Achieving ‘Marginal Gains’ to Optimise Outcomes in Resectable Pancreatic Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pre-Operative Pathways
2.1. Preoperative Biliary Drainage in Resectable Pancreatic Cancer
2.2. Pancreatic Exocrine Insufficiency and Overcoming Malnutrition to Improve Outcomes
2.3. Benefits of and Access to Surgical Resection of Pancreatic Cancer in the Elderly
2.4. Prehabilitation
3. Peri-Operative Pathways
3.1. Enhanced Recovery after Surgery
3.2. Reducing Complications from Surgery
4. Post-Operative Pathways
4.1. Adjuvant Therapy in Resectable Pancreatic Cancer
4.2. Benefits of and Access to Chemotherapy in the Elderly Population
4.3. Surveillance after Resection of Pancreatic Cancer
5. Novel Areas for Review
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [Green Version]
- Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019, 10, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Neoptolemos, J.; Dunn, J.; Stocken, D.; Almond, J.; Link, K.; Beger, H.; Bassi, C.; Falconi, M.; Pederzoli, P.; Dervenis, C.; et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: A randomised controlled trial. Lancet 2001, 358, 1576–1585. [Google Scholar] [CrossRef]
- Panagiotopoulou, I.G.; Bennett, J.; Tweedle, E.M.; Di Saverio, S.; Gourgiotis, S.; Hardwick, R.H.; Wheeler, J.; Davies, R.J. Enhancing the emergency general surgical service: An example of the aggregation of marginal gains. Ann. R. Coll. Surg. Engl. 2019, 101, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Thomson, K.J.; Peggs, K.S. Allogeneic transplantation in the UK: An aggregation of marginal gains? Br. J. Haematol. 2013, 163, 149–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durrand, J.W.; Batterham, A.M.; Danjoux, G.R. Pre-habilitation. I: Aggregation of marginal gains. Anaesthesia 2014, 69, 403–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haeno, H.; Gonen, M.; Davis, M.B.; Herman, J.M.; Iacobuzio-Donahue, C.A.; Michor, F. Computational Modeling of Pancreatic Cancer Reveals Kinetics of Metastasis Suggesting Optimum Treatment Strategies. Cell 2012, 148, 362–375. [Google Scholar] [CrossRef] [Green Version]
- Lygidakis, N.J.; Van Der Heyde, M.N.; Lubbers, M.J. Evaluation of preoperative biliary drainage in the surgical management of pancreatic head carcinoma. Acta Chir. Scand. 1987, 153, 665–668. [Google Scholar]
- Whipple, A.O.; Parsons, W.B.; Mullins, C.R. Treatment of Carcinoma of the Ampulla Of Vater. Ann. Surg. 1935, 102, 763–779. [Google Scholar] [CrossRef]
- Glenn, F.; Evans, J.A.; Mujahed, Z.; Thorbjarnarson, B. Percutaneous transhepatic cholangiography. Ann. Surg. 1962, 156, 451–460. [Google Scholar] [CrossRef]
- Phoa, S.S.K.S.; Reeders, J.W.A.J.; Rauws, E.A.J.; De Wit, L.; Gouma, D.J.; Laméris, J.S. Spiral computed tomography for preoperative staging of potentially resectable carcinoma of the pancreatic head. Br. J. Surg. 1999, 86, 789–794. [Google Scholar] [CrossRef] [Green Version]
- Katz, M.H.G.; Marsh, R.; Herman, J.M.; Shi, Q.; Collison, E.; Venook, A.P.; Kindler, H.L.; Alberts, S.R.; Philip, P.; Lowy, A.M.; et al. Borderline Resectable Pancreatic Cancer: Need for Standardization and Methods for Optimal Clinical Trial Design. Ann. Surg. Oncol. 2013, 20, 2787–2795. [Google Scholar] [CrossRef]
- Van der Gaag, N.A.; de Castro, S.M.; Rauws, E.A.; Bruno, M.J.; van Eijck, C.H.; Kuipers, E.J.; Gerritsen, J.G.M.; Rutten, J.-P.; Greve, J.W.; Hesselink, E.J.; et al. Preoperative biliary drainage for periampullary tumors causing obstructive jaundice; DR ainage vs. (direct) OP eration (DROP-trial). BMC Surg. 2007, 7, 3. [Google Scholar]
