Pregnancy and Cancer: Cellular Biology and Mechanisms Affecting the Placenta
Abstract
:Simple Summary
Abstract
1. Introduction
2. Placenta and Cancer
2.1. Placental Physiology
2.2. Similarities between Cancer and Placenta Development
2.2.1. Hypoxia-Inducible Factor Signalling
2.2.2. Placenta-Specific Protein-1 Signalling
2.2.3. Placenta Growth Factor
2.2.4. Cancer Response Due to Placental Factors
2.2.5. hCG Effects in Cancer Cells
2.2.6. Oestrogen, Progesterone, and Other Factors Related to Pregnancy That Affect Cancer Cells
2.3. Placental Impairment Due to Cancer Association
3. Leucine-Rich Diet as a Potential Treatment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolb, R.; Sutterwala, F.S.; Zhang, W. Obesity and cancer: Inflammation bridges the two. Curr. Opin. Pharmacol. 2016, 29, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Pereg, D.; Koren, G.; Lishner, M. Cancer in pregnancy: Gaps, challenges and solutions. Cancer Treat. Rev. 2008, 34, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Meng, X.; Chen, Y.; Leng, S.X.; Zhang, H. The Biology of Aging and Cancer: Frailty, Inflammation, and Immunity. Cancer J. 2017, 23, 201–205. [Google Scholar] [CrossRef] [PubMed]
- McCormick, A.; Peterson, E. Cancer in Pregnancy. Obstet. Gynecol. Clin. N. Am. 2018, 45, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Zagouri, F.; Dimitrakakis, C.; Marinopoulos, S.; Tsigginou, A.; Dimopoulos, M.A. Cancer in pregnancy: Disentangling treatment modalities. ESMO Open 2016, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Amant, F.; Han, S.N.; Gziri, M.M.; Vandenbroucke, T.; Verheecke, M.; Van Calsteren, K. Management of cancer in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2015, 29, 741–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puzzi-Fernandes, C.; Surita, F.G.; Schettini, C.S.; Parpinelli, M.A.; Guida, J.P.; Costa, M.L. Awareness towards an increasing concern during pregnancy: Maternal and perinatal outcomes of women with cancer. Am. J. Obstet. Gynecol. MFM 2020, 2, 100168. [Google Scholar] [CrossRef] [PubMed]
- Peccatori, F.A.; Azim, J.A.; Orecchia, R.; Hoekstra, H.J.; Pavlidis, N.; Kesic, V.; Pentheroudakis, G. Cancer, pregnancy and fertility: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013, 24, vi160–vi170. [Google Scholar] [CrossRef]
- Triunfo, S.; Scambia, G. Cancer in pregnancy: Diagnosis, treatment and neonatal outcome. Minerva Ginecol. 2014, 66, 325–334. [Google Scholar] [PubMed]
- Benardete-Harari, D.N.; Kershenovich-Gersson, J.; Meraz-Ávila, D.; Galnares-Olalde, J.A.; Olaya-Guzmán, E.J. Use of chemotherapy during pregnancy. Rev. Med. Inst. Mex. Seguro Soc. 2016, 54, 752–758. [Google Scholar] [PubMed]
- de Haan, J.; Verheecke, M.; Van Calsteren, K.; Van Calster, B.; Shmakov, R.G.; Mhallem Gziri, M.; Halaska, M.J.; Fruscio, R.; Lok, C.A.R.; Boere, I.A.; et al. Oncological management and obstetric and neonatal outcomes for women diagnosed with cancer during pregnancy: A 20-year international cohort study of 1170 patients. Lancet Oncol. 2018, 19, 337–346. [Google Scholar] [CrossRef]
- Walsh, E.M.; O’Kane, G.M.; Cadoo, K.A.; Graham, D.M.; Korpanty, G.J.; Power, D.G.; Carney, D.N. Is chemotherapy always required for cancer in pregnancy? An observational study. Ir. J. Med. Sci. 2017, 186, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Dekrem, J.; Van Calsteren, K.; Amant, F. Effects of fetal exposure to maternal chemotherapy. Pediatr. Drugs 2013, 15, 329–334. [Google Scholar] [CrossRef]
- Macklin, P.S.; McAuliffe, J.; Pugh, C.W.; Yamamoto, A. Hypoxia and HIF pathway in cancer and the placenta. Placenta 2017, 56, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E.; Murray, A.J. Oxygen and placental development; parallels and differences with tumour biology. Placenta 2017, 56, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Cruz, B.L.G.; da Silva, P.C.; Tomasin, R.; Oliveira, A.G.; Viana, L.R.; Salomao, E.M.; Gomes-Marcondes, M.C.C. Dietary leucine supplementation minimises tumour-induced damage in placental tissues of pregnant, tumour-bearing rats. BMC Cancer 2016, 16, 58. [Google Scholar] [CrossRef] [Green Version]
