fetal transport kinetics of carboplatin in the perfused human placental lobule: In vitro study. J. Matern. Neonatal Med. 2007, 20, 695–701. [Google Scholar] [CrossRef]
- Smith, J.A.; Gaikwad, A.; Mosley, S.; Coffer, L.; Cegelski, J.; Alcorn, J.L.; Ramin, S.M.; Refuerzo, J.S. Utilization of an ex vivo human placental perfusion model to predict potential fetal exposure to carboplatin during pregnancy. Am. J. Obstet. Gynecol. 2014, 210, 275.e1–275.e9. [Google Scholar] [CrossRef]
- Elit, L.; Bocking, A.; Kenyon, C.; Natale, R. An endodermal sinus tumor diagnosed in pregnancy: Case report and review of the literature. Gynecol. Oncol. 1999, 72, 123–127. [Google Scholar] [CrossRef]
- Arango, H.A.; Kalter, C.S.; Decesare, S.L.; Fiorica, J.V.; Lyman, G.H.; Spellacy, W.N. Management of chemotherapy in a pregnancy complicated by a large neuroblastoma. Obstet. Gynecol. 1994, 84, 665–668. [Google Scholar]
- Koc, O.N.; McFee, M.; Reed, E.; Gerson, S.L. Detection of platinum-DNA adducts in cord blood lymphocytes following in utero platinum exposure. Eur. J. Cancer 1994, 30, 716–717. [Google Scholar]
- Henderson, C.E.; Elia, G.; Garfinkel, D.; Poirier, M.C.; Shamkhani, H.; Runowicz, C.D. Platinum chemotherapy during pregnancy. Gynecol. Oncol. 1993, 49, 92–94. [Google Scholar]
- Yamauchi, H.; Katayama, K.I.; Ueno, M.; Kanemitsu, H.; Nam, C.; Mikami, T.; Saito, A.; Ishida, Y.; Uetsuka, K.; Doi, K.; et al. Etoposide induces TRP53-dependent apoptosis and TRP53-independent cell cycle arrest in trophoblasts of the developing mouse placenta. Biol. Reprod. 2009, 80, 813–822. [Google Scholar] [CrossRef] [Green Version]
- Soininen, S.K.; Repo, J.K.; Karttunen, V.; Auriola, S.; Vähäkangas, K.H.; Ruponen, M. Human placental cell and tissue uptake of doxorubicin and its liposomal formulations. Toxicol. Lett. 2015, 239, 108–114. [Google Scholar] [CrossRef]
- Cotteret, C.; Pham, Y.V.; Marcais, A.; Driessen, M.; Cisternino, S.; Schlatter, J. Maternal ABVD chemotherapy for Hodgkin lymphoma in a dichorionic diamniotic pregnancy: A case report. BMC Pregnancy Childbirth 2020, 20, 231. [Google Scholar] [CrossRef] [Green Version]
- Willemse, P.H.; van der Sijde, R.; Sleijfer, D.T. Combination chemotherapy and radiation for stage IV breast cancer during pregnancy. Gynecol. Oncol. 1990, 36, 281–284. [Google Scholar] [CrossRef]
- Barni, S.; Ardizzoia, A.; Zanetta, G.; Strocchi, E.; Lissoni, P.; Tancini, G. Weekly doxorubicin chemotherapy for breast cancer in pregnancy. A case report. Tumori 1992, 78, 349–350. [Google Scholar]
- Karp, G.I.; von Oeyen, P.; Valone, F.; Khetarpal, V.K.; Israel, M.; Mayer, R.J.; Frigoletto, F.D.; Garnick, M.B. Doxorubicin in pregnancy: Possible transplacental passage. Cancer Treat. Rep. 1983, 67, 773–777. [Google Scholar]
- d’Incalci, M.; Broggini, M.; Buscaglia, M.; Pardi, G. Transplacental passage of doxorubicin. Lancet 1983, 1, 75. [Google Scholar] [CrossRef]
- Roboz, J.; Gleicher, N.; Wu, K.; Chanihian, P.; Kerenyi, T.; Holland, J. Does doxorubicin cross the placenta? Lancet 1979, 2, 1382–1383. [Google Scholar] [CrossRef]
- Thorn, M.; Piche-Nicholas, N.; Stedman, D.; Davenport, S.W.; Zhang, N.; Collinge, M.; Bowman, C.J. Embryo-Fetal Transfer of Bevacizumab (Avastin) in the Rat Over the Course of Gestation and the Impact of Neonatal Fc Receptor (FcRn) Binding. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2012, 95, 363–375. [Google Scholar] [CrossRef]