- Sahora, K.; Morales-Oyarvide, V.; Ferrone, C.; Fong, Z.V.; Warshaw, A.L.; And, K.D.L.; Castillo, C.F.-D. Preoperative biliary drainage does not increase major complications in pancreaticoduodenectomy: A large single center experience from the Massachusetts General Hospital. J. Hepatobiliary Pancreat. Sci. 2016, 23, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Herzog, T.; Belyaev, O.; Akkuzu, R.; Hölling, J.; Uhl, W.; Chromik, A.M. The Impact of Bile Duct Cultures on Surgical Site Infections in Pancreatic Surgery. Surg. Infect. 2015, 16, 443–449. [Google Scholar] [CrossRef]
- Mohammed, S.; Evans, C.; VanBuren, G.; Hodges, S.E.; Silberfein, E.; Artinyan, A.; Mo, Q.; Issazadeh, M.; McElhany, A.L.; Fisher, W.E. Treatment of bacteriobilia decreases wound infection rates after pancreaticoduodenectomy. HPB 2014, 16, 592–598. [Google Scholar] [CrossRef] [Green Version]
- Cavell, L.K.; Allen, P.J.; Vinoya, C.; Eaton, A.A.; Gonen, M.; Gerdes, H.; Mendelsohn, R.B.; D’Angelica, M.I.; Kingham, P.T.; Fong, Y.; et al. Biliary Self-Expandable Metal Stents Do Not Adversely Affect Pancreaticoduodenectomy. Am. J. Gastroenterol. 2013, 108, 1168–1173. [Google Scholar] [CrossRef] [Green Version]
- Coates, J.M.; Beal, S.H.; Russo, J.E.; Vanderveen, K.A.; Chen, S.L.; Bold, R.J.; Canter, R.J. Negligible Effect of Selective Preoperative Biliary Drainage on Perioperative Resuscitation, Morbidity, and Mortality in Patients Undergoing Pancreaticoduodenectomy. Arch. Surg. 2009, 144, 841–847. [Google Scholar] [CrossRef] [Green Version]
- Tol, J.A.M.G.; Van Hooft, J.E.; Timmer, R.; Kubben, F.J.G.M.; Van Der Harst, E.; De Hingh, I.H.J.T.; Vleggaar, F.P.; Molenaar, I.Q.; Keulemans, Y.C.A.; Boerma, D.; et al. Metal or plastic stents for preoperative biliary drainage in resectable pancreatic cancer. Gut 2016, 65, 1981–1987. [Google Scholar] [CrossRef]
- Liu, P.; Lin, H.; Chen, Y.; Wu, Y.-S.; Tang, M.; Liu, C. Comparison of Metal and Plastic Stents for Preoperative Biliary Drainage in Resectable and Borderline Resectable Periampullary Cancer: A Meta-Analysis and System Review. J. Laparoendosc. Adv. Surg. Tech. 2018, 28, 1074–1082. [Google Scholar] [CrossRef]
- Lee, P.J.; Podugu, A.; Wu, D.; Lee, A.C.; Stevens, T.; Windsor, J.A. Preoperative biliary drainage in resectable pancreatic cancer: A systematic review and network meta-analysis. HPB 2018, 20, 477–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanjeevi, S.; Ivanics, T.; Lundell, L.; Kartalis, N.; Andrén-Sandberg, Å.; Blomberg, J.; Del Chiaro, M.; Ansorge, C. Impact of delay between imaging and treatment in patients with potentially curable pancreatic cancer. Br. J. Surg. 2016, 103, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Glant, J.A.; Waters, J.A.; House, M.G.; Zyromski, N.J.; Nakeeb, A.; Pitt, H.A.; Lillemoe, K.D.; Schmidt, C.M. Does the interval from imaging to operation affect the rate of unanticipated metastasis encountered during operation for pancreatic adenocarcinoma? Surgery 2011, 150, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Raman, S.P.; Reddy, S.; Weiss, M.J.; Manos, L.L.; Cameron, J.L.; Zheng, L.; Herman, J.M.; Hruban, R.H.; Fishman, E.K.; Wolfgang, C.L. Impact of the time interval between MDCT imaging and surgery on the accuracy of identifying metastatic disease in patients with pancreatic cancer. Am. J. Roentgenol. 2015, 204, W37–W42. [Google Scholar] [CrossRef] [Green Version]
- Müller, P.C.; Hodson, J.; Kuemmerli, C.; Kalisvaart, M.; Pande, R.; Roberts, K.J. Effect of time to surgery in resectable pancreatic cancer: A systematic review and meta-analysis. Langenbeck’s Arch. Surg. 2020, 405, 293–302. [Google Scholar] [CrossRef]