- Burton, G.J.; Fowden, A.L.; Thornburg, K.L. Placental origins of chronic disease. Physiol. Rev. 2016, 96, 1509–1565. [Google Scholar] [CrossRef]
- Kappen, C.; Kruger, C.; MacGowan, J.; Salbaum, J.M. Maternal diet modulates placenta growth and gene expression in a mouse model of diabetic pregnancy. PLoS ONE 2012, 7, e38445. [Google Scholar] [CrossRef] [PubMed]
- Chaiworapongsa, T.; Chaemsaithong, P.; Yeo, L.; Romero, R. Pre-eclampsia part 1: Current understanding of its pathophysiology. Nat. Rev. Nephrol. 2014, 10, 466–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mol, B.W.J.; Roberts, C.T.; Thangaratinam, S.; Magee, L.A.; De Groot, C.J.M.; Hofmeyr, G.J. Pre-eclampsia. Lancet 2016, 387, 999–1011. [Google Scholar] [CrossRef]
- Sferruzzi-Perri, A.N.; Camm, E.J. The programming power of the placenta. Front. Physiol. 2016, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Boss, A.L.; Chamley, L.W.; James, J.L. Placental formation in early pregnancy: How is the centre of the placenta made? Hum. Reprod. Update 2018, 24, 750–760. [Google Scholar] [CrossRef]
- Viana, L.R.L.R.; Gomes-Marcondes, M.C.C. Leucine-Rich Diet Improves the Serum Amino Acid Profile and Body Composition of Fetuses from Tumor-Bearing Pregnant Mice1. Biol. Reprod. 2013, 88, 1–8. [Google Scholar] [CrossRef]
- Viana, L.R.; Gomes-Marcondes, M.C.C. A leucine-rich diet modulates the tumor-induced down-regulation of the MAPK/ERK and PI3K/Akt/mTOR signaling pathways and maintains the expression of the ubiquitin-proteasome pathway in the placental tissue of NMRI mice. Biol. Reprod. 2015, 92, 49. [Google Scholar] [CrossRef]
- Cruz, B.; Oliveira, A.; Ventrucci, G.; Gomes-Marcondes, M.C.C. A leucine-rich diet modulates the mTOR cell signalling pathway in the gastrocnemius muscle under different Walker-256 tumour growth conditions. BMC Cancer 2019, 19, 349. [Google Scholar] [CrossRef]
- Hobson, N.; Schmidt, U.; McArthur, S. Development of Human Blastocysts, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; ISBN 9780123854735. [Google Scholar]
- Chang, W.; Wang, H.; Cui, L.; Peng, N.; Fan, X.; Xue, L.; Yang, Q. PLAC1 is involved in human trophoblast syncytialization. Phytochem. Lett. 2016, 16, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Staud, F.; Karahoda, R. Trophoblast: The central unit of fetal growth, protection and programming. Int. J. Biochem. Cell Biol. 2018, 105, 35–40. [Google Scholar] [CrossRef]
- Costa, M.A. Scrutinising the regulators of syncytialization and their expression in pregnancy-related conditions. Mol. Cell. Endocrinol. 2016, 420, 180–193. [Google Scholar] [CrossRef] [PubMed]
- Cuffe, J.S.M.; Dickinson, H.; Simmons, D.G.; Moritz, K.M. Sex specific changes in placental growth and MAPK following short term maternal dexamethasone exposure in the mouse. Placenta 2011, 32, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, A.; Guadix, P.; Maymó, J.; Dueñas, J.L.; Varone, C.; Fernández-Sánchez, M.; Sánchez-Margalet, V. Insulin and Leptin Signaling in Placenta from Gestational Diabetic Subjects. Horm. Metab. Res. 2015, 48, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roos, S.; Powell, T.L.; Jansson, T. Placental mTOR links maternal nutrient availability to fetal growth. Biochem. Soc. Trans. 2009, 37, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y. Endovascular trophoblast and spiral artery remodeling. Mol. Cell. Endocrinol. 2020, 503, 110699. [Google Scholar] [CrossRef]
- Cantonwine, D.E.; McElrath, T.F.; Trabert, B.; Xu, X.; Sampson, J.; Roberts, J.M.; Hoover, R.N.; Troisi, R. Estrogen metabolism pathways in preeclampsia and normal pregnancy. Steroids 2019, 144, 8–14. [Google Scholar] [CrossRef]
- Di Renzo, G.C.; Giardina, I.; Clerici, G.; Brillo, E.; Gerli, S. Progesterone in normal and pathological pregnancy. Horm. Mol. Biol. Clin. Investig. 2016, 27, 35–48. [Google Scholar] [CrossRef]