- Gil, S.; Goetgheluck, J.; Paci, A.; Broutin, S.; Friard, S.; Couderc, L.J.; Ayoubi, J.M.; Picone, O.; Tcherakian, C. Efficacy and safety of gefitinib during pregnancy: Case report and literature review. Lung Cancer 2014, 85, 481–484. [Google Scholar] [CrossRef]
- Eliesen, G.A.M.; van den Broek, P.; van den Heuvel, J.J.; Bilos, A.; Pertijs, J.; van Drongelen, J.; Russel, F.G.C.; Greupink, R. Placental disposition and effects of crizotinib: An Ex Vivo Study in the isolated dual-side perfused human cotyledon. Toxicol. Sci. 2017, 157, 500–509. [Google Scholar] [CrossRef]
- Ushigome, F.; Takanaga, H.; Matsuo, H.; Yanai, S.; Tsukimori, K.; Nakano, H.; Uchiumi, T.; Nakamura, T.; Kuwano, M.; Ohtani, H.; et al. Human placental transport of vinblastine, vincristine, digoxin and progesterone: Contribution of P-glycoprotein. Eur. J. Pharmacol. 2000, 408, 1–10. [Google Scholar] [CrossRef]
- Depoix, C.L.; Colson, A.; Mhallem-Gziri, M.; Hubinont, C.; Debieve, F. Effects of chemotherapy on placental development and function using in vitro culture of human primary cytotrophoblasts. Investig. New Drugs 2020, 38, 547–557. [Google Scholar] [CrossRef]
- Kolwankar, D.; Glover, D.D.; Ware, J.A.; Tracy, T.S. Expression and function of ABCB1 and ABCG2 in human placental tissue. Drug Metab. Dispos. 2005, 33, 524–529. [Google Scholar] [CrossRef] [Green Version]
- Sudhakaran, S.; Rayner, C.R.; Li, J.; Kong, D.C.M.; Gude, N.M.; Nation, R.L. Inhibition of placental P-glycoprotein: Impact on indinavir transfer to the foetus. Br. J. Clin. Pharmacol. 2008, 65, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Eliesen, G.A.M.; van Hove, H.; Meijer, M.H.; van den Broek, P.H.H.; Pertijs, J.; Roeleveld, N.; van Drongelen, J.; Russel, F.G.M.; Greupink, R. Toxicity of anticancer drugs in human placental tissue explants and trophoblast cell lines. Arch. Toxicol. 2020. [Google Scholar] [CrossRef]
- Ricci, C.; Scambia, G.; De Vincenzo, R. Locally Advanced Cervical Cancer in Pregnancy. Int. J. Gynecol. Cancer 2016, 26, 1490–1496. [Google Scholar] [CrossRef]
- Fruscio, R.; de Haan, J.; Van Calsteren, K.; Verheecke, M.; Mhallem, M.; Amant, F. Ovarian cancer in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 41, 108–117. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, Y.; Zhao, Y.; Feng, S.; Zheng, C. Taxanes in combination with platinum derivatives for the treatment of ovarian cancer during pregnancy: A literature review. Int. J. Clin. Pharmacol. Ther. 2017, 55, 753–760. [Google Scholar] [CrossRef]
- Xu, T.; Wang, L.; Jia, Y.; Jia, Z.; Li, Z.; Cui, S.; Cui, M. Long-term multidisciplinary integrative therapy management resulted in favorable outcomes for ovarian cancer during pregnancy: A case report and literature review. J. Ovarian Res. 2019, 12, 1–6. [Google Scholar] [CrossRef]
- Cardonick, E.; Bhat, A.; Gilmandyar, D.; Somer, R. Maternal and fetal outcomes of taxane chemotherapy in breast and ovarian cancer during pregnancy: Case series and review of the literature. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012, 23, 3016–3023. [Google Scholar] [CrossRef]
- Safi, N.; Anazodo, A.; Dickinson, J.E.; Lui, K.; Wang, A.Y.; Li, Z.; Sullivan, E.A. In utero exposure to breast cancer treatment: A population-based perinatal outcome study. Br. J. Cancer 2019, 121, 719–721. [Google Scholar] [CrossRef]
- Mir, O.; Berveiller, P.; Ropert, S.; Goffinet, F.; Pons, G.; Treluyer, J.M.; Goldwasser, F. Emerging therapeutic options for breast cancer chemotherapy during pregnancy. Ann. Oncol. 2008, 19, 607–613. [Google Scholar] [CrossRef]