- Pande, R.; Hodson, J.; Marudanayagam, R.; Chatzizacharis, N.A.; Dasari, B.; Muiesan, P.; Sutcliffe, R.P.; Mirza, D.F.; Isaac, J.; Roberts, K.J. Survival Advantage of Upfront Surgery for Pancreatic Head Cancer Without Preoperative Biliary Drainage. Front. Oncol. 2020, 10, 526514. [Google Scholar] [CrossRef]
- Sauvanet, A.; Boher, J.-M.; Paye, F.; Bachellier, P.; Cuhna, A.S.; Le Treut, Y.-P.; Adham, M.; Mabrut, J.-Y.; Chiche, L.; Delpero, J.-R. Severe Jaundice Increases Early Severe Morbidity and Decreases Long-Term Survival after Pancreaticoduodenectomy for Pancreatic Adenocarcinoma. J. Am. Coll. Surg. 2015, 221, 380–389. [Google Scholar] [CrossRef]
- National Guideline A. National Institute for Health and Care Excellence: Clinical Guidelines. Pancreatic Cancer in Adults: Diagnosis and Management; National Institute for Health and Care Excellence: London, UK, 2018. [Google Scholar]
- Pande, R.; Hodson, J.; Marudanayagam, R.; Mirza, D.; Isaac, J.; Roberts, K.J. Venous resection at pancreaticoduodenectomy can be safely performed in the presence of jaundice. Hepatobiliary Pancreat. Dis. Int. 2020, 19, 488–491. [Google Scholar] [CrossRef]
- Dolejs, S.; Zarzaur, B.L.; Zyromski, N.J.; Pitt, H.A.; Riall, T.S.; Hall, B.L.; Behrman, S.W. Does Hyperbilirubinemia Contribute to Adverse Patient Outcomes Following Pancreatoduodenectomy? J. Gastrointest. Surg. 2017, 21, 647–656. [Google Scholar] [CrossRef]
- El Nakeeb, A.; Salem, A.; Mahdy, Y.; El Dosoky, M.; Said, R.; Ellatif, M.A.; Ezzat, H.; Elsabbagh, A.M.; Hamed, H.; Abd Alah, T.; et al. Value of preoperative biliary drainage on postoperative outcome after pancreaticoduodenectomy: A case-control study. Asian J. Surg. 2018, 41, 155–162. [Google Scholar] [CrossRef]
- Yoon, K.W.; Heo, J.S.; Choi, D.W.; Choi, S.H. Factors affecting long-term survival after surgical resection of pancreatic ductal adenocarcinoma. J. Korean Surg. Soc. 2011, 81, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Berberat, P.; Künzli, B.; Gulbinas, A.; Ramanauskas, T.; Kleeff, J.; Müller, M.; Wagner, M.; Friess, H.; Büchler, M. An audit of outcomes of a series of periampullary carcinomas. Eur. J. Surg. Oncol. 2009, 35, 187–191. [Google Scholar] [CrossRef]
- Topal, B.; Aerts, R.; Hendrickx, T.; Fieuws, S.; Penninckx, F. Determinants of complications in pancreaticoduodenectomy. Eur. J. Surg. Oncol. 2007, 33, 488–492. [Google Scholar] [CrossRef]
- Gilsdorf, R.B.; Spanos, P. Factors influencing morbidity and mortality in pancreaticoduodenectomy. Ann Surg. 1973, 177, 332–337. [Google Scholar]
- MMelloul, E.; Lassen, K.; Roulin, D.; Grass, F.; Perinel, J.; Adham, M.; Wellge, E.B.; Kunzler, F.; Besselink, M.G.; Asbun, H.; et al. Guidelines for Perioperative Care for Pancreatoduodenectomy: Enhanced Recovery After Surgery (ERAS) Recommendations 2019. World J. Surg. 2020, 44, 2056–2084. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Hu, W.; Zeng, Y.; Liu, X.; Mai, G.; Zhang, Y.; Lu, H.; Tian, B. Pancreaticoduodenectomy with preoperative obstructive jaundice: Drainage or not. Pancreas 2009, 38, 379–386. [Google Scholar] [CrossRef]
- Pamecha, V.; Patil, N.S.; Kumar, S.; Rajendran, V.; Gupta, S.; Sasturkar, S.V.; Sinha, P.K.; Arora, A.; Agarwal, N.; Baghmar, S. Upfront pancreaticoduodenectomy in severely jaundiced patients: Is it safe? J. Hepatobiliary Pancreat. Sci. 2019, 26, 524–533. [Google Scholar] [CrossRef]
- Van der Gaag, N.A.; Rauws, E.A.; van Eijck, C.H.; Bruno, M.J.; van der Harst, E.; Kubben, F.J.; Gerritsen, J.J.G.M.; Greve, J.W.; Gerhards, M.F.; de Hingh, I.H.J.T.; et al. Preoperative biliary drainage for cancer of the head of the pancreas. N. Engl. J. Med. 2010, 362, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Padillo, F.J.; Andicoberry, B.; Naranjo, A.; Miño, G.; Pera, C.; Sitges-Serra, A. Anorexia and the effect of internal biliary drainage on food intake in patients with obstructive jaundice. J. Am. Coll. Surg. 2001, 192, 584–590. [Google Scholar] [CrossRef]