- Schumacher, A.; Zenclussen, A.C. Human Chorionic Gonadotropin-Mediated Immune Responses That Facilitate Embryo Implantation and Placentation. Front. Immunol. 2019, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, H.F. Human chorionic gonadotropin (hCG), the hormone of life and death: A review. J. Exp. Ther. Oncol. 2002, 2, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Theofanakis, C.; Drakakis, P.; Besharat, A.; Loutradis, D. Human Chorionic Gonadotropin: The Pregnancy Hormone and More. Int. J. Mol. Sci. 2017, 18, 1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argilés, J.M.; Busquets, S.; Stemmler, B.; López-Soriano, F.J. Cancer cachexia: Understanding the molecular basis. Nat. Rev. Cancer 2014, 14, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Vigneri, R.; Goldfine, I.D.; Frittitta, L. Insulin, insulin receptors, and cancer. J. Endocrinol. Investig. 2016, 39, 1365–1376. [Google Scholar] [CrossRef]
- Abdel-wahab, A.F.; Mahmoud, W.; Al-harizy, R.M. Targeting Glucose Metabolism to Suppress Cancer Progression; Elsevier Ltd: Amsterdam, The Netherlands, 2019; ISBN 0020102403554. [Google Scholar]
- Mossmann, D.; Park, S.; Hall, M.N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer 2018, 18, 744–757. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.J.; Lessey, B.A. Embryo implantation and tumor metastasis: Common pathways of invasion and angiogenesis. Semin. Reprod. Endocrinol. 1999, 13, 275. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, A.W.; Wagner, G.P. Malignant cancer and invasive placentation: A case for positive pleiotropy between endometrial and malignancy phenotypes. Evol. Med. Public Health 2014, 2014, 136–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanteri, E.; Pistritto, M.; Bartoloni, G.; Cordaro, S.; Stivala, F.; Montoneri, C. Expression of α6 and β4 integrin subunits on human endometrium throughout the menstrual cycle and during early pregnancy. Fertil. Steril. 1998, 69, 37–40. [Google Scholar] [CrossRef]
- Danen, E.H.; Jansen, K.F.; Van Kraats, A.A.; Cornelissen, I.M.; Ruiter, D.J.; Van Muijen, G.N. Alpha v-integrins in human melanoma: Gain of alpha v beta 3 and loss of alpha v beta 5 are related to tumor progression in situ but not to metastatic capacity of cell lines in nude mice. Int. J. Cancer 1995, 61, 491–496. [Google Scholar] [CrossRef]
- Stracke, M.L.; Murata, J.; Aznavoorian, S.; Liotta, L.A. The role of the extracellular matrix in tumor cell metastasis. In Vivo 1994, 8, 49–58. [Google Scholar] [PubMed]
- Freyer, C.; Zeller, U.; Renfree, M.B. The marsupial placenta: A phylogenetic analysis. J. Exp. Zool. Part A Comp. Exp. Biol. 2003, 299, 59–77. [Google Scholar] [CrossRef]
- Balamurugan, K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int. J. Cancer 2016, 138, 1058–1066. [Google Scholar] [CrossRef]
- Courtnay, R.; Ngo, D.C.; Malik, N.; Ververis, K.; Tortorella, S.M.; Karagiannis, T.C. Cancer metabolism and the Warburg effect: The role of HIF-1 and PI3K. Mol. Biol. Rep. 2015, 42, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Mimeault, M.; Batra, S.K. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J. Cell. Mol. Med. 2013, 17, 30–54. [Google Scholar] [CrossRef] [PubMed]
- Fryer, B.H.; Simon, M.C. Hypoxia, HIF and the Placenta. Cell Cycle 2006, 5, 495–498. [Google Scholar] [CrossRef]
- Maltepe, E.; Krampitz, G.W.; Okazaki, K.M.; Red-Horse, K.; Mak, W.; Simon, M.C.; Fisher, S.J. Hypoxia-inducible factor-dependent histone deacetylase activity determines stem cell fate in the placenta. Development 2005, 132, 3393–3403. [Google Scholar] [CrossRef] [Green Version]