- Potluri, V.; Lewis, D.; Burton, G. V Chemotherapy with taxanes in breast cancer during pregnancy: Case report and review of the literature. Clin. Breast Cancer 2006, 7, 167–170. [Google Scholar] [CrossRef]
- Gadducci, A.; Cosio, S.; Fanucchi, A.; Nardini, V.; Roncella, M.; Conte, P.F.; Genazzani, A.R. Chemotherapy with epirubicin and paclitaxel for breast cancer during pregnancy: Case report and review of the literature. Anticancer Res. 2003, 23, 5225–5229. [Google Scholar]
- van Hasselt, J.G.C.; van Calsteren, K.; Heyns, L.; Han, S.; Mhallem Gziri, M.; Schellens, J.H.M.; Beijnen, J.H.; Huitema, A.D.R.; Amant, F. Optimizing anticancer drug treatment in pregnant cancer patients: Pharmacokinetic analysis of gestation-induced changes for doxorubicin, epirubicin, docetaxel and paclitaxel. Ann. Oncol. 2014, 25, 2059–2065. [Google Scholar] [CrossRef]
- Lee, N.Y.; Lee, K.B.; Kang, Y.S. Pharmacokinetics, placenta, and brain uptake of paclitaxel in pregnant rats. Cancer Chemother. Pharmacol. 2014, 73, 1041–1045. [Google Scholar] [CrossRef]
- Rengasamy, P. Congenital Malformations Attributed to Prenatal Exposure to Cyclophosphamide. Anticancer. Agents Med. Chem. 2017, 17, 1211–1227. [Google Scholar] [CrossRef]
- Passera, S.; Contarino, V.; Scarfone, G.; Scola, E.; Fontana, C.; Peccatori, F.; Cinnante, C.; Counsell, S.; Ossola, M.; Pisoni, S.; et al. Effects of in-utero exposure to chemotherapy on fetal brain growth. Int. J. Gynecol. Cancer 2019, 29, 1195–1202. [Google Scholar] [CrossRef]
- Zagouri, F.; Sergentanis, T.N.; Chrysikos, D.; Bartsch, R. Platinum derivatives during pregnancy in cervical cancer: A systematic review and meta-analysis. Obstet. Gynecol. 2013, 121, 337–343. [Google Scholar] [CrossRef]
- Köhler, C.; Oppelt, P.; Favero, G.; Morgenstern, B.; Runnebaum, I.; Tsunoda, A.; Schmittel, A.; Schneider, A.; Mueller, M.; Marnitz, S. How much platinum passes the placental barrier? Analysis of platinum applications in 21 patients with cervical cancer during pregnancy. Am. J. Obstet. Gynecol. 2015, 213, 206.e1–206.e5. [Google Scholar] [CrossRef]
- Kantrowitz-Gordon, I.; Hays, K.; Kayode, O.; Kumar, A.R.; Kaplan, H.G.; Reid, J.M.; Safgren, S.L.; Ames, M.M.; Easterling, T.R.; Hebert, M.F. Pharmacokinetics of dacarbazine (DTIC) in pregnancy. Cancer Chemother. Pharmacol. 2018, 81, 455–460. [Google Scholar] [CrossRef]
- Bar-joseph, H.; Peccatori, F.A.; Goshen-lago, T.; Cribiù, F.M.; Scarfone, G.; Miller, I.; Nemerovsky, L.; Levi, M.; Shalgi, R.; Ben-aharon, I. Cancer during pregnancy: The role of vascular toxicity in chemotherapy-induced placental toxicity. Cancers 2020, 12, 1277. [Google Scholar] [CrossRef]
- Grohard, P.; Akbaraly, J.P.; Saux, M.C.; Gimenez, S.; Robert, J.; Brachet-Liermain, A.; Leng, J.J. Transplacental passage of doxorubicin. J. Gynecol. Obstet. Biol. Reprod. 1989, 18, 595–600. [Google Scholar]
- Shah, M.; Bourner, L.; Ali, S.; Al-Enazy, S.; Youssef, M.M.; Fisler, M.; Rytting, E. HPLC method development for quantification of doxorubicin in cell culture and placental perfusion media. Separations 2018, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Van Calsteren, K.; Hartmann, D.; Van Aerschot, L.; Verbesselt, R.; Van Bree, R.; D’Hooge, R.; Amant, F. Vinblastine and doxorubicin administration to pregnant mice affects brain development and behaviour in the offspring. Neurotoxicology 2009, 30, 647–657. [Google Scholar] [CrossRef]