- Padillo, F.J.; Andicoberry, B.; Muntane, J.; Lozano, J.M.; Miño, G.; Sitges-Serra, A.; Pera-Madrazo, C. Factors Predicting Nutritional Derangements in Patients with Obstructive Jaundice: Multivariate Analysis. World J. Surg. 2001, 25, 413–418. [Google Scholar] [CrossRef]
- Tomasulo, P.A.; Levin, J.; Murphy, P.A.; Winkelstein, J.A. Biological activities of tritiated endotoxins: Correlation of the Limulus lysate assay with rabbit pyrogen and complement-activation assays for endotoxin. J. Lab. Clin. Med. 1977, 89, 308–315. [Google Scholar] [PubMed]
- Mullen, J.L.; Buzby, G.P.; Matthews, D.C.; Smale, B.F.; Rosato, E.F. Reduction of operative morbidity and mortality by combined preoperative and postoperative nutritional support. Ann. Surg. 1980, 192, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Buzby, G.P.; Williford, W.O.; Peterson, O.L.; Crosby, L.O.; Page, C.P.; Reinhardt, G.F.; Mullen, J.L. A randomized clinical trial of total parenteral nutrition in malnourished surgical patients: The rationale and impact of previous clinical trials and pilot study on protocol design. Am. J. Clin. Nutr. 1988, 47 (Suppl. S2), 357–365. [Google Scholar] [CrossRef]
- Von Meyenfeldt, M.F.; Meijerink, W.J.; Rouflart, M.M.; Builmaassen, M.T.; Soeters, P.B. Perioperative nutritional support: A randomised clinical trial. Clin. Nutr. 1992, 11, 180–186. [Google Scholar] [CrossRef]
- Roberts, K.; Bannister, C.; Schrem, H. Enzyme replacement improves survival among patients with pancreatic cancer: Results of a population based study. Pancreatology 2019, 19, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Benini, L.; Amodio, A.; Campagnola, P.; Agugiaro, F.; Cristofori, C.; Micciolo, R.; Magro, A.; Gabbrielli, A.; Cabrini, G.; Moser, L.; et al. Fecal elastase-1 is useful in the detection of steatorrhea in patients with pancreatic diseases but not after pancreatic resection. Pancreatology 2013, 13, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Tseng, D.S.; Molenaar, I.Q.; Besselink, M.G.; van Eijck, C.H.; Borel Rinkes, I.H.; van Santvoort, H.C. Pancreatic Exocrine Insufficiency in Patients With Pancreatic or Periampullary Cancer: A Systematic Review. Pancreas 2016, 45, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Sikkens, E.C.M.; Cahen, D.L.; de Wit, J.; Looman, C.W.; van Eijck, C.; Bruno, M.J. A prospective assessment of the natural course of the exocrine pancreatic function in patients with a pancreatic head tumor. J. Clin. Gastroenterol. 2014, 48, e43–e46. [Google Scholar] [CrossRef]
- Lemaire, E.; O’Toole, D.; Sauvanet, A.; Hammel, P.; Belghiti, J.; Ruszniewski, P. Functional and morphological changes in the pancreatic remnant following pancreaticoduodenectomy with pancreaticogastric anastomosis. Br. J. Surg. 2000, 87, 434–438. [Google Scholar] [CrossRef]
- Singh, V.K.; Haupt, M.E.; Geller, D.E.; Hall, J.A.; Diez, P.M.Q. Less common etiologies of exocrine pancreatic insufficiency. World J. Gastroenterol. 2017, 23, 7059–7076. [Google Scholar] [CrossRef]
- Sikkens, E.C.M.; Cahen, D.L.; de Wit, J.; Looman, C.W.; van Eijck, C.; Bruno, M.J. Prospective assessment of the influence of pancreatic cancer resection on exocrine pancreatic function. Br. J. Surg. 2014, 101, 109–113. [Google Scholar] [CrossRef]
- Dominguez-Muñoz, J.E. Diagnosis and treatment of pancreatic exocrine insufficiency. Curr. Opin. Gastroenterol. 2018, 34, 349–354. [Google Scholar] [CrossRef]
- Johnson, C.D.; Williamson, N.; Solingen, G.J.-V.; Arbuckle, R.; Johnson, C.; Simpson, S.; Staab, D.; Dominguez-Munoz, E.; Levy, P.; Connett, G.; et al. Psychometric evaluation of a patient-reported outcome measure in pancreatic exocrine insufficiency (PEI). Pancreatology 2019, 19, 182–190. [Google Scholar] [CrossRef]