- Adelman, D.M.; Gertsenstein, M.; Nagy, A.; Simon, M.C.; Maltepe, E. Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev. 2000, 14, 3191–3203. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Baddoo, M.C.; Yin, Q. The placental specific gene, PLAC1, is induced by the Epstein-Barr virus and is expressed in human tumor cells. Virol. J. 2014, 11, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, W.; Yang, Q.; Zhang, H.; Lin, H.; Zhou, Z.; Lu, X.; Zhu, C.; Xue, L.; Wang, H. Role of placenta-specific protein 1 in trophoblast invasion and migration. Reproduction 2014, 148, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Silva, W.A.; Gnjatic, S.; Ritter, E.; Chua, R.; Cohen, T.; Hsu, M.; Jungbluth, A.A.; Altorki, N.K.; Chen, Y.T.; Old, L.J.; et al. PLAC1, a trophoblast-specific cell surface protein, is expressed in a range of human tumors and elicits spontaneous antibody responses. Cancer Immun. 2007, 7, 1–9. [Google Scholar]
- Fant, M.; Weisoly, D.L.; Cocchia, M.; Huber, R.; Khan, S.; Lunt, T.; Schlessinger, D. PLAC1, a trophoblast-specific gene, is expressed throughout pregnancy in the human placenta and modulated by keratinocyte growth factor. Mol. Reprod. Dev. 2002, 63, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Massabbal, E.; Parveen, S.; Weisoly, D.L.; Nelson, D.M.; Smith, S.D.; Fant, M. PLAC1 expression increases during trophoblast differentiation: Evidence for regulatory interactions with the fibroblast growth factor-7 (FGF-7) axis. Mol. Reprod. Dev. 2005, 71, 299–304. [Google Scholar] [CrossRef]
- Rawn, S.M.; Cross, J.C. The evolution, regulation, and function of placenta-specific genes. Annu. Rev. Cell Dev. Biol. 2008, 24, 159–181. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Wang, X.; Shi, C.; Jin, L.; Hu, J.; Zhang, A.; Li, J.; Vijayendra, N.; Doodala, V.; Weiss, S.; et al. Plac1 Is a Key Regulator of the Inflammatory Response and Immune Tolerance in Mammary Tumorigenesis. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zha, T.Q.; He, X.; Chen, L.; Zhu, Q.; Wu, W.B.; Nie, F.Q.; Wang, Q.; Zang, C.S.; Zhang, M.L.; et al. Placenta-specific protein 1 promotes cell proliferation and invasion in non-small cell lung cancer. Oncol. Rep. 2018, 39, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Lecarpentier, É.; Vieillefosse, S.; Haddad, B.; Fournier, T.; Leguy, M.-C.; Guibourdenche, J.; Tsatsaris, V. Placental growth factor (PlGF) and sFlt-1 during pregnancy: Physiology, assay and interest in preeclampsia. Ann. Biol. Clin. 2016, 74, 259–267. [Google Scholar] [CrossRef]
- Knöfler, M. Critical growth factors and signalling pathways controlling human trophoblast invasion. Int. J. Dev. Biol. 2010, 54, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.C.; Tsao, P.N.; Yu, S.C.; Shun, C.T.; Tsai-Wu, J.J.; Wu, C.H.H.; Su, Y.N.; Hsieh, F.J.; Wong, J.M. Placenta growth factor expression is correlated with survival of patients with colorectal cancer. Gut 2005, 54, 666–672. [Google Scholar] [CrossRef] [Green Version]
- Parr, C.; Watkins, G.; Boulton, M.; Cai, J.; Jiang, W.G. Placenta growth factor is over-expressed and has prognostic value in human breast cancer. Eur. J. Cancer 2005, 41, 2819–2827. [Google Scholar] [CrossRef] [PubMed]
- Sarais, V.; Cermisoni, G.C.; Schimberni, M.; Alteri, A.; Papaleo, E.; Somigliana, E.; Vigano, P. Human Chorionic Gonadotrophin as a Possible Mediator of Leiomyoma Growth during Pregnancy: Molecular Mechanisms. Int. J. Mol. Sci. 2017, 18, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honegger, J.; Mann, K.; Thlerauf, P. Human chorionic gonadotrophin immunoactivity in cystic intracranial tumours. Clin. Endocrinol. 1995, 42, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Shang, Y. Estrogen and Cancer. Annu. Rev. Physiol. 2013, 75, 225–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valadez-cosmes, P.; Vázquez-martínez, E.R.; Cerbón, M.; Camacho-Arroyo, I. Membrane progesterone receptors in reproduction and cancer. Mol. Cell. Endocrinol. 2016, 434, 166–175. [Google Scholar] [CrossRef]
- Cole, L.A. HCG, the wonder of today’s science. Reprod. Biol. Endocrinol. 2012, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Stepien, A.; Shemesh, M.; Ziecik, A.J. Luteinising hormone receptor kinetic and LH-induced prostaglandin production throughout the oestrous cycle in porcine endometrium. Reprod. Nutr. Dev. 1999, 39, 663–674. [Google Scholar] [CrossRef] [Green Version]