- Padberg, S.; Mick, I.; Frenzel, C.; Greil, R.; Hilberath, J.; Schaefer, C. Transient congenital dilated cardiomyopathy after maternal R-CHOP chemotherapy during pregnancy. Reprod. Toxicol. 2017, 71, 146–149. [Google Scholar] [CrossRef]
- Brito, V.B.; Nascimento, L.V.M.; Nunes, R.B.; Moura, D.J.; Lago, P.D.; Saffi, J. Exercise during pregnancy decreases doxorubicin-induced cardiotoxic effects on neonatal hearts. Toxicology 2016, 368–369, 46–57. [Google Scholar] [CrossRef]
- Ryu, R.J.; Eyal, S.; Kaplan, H.G.; Akbarzadeh, A.; Hays, K.; Puhl, K.; Easterling, T.R.; Berg, S.L.; Scorsone, K.A.; Feldman, E.M.; et al. Pharmacokinetics of doxorubicin in pregnant women. Cancer Chemother. Pharmacol. 2014, 73, 789–797. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Omura, H.; Tokuyasu, Y.; Nakamoto, S.; Tanaka, T. Successful management of primary mediastinal large B-cell lymphoma during pregnancy. Intern. Med. 2019, 58, 3455–3459. [Google Scholar] [CrossRef] [Green Version]
- Maggen, C.; Dierickx, D.; Lugtenburg, P.; Laenen, A.; Cardonick, E.; Smakov, R.; Bellido, M.; Cabrera-Garcia, A.; Gziri, M.M.; Halaska, M.J.; et al. Obstetric and maternal outcomes in patients diagnosed with Hodgkin lymphoma during pregnancy: A multicentre, retrospective, cohort study. Lancet Haematol. 2019, 6, e551–e561. [Google Scholar] [CrossRef]
- Sule, E.A.; Ewemade, F. Management of pregnancy associated breast cancer with chemotherapy in a developing country. Int. J. Surg. Case Rep. 2015, 17, 117–120. [Google Scholar] [CrossRef] [Green Version]
- Pinnix, C.C.; Osborne, E.M.; Chihara, D.; Lai, P.; Zhou, S.; Ramirez, M.M.; Oki, Y.; Hagemeister, F.B.; Rodriguez, A.M.; Samaniego, F.; et al. Maternal and fetal outcomes after therapy for hodgkin or non-hodgkin lymphoma diagnosed during pregnancy. JAMA Oncol. 2016, 2, 1065–1069. [Google Scholar] [CrossRef] [Green Version]
- Framarino-dei-Malatesta, M.; Perrone, G.; Giancotti, A.; Ventriglia, F.; Derme, M.; Iannini, I.; Tibaldi, V.; Galoppi, P.; Sammartino, P.; Cascialli, G.; et al. Epirubicin: A new entry in the list of fetal cardiotoxic drugs? Intrauterine death of one fetus in a twin pregnancy. Case report and review of literature. BMC Cancer 2015, 15, 951. [Google Scholar] [CrossRef] [Green Version]
- Mir, O.; Berveiller, P.; Rouzier, R.; Goffinet, F.; Goldwasser, F.; Treluyer, J.M. Chemotherapy for breast cancer during pregnancy: Is epirubicin safe? Ann. Oncol. 2008, 19, 1814–1815. [Google Scholar] [CrossRef]
- Germann, N.; Goffinet, F.; Goldwasser, F. Anthracyclines during pregnancy: Embryo-fetal outcome in 160 patients. Ann. Oncol. 2004, 15, 146–150. [Google Scholar] [CrossRef]
- Matalon, S.T.; Ornoy, A.; Lishner, M. Review of the potential effects of three commonly used antineoplastic and immunosuppressive drugs (cyclophosphamide, azathioprine, doxorubicin on the embryo and placenta). Reprod. Toxicol. 2004, 18, 219–230. [Google Scholar] [CrossRef]
- Grunewald, S.; Jank, A. Neue dermatologische systemtherapien bei kinderwunsch, schwangerschaft und stillzeit. JDDG J. Ger. Soc. Dermatol. 2015, 13, 277–292. [Google Scholar] [CrossRef] [Green Version]
- Palmeira, P.; Quinello, C.; Silveira-Lessa, A.L.; Zago, C.A.; Carneiro-Sampaio, M. IgG placental transfer in healthy and pathological pregnancies. Clin. Dev. Immunol. 2012, 2012. [Google Scholar] [CrossRef]
- Kaygusuz, I.; Eser, A.; Gumus, I.I.; Kosus, A.; Yenidunya, S.; Namuslu, M.; Kafali, H. Effect of anti-vascular endothelial growth factor antibody during early fetal development in rats. J. Matern. Neonatal Med. 2014, 27, 1744–1748. [Google Scholar] [CrossRef]