- Johnson, C.D.; Arbuckle, R.; Bonner, N.; Connett, G.; Dominguez-Munoz, E.; Levy, P.; Staab, D.; Williamson, N.; Lerch, M.M. Qualitative Assessment of the Symptoms and Impact of Pancreatic Exocrine Insufficiency (PEI) to Inform the Development of a Patient-Reported Outcome (PRO) Instrument. Patient Patient Centered Outcomes Res. 2017, 10, 615–628. [Google Scholar] [CrossRef] [Green Version]
- Sikkens, E.C.M.; Cahen, D.L.; de Wit, J.; Looman, C.W.; van Eijck, C.; Bruno, M.J. The daily practice of pancreatic enzyme replacement therapy after pancreatic surgery: A northern European survey: Enzyme replacement after surgery. J Gastrointest Surg. 2012, 16, 1487–1492. [Google Scholar] [CrossRef] [Green Version]
- RICOCHET Study Group; West Midlands Research Collaborative. Receipt of Curative Resection or Palliative Care for Hepatopancreaticobiliary Tumours (RICOCHET): Protocol for a Nationwide Collaborative Observational Study. JMIR Res. Protoc. 2019, 8, e13566. [Google Scholar] [CrossRef]
- Landers, A.; Muircroft, W.; Brown, H. Pancreatic enzyme replacement therapy (PERT) for malabsorption in patients with metastatic pancreatic cancer. BMJ Support. Palliat. Care 2014, 6, 75–79. [Google Scholar] [CrossRef]
- Barkin, J.A.; Westermann, A.; Hoos, W.; Moravek, C.; Matrisian, L.; Wang, H.; Shemanski, L.; Barkin, J.S.; Rahib, L. Frequency of Appropriate Use of Pancreatic Enzyme Replacement Therapy and Symptomatic Response in Pancreatic Cancer Patients. Pancreas 2019, 48, 780–786. [Google Scholar] [CrossRef]
- Lindkvist, B. Diagnosis and treatment of pancreatic exocrine insufficiency. World J. Gastroenterol. 2013, 19, 7258–7566. [Google Scholar] [CrossRef]
- Laterza, L.; Scaldaferri, F.; Bruno, G.; Agnes, A.; Boškoski, I.; Ianiro, G.; Gerardi, V.; Ojetti, V.; Alfieri, S.; Gasbarrini, A. Pancreatic function assessment. Eur. Rev. Med. Pharmacol. Sci. 2013, 17 (Suppl. S2), 65–71. [Google Scholar]
- Dominguez-Munoz, J.E.; Nieto, L.; Vilarino, M.; Lourido, M.V.; Iglesias-Garcia, J. Development and Diagnostic Accuracy of a Breath Test for Pancreatic Exocrine Insufficiency in Chronic Pancreatitis. Pancreas 2016, 45, 241–247. [Google Scholar] [CrossRef]
- Lindkvist, B.; Phillips, M.E.; Domínguez-Muñoz, J.E. Clinical, anthropometric and laboratory nutritional markers of pancreatic exocrine insufficiency: Prevalence and diagnostic use. Pancreatology 2015, 15, 589–597. [Google Scholar] [CrossRef]
- Partelli, S.; Frulloni, L.; Minniti, C.; Bassi, C.; Barugola, G.; D’Onofrio, M.; Crippa, S.; Falconi, M. Faecal elastase-1 is an independent predictor of survival in advanced pancreatic cancer. Dig. Liver Dis. 2012, 44, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Gooden, H.M.; White, K.J. Pancreatic cancer and supportive care—Pancreatic exocrine insufficiency negatively impacts on quality of life. Support. Care Cancer 2013, 21, 1835–1841. [Google Scholar] [CrossRef]
- Van Dijk, S.M.; Heerkens, H.D.; Tseng, D.S.J.; Intven, M.; Molenaar, I.Q.; van Santvoort, H.C. Systematic review on the impact of pancreatoduodenectomy on quality of life in patients with pancreatic cancer. HPB 2018, 20, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Heerkens, H.D.; Van Berkel, L.; Tseng, D.S.; Monninkhof, E.M.; Van Santvoort, H.C.; Hagendoorn, J.; Rinkes, I.H.B.; Lips, I.M.; Intven, M.; Molenaar, I.Q. Long-term health-related quality of life after pancreatic resection for malignancy in patients with and without severe postoperative complications. HPB 2018, 20, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Roberts, K.J.; Schrem, H.; Hodson, J.; Angelico, R.; Dasari, B.V.M.; Coldham, C.A.; Marudanayagam, R.; Sutcliffe, R.P.; Muiesan, P.; Isaac, J.; et al. Pancreas exocrine replacement therapy is associated with increased survival following pancreatoduodenectomy for periampullary malignancy. HPB 2017, 19, 859–867. [Google Scholar] [CrossRef] [Green Version]