- Reisinger, K.; Baal, N.; McKinnon, T.; Münstedt, K.; Zygmunt, M. The gonadotropins: Tissue-specific angiogenic factors? Mol. Cell. Endocrinol. 2007, 269, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Brkić, J.; Liu, M.; Fu, G.; Peng, C.; Wang, Y.-L. Placental trophoblast cell differentiation: Physiological regulation and pathological relevance to preeclampsia. Mol. Asp. Med. 2013, 34, 981–1023. [Google Scholar] [CrossRef]
- Russo, J.; Hu, Y.F.; Silva, I.D.C.G.; Russo, I.H. Cancer risk related to mammary gland structure and development. Microsc. Res. Tech. 2001, 52, 204–223. [Google Scholar] [CrossRef]
- Butt, A.J.; McNeil, C.M.; Musgrove, E.A.; Sutherland, R.L. Downstream targets of growth factor and oestrogen signalling and endocrine resistance: The potential roles of c-Myc, cyclin D1 and cyclin E. Endocr. Relat. Cancer 2005, 12 (Suppl. 1), S47–S59. [Google Scholar] [CrossRef]
- Caldon, C.E.; Sutherland, R.L.; Musgrove, E.A. Cell cycle proteins in epithelial cell differentiation: Implications for breast cancer. Cell Cycle 2010, 9, 1918–1928. [Google Scholar] [CrossRef]
- Thompson, E.B. The many roles of c-myc in apoptosis. Annu. Rev. Physiol. 1998, 60, 575–600. [Google Scholar] [CrossRef]
- Froehlich, K.; Schmidt, A.; Heger, J.I.; Al-Kawlani, B.; Aberl, C.A.; Jeschke, U.; Loibl, S.; Markert, U.R. Breast cancer, placenta and pregnancy. Eur. J. Cancer 2019, 115, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Slepicka, P.F.; Cyrill, S.L.; Santos, C.O. Pregnancy and Breast Cancer: Pathways to Understand Risk and Prevention. Trends Mol. Med. 2019, 25, 866–881. [Google Scholar] [CrossRef] [Green Version]
- Callihan, E.B.; Gao, D.; Jindal, S.; Lyons, T.R.; Manthey, E.; Edgerton, S.; Urquhart, A.; Schedin, P.; Borges, V.F. Postpartum diagnosis demonstrates a high risk for metastasis and merits an expanded definition of pregnancy-associated breast cancer. Breast Cancer Res. Treat. 2013, 138, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Wagner, K.U.; Boulanger, C.A.; Henry, M.L.D.; Sgagias, M.; Hennighausen, L.; Smith, G.H. An adjunct mammary epithelial cell population in parous females: Its role in functional adaptation and tissue renewal. Development 2002, 129, 1377–1386. [Google Scholar] [PubMed]
- Alfasi, A.; Ben-Aharon, I. Breast Cancer during Pregnancy—Current Paradigms, Paths to Explore. Cancers 2019, 11, 1669. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.Y.; Jung, S.P.; Jung, E.S.; Park, S.M.; Lee, S.K.; Yu, J.H.; Lee, J.E.; Kim, S.W.; Nam, S.J. Clinical Characteristics and Prognosis of Pregnancy-Associated Breast Cancer: Poor Survival of Luminal B Subtype. Oncology 2018, 95, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Fortner, R.T.; Tolockiene, E.; Schock, H.; Oda, H.; Lakso, H.Å.; Hallmans, G.; Kaaks, R.; Toniolo, P.; Zeleniuch-Jacquotte, A.; Grankvist, K.; et al. Early pregnancy sex steroids during primiparous pregnancies and maternal breast cancer: A nested case-control study in the Northern Sweden Maternity Cohort. Breast Cancer Res. 2017, 19, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, S.; Cheng, Y.; Zhang, L.; Wang, X.; Wang, L.; Lan, P. Prognostic value of estrogen receptor- α and progesterone receptor in curatively resected colorectal cancer: A retrospective analysis with independent validations. BMC Cancer 2019, 19, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hsu, L.; Chu, N.; Kao, S. Estrogen, Estrogen Receptor and Lung Cancer. Int. J. Mol. Sci. 2017, 18, 1713. [Google Scholar] [CrossRef] [PubMed]
- Eberhart, C.E.; Coffey, R.J.; Radhika, A.; Giardiello, F.M.; Ferrenbach, S.; Dubois, R.N. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994, 107, 1183–1188. [Google Scholar] [CrossRef]