- Patyna, S.; Haznedar, J.; Morris, D.; Freshwater, K.; Peng, G.; Sukbuntherng, J.; Chmielewski, G.; Matsumoto, D. Evaluation of the safety and pharmacokinetics of the multi-targeted receptor tyrosine kinase inhibitor sunitinib during embryo-fetal development in rats and rabbits. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2009, 86, 204–213. [Google Scholar] [CrossRef]
- Cross, S.N.; Ratner, E.; Rutherford, T.J.; Schwartz, P.E.; Norwitz, E.R. Bevacizumab-mediated interference with VEGF signaling is sufficient to induce a preeclampsia-like syndrome in nonpregnant women. Rev. Obstet. Gynecol. 2012, 5, 2–8. [Google Scholar]
- Goller, S.S.; Markert, U.R.; Fröhlich, K. Trastuzumab in the Treatment of Pregnant Breast Cancer Patients—An Overview of the Literature. Geburtshilfe Frauenheilkd. 2019, 79, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Lambertini, M.; Martel, S.; Campbell, C.; Guillaume, S.; Hilbers, F.S.; Schuehly, U.; Korde, L.; Azim, H.A.; Di Cosimo, S.; Tenglin, R.C.; et al. Pregnancies during and after trastuzumab and/or lapatinib in patients with human epidermal growth factor receptor 2–positive early breast cancer: Analysis from the NeoALTTO (BIG 1-06) and ALTTO (BIG 2-06) trials. Cancer 2019, 125, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Gottschalk, I.; Berg, C.; Harbeck, N.; Stressig, R.; Kozlowski, P. Fetal renal insufficiency following trastuzumab treatment for breast cancer in pregnancy: Case report und review of the current literature. Breast Care 2011, 6, 475–478. [Google Scholar] [CrossRef] [Green Version]
- Zambelli, A.; Da Prada, G.A.; Fregoni, V.; Ponchio, L.; Sagrada, P.; Pavesi, L. Erlotinib administration for advanced non-small cell lung cancer during the first 2 months of unrecognized pregnancy. Lung Cancer 2008, 60, 455–457. [Google Scholar] [CrossRef]
- Rivas, G.; Llinás, N.; Bonilla, C.; Rubiano, J.; Cuello, J.; Arango, N. Use of erlotinib throughout pregnancy: A case-report of a patient with metastatic lung adenocarcinoma. Lung Cancer 2012, 77, 469–472. [Google Scholar] [CrossRef]
- Lee, C.H.; Liam, C.K.; Pang, Y.K.; Chua, K.T.; Lim, B.K.; Lai, N.L. Successful pregnancy with epidermal growth factor receptor tyrosine kinase inhibitor treatment of metastatic lung adenocarcinoma presenting with respiratory failure. Lung Cancer 2011, 74, 349–351. [Google Scholar] [CrossRef]
- Padrão, E.; Melo, C.; Fernandes, G.; Magalhães, A. Lung cancer in pregnancy—Report of a case treated with crizotinib. Pulmonology 2018, 24, 205–207. [Google Scholar] [CrossRef]
- Jensen, K.H.; Persson, G.; Storgaard, L.; Nielsen, B.B.; Pedersen, B.W.; Maroun, L.L.; Huitema, A.; Pøhl, M. Antineoplastic treatment with crizotinib during pregnancy: A case report. Acta Oncol. 2019, 58, 121–122. [Google Scholar] [CrossRef]
- Ji, Y.; Schwartz, J.; Hartford, A.; Ramsey, J.; Phillips, J.; Verschraegen, C. Successful treatment of non-small cell lung cancer with erlotinib throughout pregnancy. JAMA Oncol. 2015, 1, 838–840. [Google Scholar] [CrossRef]
- Driscoll, M.S.; Martires, K.; Bieber, A.K.; Pomeranz, M.K.; Grant-Kels, J.M.; Stein, J.A. Pregnancy and melanoma. J. Am. Acad. Dermatol. 2016, 75, 669–678. [Google Scholar] [CrossRef]
EXPERIMENTAL MODELS | |||
---|---|---|---|
ANTICANCER AGENTS | In Vivo Data on Animal Models | Ex Vivo Human Data (Human Perfused Cotyledon Model) | In Vivo Human Data |
Antimetabolite agents | |||
Fluorouracil | Rat model: Related fetal exposure = 28.7% [61] | No data | No data |