- Seiler, C.M.; Izbicki, J.; Varga-Szabó, L.; Czako, L.; Fiók, J.; Sperti, C.; Lerch, M.M.; Pezzilli, R.; Vasileva, G.; Pap, A.; et al. Randomised clinical trial: A 1-week, double-blind, placebo-controlled study of pancreatin 25 000 Ph. Eur. minimicrospheres (Creon 25000 MMS) for pancreatic exocrine insufficiency after pancreatic surgery, with a 1-year open-label extension. Aliment. Pharmacol. Ther. 2013, 37, 691–702. [Google Scholar] [CrossRef] [Green Version]
- Braga, M.; Cristallo, M.; De Franchis, R.; Mangiagalli, A.; Zerbi, A.; Agape, D.; Primignani, M.; Di Carlo, V. Pancreatic enzyme replacement therapy in post-pancreatectomy patients. Int. J. Pancreatol. 1989, 5, 37–44. [Google Scholar]
- Landers, A.; Brown, H.; Strother, M. The effectiveness of pancreatic enzyme replacement therapy for malabsorption in advanced pancreatic cancer, a pilot study. Palliat. Care Res. Treat. 2019, 12, 1178224218825270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez-Muñoz, J.E.; Iglesias-García, J.; Iglesias-Rey, M.; Figueiras, A.; Vilariño-Insua, M. Effect of the administration schedule on the therapeutic efficacy of oral pancreatic enzyme supplements in patients with exocrine pancreatic insufficiency: A randomized, three-way crossover study. Aliment. Pharmacol. Ther. 2005, 21, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Munoz, J.E.; Iglesias-Garcia, J.; Iglesias-Rey, M.; Vilarino-Insua, M. Optimising the therapy of exocrine pancreatic insufficiency by the association of a proton pump inhibitor to enteric coated pancreatic extracts. Gut 2006, 55, 1056–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.; Kang, J.S.; Han, Y.; Kim, H.; Kwon, W.; Kim, J.R.; Kim, S.-W.; Jang, J.-Y. Influence of preoperative nutritional status on clinical outcomes after pancreatoduodenectomy. HPB 2018, 20, 1051–1061. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Lee, D.-H.; Jang, J.-Y. Effects of Preoperative Malnutrition on Postoperative Surgical Outcomes and Quality of Life of Elderly Patients with Periampullary Neoplasms: A Single-Center Prospective Cohort Study. Gut Liver 2019, 13, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Gianotti, L.; Besselink, M.G.; Sandini, M.; Hackert, T.; Conlon, K.; Gerritsen, A.; Griffin, O.; Fingerhut, A.; Probst, P.; Abu Hilal, M.; et al. Nutritional support and therapy in pancreatic surgery: A position paper of the International Study Group on Pancreatic Surgery (ISGPS). Surgery 2018, 164, 1035–1048. [Google Scholar] [CrossRef]
- Powell-Brett, S.; Carino, N.D.L.; Roberts, K. Understanding pancreatic exocrine insufficiency and replacement therapy in pancreatic cancer. Eur. J. Surg. Oncol. 2021, 47, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Aida, T.; Furukawa, K.; Suzuki, D.; Shimizu, H.; Yoshidome, H.; Ohtsuka, M.; Kato, A.; Yoshitomi, H.; Miyazaki, M. Preoperative immunonutrition decreases postoperative complications by modulating prostaglandin E2 production and T-cell differentiation in patients undergoing pancreatoduodenectomy. Surgery 2014, 155, 124–133. [Google Scholar] [CrossRef]
- Gade, J.; Levring, T.; Hillingsø, J.; Hansen, C.P.; Andersen, J.R. The Effect of Preoperative Oral Immunonutrition on Complications and Length of Hospital Stay After Elective Surgery for Pancreatic Cancer—A Randomized Controlled Trial. Nutr. Cancer 2016, 68, 225–233. [Google Scholar] [CrossRef]