- Saif, M.W. Management of Colorectal Cancer in Pregnancy: A Multimodality Approach. Clin. Colorectal Cancer 2005, 5, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, J.; Silverstein, J.; Kidder, W.; Fisher, S.; Hope, T.A.; Maisel, S.; Ng, D.; Van Ziffle, J.; Atreya, C.E.; Van Loon, K. Hormone receptor expression of colorectal cancer diagnosed during the peri-partum period. Endocr. Connect. 2019, 8, 1149–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L. TGFβ and cancer metastasis: An inflammation link. Cancer Metastasis Rev. 2010, 29, 263–271. [Google Scholar] [CrossRef]
- Toledo, M.T.; Gomes Marcondes, M.C.C. Placental glycogen metabolism changes during walker tumour growth. Placenta 2004, 25, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Toledo, M.T.; Ventrucci, G.; Gomes-Marcondes, M.C.C. Increased oxidative stress in the placenta tissue and cell culture of tumour-bearing pregnant rats. Placenta 2011, 32, 859–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckman, D.A.; Mullin, J.P.; Brent, R.L.; Lloyd, J.B. Leucine transport from mother ro fetus in rat: Role of the visceral yolk sac. Nutr. Res. 1998, 18, 1783–1789. [Google Scholar] [CrossRef]
- Burton, G.J.; Jauniaux, E. Expert Reviews Pathophysiology of Placental-Derived Fetal Growth Restriction; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 745–761. [Google Scholar]
- Cruz, B.; Gomes-Marcondes, M.C. Leucine-rich diet supplementation modulates foetal muscle protein metabolism impaired by Walker-256 tumour. Reprod. Biol. Endocrinol. 2014, 12, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansell, E.; Zareian, N.; Malouf, C.; Kapeni, C.; Brown, N.; Badie, C.; Baird, D.; Lane, J.; Ottersbach, K.; Blair, A.; et al. DNA damage signalling from the placenta to foetal blood as a potential mechanism for childhood leukaemia initiation. Sci. Rep. 2019, 9, 1–17. [Google Scholar] [CrossRef]
- Benagiano, M.; Azzurri, A.; Ciervo, A.; Amedei, A.; Tamburini, C.; Ferrari, M.; Telford, J.L.; Baldari, C.T.; Romagnani, S.; Cassone, A.; et al. T helper type 1 lymphocytes drive inflammation in human atherosclerotic lesions. Proc. Natl. Acad. Sci. USA 2003, 100, 6658–6663. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Lopez, N.; Vega-Sanchez, R.; Castillo-Castrejon, M.; Romero, R.; Cubeiro-Arreola, K.; Vadillo-Ortega, F. Evidence for a Role for the Adaptive Immune Response in Human Term Parturition. Am. J. Reprod. Immunol. 2013, 69, 212–230. [Google Scholar] [CrossRef] [Green Version]
- Fraser, R.; Whitley, G.S.; Johnstone, A.P.; Host, A.J.; Sebire, N.J.; Thilaganathan, B.; Cartwright, J.E. Impaired decidual natural killer cell regulation of vascular remodelling in early human pregnancies with high uterine artery resistance. J. Pathol. 2012, 228, 322–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soeters, P.B.; Grimble, R.F. The conditional role of in fl ammation in pregnancy and cancer. Clin. Nutr. 2013, 32, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Flint, T.R.; Jones, J.O.; Ferrer, M.; Colucci, F.; Janowitz, T. A comparative analysis of immune privilege in pregnancy and cancer in the context of checkpoint blockade immunotherapy. Semin. Oncol. 2018, 45, 170–175. [Google Scholar] [CrossRef]
- Campoli, M.; Ferrone, S. HLA antigen changes in malignant cells: Epigenetic mechanisms and biologic significance. Oncogene 2008, 27, 5869–5885. [Google Scholar] [CrossRef] [Green Version]
- McGranahan, N.; Rosenthal, R.; Hiley, C.T.; Rowan, A.J.; Watkins, T.B.K.; Wilson, G.A.; Birkbak, N.J.; Veeriah, S.; Van Loo, P.; Herrero, J.; et al. Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell 2017, 171, 1259–1271.e11. [Google Scholar] [CrossRef] [Green Version]
- Schietinger, A.; Greenberg, P.D. Tolerance and exhaustion: Defining mechanisms of T cell dysfunction. Trends Immunol. 2014, 35, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erlebacher, A. Immunology of the Maternal-Fetal Interface. Annu. Rev. Immunol. 2013, 31, 387–413. [Google Scholar] [CrossRef]