Antimitotiques agents | |||
Vinca alcaloïds | |||
Vinblastine | Mouse model: FTR = 13.8% [62] Baboon model: FTR = 18.5% [63] | No data | No data |
Vincristine | No data | No data | No data |
Taxanes | |||
Paclitaxel | Mouse model: No evidence of placental transfer [62] Baboon model: FTR = 1.5%, detectable in fetal tissues [64] | FTR = 1.72% to 7% [65,66,67,68,69] | Detected in neonate’s meconium (399.9 pg/mg) [70] |
Docetaxel | Baboon model: Undectectbable in fetal blood, detected on fetal tissues [64] | FTR = 4% [68] | No data |
Alkylating agents | |||
Cyclophosphamide | Baboon model: FTR = 25% [63] | No data | Detected in AF: 25% of maternal plasma level 1h after injection [71] |
Dacarbazine | No data | No data | No data |
Platinum derivatives | |||
Cisplatin | Mouse model: FTR gestational age-dependent [72] Pata monkeys/rats models: Detected in fetal and neonate’s tissues [73,74] | FTR = 9% [75] | Detected in cord blood (23–65% of MC), AF (10–42% of MC), and placental tissues [76,77] |
Carboplatin | Mouse model: FTR = 117% [62] Baboon model: FTR = 57.5% [63] | FTR = 4–13% [78,79] | Detected in cord blood, AF, and placental tissues [15,77,80,81,82,83] |
Oxaliplatin | No data | No data | No data |
Topoisomerase inhibitors | |||
Etoposide | Mouse model: Induced apoptosis in trophoblasts [84] | No data | No data |
Anthracyclines | |||
Doxorubicin | No data | FTR of non-pegylated liposomal doxorubicin = 12%/FTR of pegylated liposomal doxorubicin = 0% [85] | Undetectable in cord blood, AF, or placenta at delivery [86,87,88] Detectable in fetal organs [88,89,90,91] |
Epirubicin | No data | No data | No data |
Irinotecan | No data | No data | No data |
Other DNA modifying agent | |||
Bleomycin | No data | No data | No data |
Monoclonal antibodies | |||
Bevacizumab | Rat model: Detectable in the embryo at day 13 [92] | No data | No data |
Cetuximab | No data | No data | No data |
Ipilimumab | No data | No data | No data |
Trastuzumab | Pregnant baboons: FTR = 85% after 2 h and detected in AF (36.4% of the fetal plasma concentration after 26h) [64] | No data | No data |
Protein kinase inhibitors | |||
Gefitinib | No data | FTR = 16.8 % [57] | Detected in cord blood (25.7 ng/mL) and AF (16.9 ng/mL) = 20% of MC [93] |
Erlotinib | No data | FTR = 31.4 % [57] | No data |
Osimertinib | No data | No data | No data |
Vemurafenib | No data | No data | Detected in cord blood (10.9 µg/mL) = 50% of MC [40] |
Crizotinib | No data | FTR < 6% [94] | No data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benoit, L.; Mir, O.; Vialard, F.; Berveiller, P. Cancer during Pregnancy: A Review of Preclinical and Clinical Transplacental Transfer of Anticancer Agents. Cancers 2021, 13, 1238. https://doi.org/10.3390/cancers13061238
Benoit L, Mir O, Vialard F, Berveiller P. Cancer during Pregnancy: A Review of Preclinical and Clinical Transplacental Transfer of Anticancer Agents. Cancers. 2021; 13(6):1238. https://doi.org/10.3390/cancers13061238
Chicago/Turabian StyleBenoit, Laure, Olivier Mir, François Vialard, and Paul Berveiller. 2021. "Cancer during Pregnancy: A Review of Preclinical and Clinical Transplacental Transfer of Anticancer Agents" Cancers 13, no. 6: 1238. https://doi.org/10.3390/cancers13061238
APA StyleBenoit, L., Mir, O., Vialard, F., & Berveiller, P. (2021). Cancer during Pregnancy: A Review of Preclinical and Clinical Transplacental Transfer of Anticancer Agents. Cancers, 13(6), 1238. https://doi.org/10.3390/cancers13061238