- Hamza, N.; Darwish, A.; O’Reilly, D.A.; Denton, J.; Sheen, A.J.; Chang, D.; Sherlock, D.J.; Ammori, B.J. Perioperative Enteral Immunonutrition Modulates Systemic and Mucosal Immunity and the Inflammatory Response in Patients With Periampullary Cancer Scheduled for Pancreaticoduodenectomy: A Randomized Clinical Trial. Pancreas 2015, 44, 41–52. [Google Scholar] [CrossRef]
- Silvestri, S.; Franchello, A.; Deiro, G.; Galletti, R.; Cassine, D.; Campra, D.; Bonfanti, D.; De Carli, L.; Fop, F.; Fronda, G. Preoperative oral immunonutrition versus standard preoperative oral diet in well nourished patients undergoing pancreaticoduodenectomy. Int. J. Surg. 2016, 31, 93–99. [Google Scholar] [CrossRef]
- Yang, F.-A.; Chen, Y.-C.; Tiong, C. Immunonutrition in Patients with Pancreatic Cancer Undergoing Surgical Intervention: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrition 2020, 12, 2798. [Google Scholar] [CrossRef] [PubMed]
- Riall, T.S.; Sheffield, K.M.; Kuo, Y.-F.; Townsend, C.M., Jr.; Goodwin, J.S. Resection Benefits Older Adults with Locoregional Pancreatic Cancer Despite Greater Short-Term Morbidity and Mortality. J. Am. Geriatr. Soc. 2011, 59, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Kanda, M.; Fujii, T.; Suenaga, M.; Takami, H.; Inokawa, Y.; Yamada, S.; Kobayashi, D.; Tanaka, C.; Sugimoto, H.; Nomoto, S.; et al. Pancreatoduodenectomy With Portal Vein Resection Is Feasible and Potentially Beneficial for Elderly Patients With Pancreatic Cancer. Pancreas 2014, 43, 951–958. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Equality Inititative; Pharmaceutical Oncology Initiative. The Impact of Patient Age on Clinical Decision-Making in Oncology; Department of Health Cancer Policy Team: London, UK, 2012. [Google Scholar]
- Tan, E.; Song, J.; Lam, S.; D’Souza, M.; Crawford, M.; Sandroussi, C. Postoperative outcomes in elderly patients undergoing pancreatic resection for pancreatic adenocarcinoma: A systematic review and meta-analysis. Int. J. Surg. 2019, 72, 59–68. [Google Scholar] [CrossRef]
- Amin, S.; Lucas, A.L.; Frucht, H. Evidence for treatment and survival disparities by age in pancreatic adenocarcinoma: A population-based analysis. Pancreas 2013, 42, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Nipp, R.; Tramontano, A.C.; Kong, C.Y.; Pandharipande, P.; Dowling, E.C.; Schrag, D.; Hur, C. Disparities in cancer outcomes across age, sex, and race/ethnicity among patients with pancreatic cancer. Cancer Med. 2018, 7, 525–535. [Google Scholar] [CrossRef]
- Chandrabalan, V.V.; McMillan, D.C.; Carter, R.; Kinsella, J.; McKay, C.J.; Carter, C.R.; Dickson, E.J. Pre-operative cardiopulmonary exercise testing predicts adverse post-operative events and non-progression to adjuvant therapy after major pancreatic surgery. HPB 2013, 15, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.; Tahir, M.R.; Bongers, B.C.; Kallen, V.L.; Slooter, G.D.; van Meeteren, N.L. Prehabilitation before major intra-abdominal cancer surgery: A systematic review of randomised controlled trials. Eur. J. Anaesthesiol. 2019, 36, 933–945. [Google Scholar] [CrossRef]
- West, M.A.; Parry, M.G.; Lythgoe, D.; Barben, C.P.; Kemp, G.J.; Grocott, M.P.W.; Jack, S. Cardiopulmonary exercise testing for the prediction of morbidity risk after rectal cancer surgery. Br. J. Surg. 2014, 101, 1166–1172. [Google Scholar] [CrossRef]
- Minnella, E.M.; Awasthi, R.; Loiselle, S.E.; Agnihotram, R.V.; Ferri, L.E.; Carli, F. Effect of Exercise and Nutrition Prehabilitation on Functional Capacity in Esophagogastric Cancer Surgery: A Randomized Clinical Trial. JAMA Surg. 2018, 153, 1081–1089. [Google Scholar] [CrossRef] [Green Version]