- Altman, J.F.; Lowe, L.; Redman, B.; Esper, P.; Schwartz, J.L.; Johnson, T.M.; Haefner, H.K. Placental metastasis of maternal melanoma. J. Am. Acad. Dermatol. 2003, 49, 1150–1154. [Google Scholar] [CrossRef]
- Iller, K.E.M.; Awislak, A.G.Z.; Annon, C.A.G.; Illar, D.A.M.; Oughrey, M.A.B.L. Maternal Gastric Adenocarcinoma with Placental Metastases: What Is the Fetal Risk? Pediatric Dev. Pathol. 2012, 15, 237–239. [Google Scholar]
- Al-adnani, M.; Kiho, L.; Scheimberg, I. Maternal pancreatic carcinoma metastatic to the placenta: A case report and literature review. Pediatric Dev. Pathol. 2007, 10, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Van Calsteren, K.; Heyns, L.; De Smet, F.; Van Eycken, L.; Gziri, M.M.; Van Gemert, W.; Halaska, M.; Vergote, I.; Ottevanger, N.; Amant, F. Cancer during pregnancy: An analysis of 215 patients emphasizing the obstetrical and the Neonatal outcomes. J. Clin. Oncol. 2010, 28, 683–689. [Google Scholar] [CrossRef]
- Van Calsteren, K. Chemotherapy during pregnancy: Pharmacokinetics and impact on foetal neurological development. Facts Views Vis. ObGyn 2010, 2, 278–286. [Google Scholar]
- van Hasselt, J.G.C.; van Calsteren, K.; Heyns, L.; Han, S.; Mhallem Gziri, M.; Schellens, J.H.M.; Beijnen, J.H.; Huitema, A.D.R.; Amant, F. Optimizing anticancer drug treatment in pregnant cancer patients: Pharmacokinetic analysis of gestation-induced changes for doxorubicin, epirubicin, docetaxel and paclitaxel. Ann. Oncol. 2014, 25, 2059–2065. [Google Scholar] [CrossRef]
- Berveiller, P.; Mir, O.; Degrelle, S.A.; Tsatsaris, V.; Selleret, L.; Guibourdenche, J.; Evain-Brion, D.; Fournier, T.; Gil, S. Chemotherapy in pregnancy: Exploratory study of the effects of paclitaxel on the expression of placental drug transporters. Investig. New Drugs 2019, 37, 1075–1085. [Google Scholar] [CrossRef]
- Johnson, S. Cognitive and behavioural outcomes following very preterm birth. Semin. Fetal Neonatal Med. 2007, 12, 363–373. [Google Scholar] [CrossRef]
- Cruz, B.; Oliveira, A.; Gomes-Marcondes, M.C.C. L-leucine dietary supplementation modulates muscle protein degradation and increases pro-inflammatory cytokines in tumour-bearing rats. Cytokine 2017, 96, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, N.A. Coexistence of Pregnancy and Malignancy. Oncologist 2002, 7, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Oduncu, F.S.; Kimmig, R.; Hepp, H.; Emmerich, B. Cancer in pregnancy: Maternal-fetal conflict. J. Cancer Res. Clin. Oncol. 2003, 129, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Li, F.; Li, Y.; Tang, Y.; Kong, X.; Feng, Z.; Anthony, T.G.; Watford, M.; Hou, Y.; Wu, G.; et al. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 2016, 48, 41–51. [Google Scholar] [CrossRef]
- Hamarsland, H.; Nordengen, A.L.; Aas, S.N.; Holte, K.; Garthe, I.; Paulsen, G.; Cotter, M.; Børsheim, E.; Benestad, H.B.; Raastad, T. Native whey protein with high levels of leucine results in similar post-exercise muscular anabolic responses as regular whey protein: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2017, 14, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borack, M.S.; Volpi, E. Efficacy and Safety of Leucine Supplementation in the Elderly 1–3. J. Nutr. 2016, 146, 2625–2629. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Burghardt, R.C.; Wu, G.; Johnson, G.A.; Spencer, T.E.; Bazer, F.W. Select nutrients in the ovine uterine lumen. VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration. Biol. Reprod. 2011, 84, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ham, D.J.; Caldow, M.K.; Lynch, G.S.; Koopman, R. Leucine as a treatment for muscle wasting: A critical review. Clin. Nutr. 2014, 33, 937–945. [Google Scholar] [CrossRef]
- Murakami, M.; Ichisaka, T.; Maeda, M.; Oshiro, N.; Hara, K.; Edenhofer, F.; Kiyama, H.; Yonezawa, K.; Yamanaka, S. mTOR Is Essential for Growth and Proliferation in Early Mouse Embryos and Embryonic Stem Cells. Mol. Cell. Biol. 2004, 24, 6710–6718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bing, C.; Taylor, S.; Tisdale, M.J.; Williams, G. Cachexia in MAC16 adenocarcinoma: Suppression of hunger despite normal regulation of leptin, insulin and hypothalamic neuropeptide Y. J. Neurochem. 2001, 79, 1004–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunshea, F.R.; Bauman, D.E.; Nugent, E.A.; Kerton, D.J.; King, R.H.; McCauley, I. Hyperinsulinaemia, supplemental protein and branched-chain amino acids when combined can increase milk protein yield in lactating sows. Br. J. Nutr. 2005, 93, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Doelman, J.; Kim, J.J.M.; Carson, M.; Metcalf, J.A.; Cant, J.P. Branched-chain amino acid and lysine deficiencies exert different effects on mammary translational regulation. J. Dairy Sci. 2015, 98, 7846–7855. [Google Scholar] [CrossRef] [Green Version]
- Mogami, H.; Yura, S.; Itoh, H.; Kawamura, M.; Fujii, T.; Suzuki, A.; Aoe, S.; Ogawa, Y.; Sagawa, N.; Konishi, I.; et al. Isocaloric high-protein diet as well as branched-chain amino acids supplemented diet partially alleviates adverse consequences of maternal undernutrition on fetal growth. Growth Horm. IGF Res. 2009, 19, 478–485. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zeng, X.; Ren, M.; Mao, X.; Qiao, S. Novel metabolic and physiological functions of branched chain amino acids: A review. J. Anim. Sci. Biotechnol. 2017, 8, 4–15. [Google Scholar] [CrossRef] [Green Version]
- da Miyaguti, N.A.S.; de Oliveira, S.C.P.; Gomes-Marcondes, M.C.C. Maternal leucine-rich diet minimises muscle mass loss in tumour-bearing adult rat offspring by improving the balance of muscle protein synthesis and degradation. Biomolecules 2019, 9, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Miyaguti, N.A.S.; de Oliveira, S.C.P.; Gomes-Marcondes, M.C.C. Maternal nutritional supplementation with fish oil and/or leucine improves hepatic function and antioxidant defenses, and minimizes cachexia indexes in Walker-256 tumor-bearing rats offspring. Nutr. Res. 2018, 51, 29–39. [Google Scholar] [CrossRef] [PubMed]
- da Miyaguti, N.A.S.; Stanisic, D.; Christine, S.; De Oliveira, P.; Sales, G.; Manhe, B.S.; Tasic, L. Profiles Reveal Metabolic Changes Influenced by a Maternal Leucine-Rich Diet in Tumor-Bearing Adult O ff spring Rats. Nutrients 2020, 12, 2106. [Google Scholar] [CrossRef] [PubMed]
Cancer during Pregnancy | |||
---|---|---|---|
Key Proteins | Similarities | ||
Placenta | Tumour | Refs. | |
MMP7 | √ | √ | [43,47] |
Integrin α5β1 | √ | √ | [45,46] |
HIF | √ | √ | [14,52] |
PLAC-1 | √ | √ | [55,56] |
PlGF | √ | √ | [63,65] |
Pathways and key proteins | Placenta affecting tumour evolution | Tumour affecting placenta activity | |
hCG | ↑ | unknown | [67,73] |
Oestrogen | ↑ | unknown | [79] |
Progesterone | ↓ | unknown | [70,75] |
Proinflammatory cytokines | ↑ | ↑ | [24,51,101] |
IL-10 | unknown | unknown | [101,115] |
mTOR | unknown | ↓ | [16,24,32] |
4EBP1 | unknown | ↑ | [16,24] |
Degradation Proteins | unknown | ↑ | [16] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, M.d.M.S.; Salgado, C.d.M.; Viana, L.R.; Gomes-Marcondes, M.C.C. Pregnancy and Cancer: Cellular Biology and Mechanisms Affecting the Placenta. Cancers 2021, 13, 1667. https://doi.org/10.3390/cancers13071667
Oliveira MdMS, Salgado CdM, Viana LR, Gomes-Marcondes MCC. Pregnancy and Cancer: Cellular Biology and Mechanisms Affecting the Placenta. Cancers. 2021; 13(7):1667. https://doi.org/10.3390/cancers13071667
Chicago/Turabian StyleOliveira, Melina de Moraes Santos, Carla de Moraes Salgado, Lais Rosa Viana, and Maria Cristina Cintra Gomes-Marcondes. 2021. "Pregnancy and Cancer: Cellular Biology and Mechanisms Affecting the Placenta" Cancers 13, no. 7: 1667. https://doi.org/10.3390/cancers13071667
APA StyleOliveira, M. d. M. S., Salgado, C. d. M., Viana, L. R., & Gomes-Marcondes, M. C. C. (2021). Pregnancy and Cancer: Cellular Biology and Mechanisms Affecting the Placenta. Cancers, 13(7), 1667. https://doi.org/10.3390/cancers13071667