- Dunne, D.F.J.; Jack, S.; Jones, R.P.; Jones, L.; Lythgoe, D.T.; Malik, H.Z.; Poston, G.J.; Palmer, D.H.; Fenwick, S.W. Randomized clinical trial of prehabilitation before planned liver resection. Br. J. Surg. 2016, 103, 504–512. [Google Scholar] [CrossRef]
- Bhatia, C.; Kayser, B. Preoperative high-intensity interval training is effective and safe in deconditioned patients with lung cancer: A randomized clinical trial. J. Rehabil. Med. 2019, 51, 712–718. [Google Scholar] [CrossRef] [Green Version]
- Kerr, J.; Anderson, C.; Lippman, S.M. Physical activity, sedentary behaviour, diet, and cancer: An update and emerging new evidence. Lancet Oncol. 2017, 18, e457–e471. [Google Scholar] [CrossRef]
- Wilson, R.J.T.; Davies, S.; Yates, D.; Redman, J.; Stone, M. Impaired functional capacity is associated with all-cause mortality after major elective intra-abdominal surgery. Br. J. Anaesth. 2010, 105, 297–303. [Google Scholar] [CrossRef] [Green Version]
- McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 2018, 24, 4846–4861. [Google Scholar] [CrossRef]
- Akahori, T.; Sho, M.; Kinoshita, S.; Nagai, M.; Nishiwada, S.; Tanaka, T.; Tamamoto, T.; Ohbayashi, C.; Hasegawa, M.; Kichikawa, K.; et al. Prognostic Significance of Muscle Attenuation in Pancreatic Cancer Patients Treated with Neoadjuvant Chemoradiotherapy. World J. Surg. 2015, 39, 2975–2982. [Google Scholar] [CrossRef]
- Sandini, M.; Patino, M.; Ferrone, C.R.; Alvarez-Pérez, C.A.; Honselmann, K.C.; Paiella, S.; Catania, M.; Riva, L.; Tedesco, G.; Casolino, R.; et al. Association Between Changes in Body Composition and Neoadjuvant Treatment for Pancreatic Cancer. JAMA Surg. 2018, 153, 809–815. [Google Scholar] [CrossRef]
- Mackay, T.M.; Smits, F.J.; Roos, D.; Bonsing, B.A.; Bosscha, K.; Busch, O.R.; Creemers, G.J.; van Dam, R.M.; van Eijck, C.H.J.; Gerhardet, M.F.; et al. The risk of not receiving adjuvant chemotherapy after resection of pancreatic ductal adenocarcinoma: A nationwide analysis. HPB 2020, 22, 233–240. [Google Scholar] [CrossRef]
- Bundred, J.; Kamarajah, S.K.; Roberts, K.J. Body composition assessment and sarcopenia in patients with pancreatic cancer: A systematic review and meta-analysis. HPB 2019, 21, 1603–1612. [Google Scholar] [CrossRef]
- Giles, C.; Cummins, S. Prehabilitation before cancer treatment. BMJ 2019, 366, l5120. [Google Scholar] [CrossRef]
- Kamarajah, S.K.; Bundred, J.; Weblin, J.; Tan, B.H. Critical appraisal on the impact of preoperative rehabilitation and outcomes after major abdominal and cardiothoracic surgery: A systematic review and meta-analysis. Surgery 2020, 167, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Barberan-Garcia, A.; Ubre, M.; Pascual-Argente, N.; Risco, R.; Faner, J.; Balust, J.; Lacy, A.; Puig-Junoy, J.; Roca, J.; Martinez-Palli, G. Post-discharge impact and cost-consequence analysis of prehabilitation in high-risk patients undergoing major abdominal surgery: Secondary results from a randomised controlled trial. Br. J. Anaesth. 2019, 123, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Levett, D.Z.; Edwards, M.; Grocott, M.; Mythen, M. Preparing the patient for surgery to improve outcomes. Best Pr. Res. Clin. Anaesthesiol. 2016, 30, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Carli, F.; Scheede-Bergdahl, C. Prehabilitation to Enhance Perioperative Care. Anesthesiol. Clin. 2015, 33, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Gillis, C.; Buhler, K.; Bresee, L.; Carli, F.; Gramlich, L.; Culos-Reed, N.; Sajobi, T.T.; Fenton, T.R. Effects of Nutritional Prehabilitation, With and Without Exercise, on Outcomes of Patients Who Undergo Colorectal Surgery: A Systematic Review and Meta-analysis. Gastroenterology 2018, 155, 391–410.e4. [Google Scholar] [CrossRef] [PubMed]
- Heger, P.; Probst, P.; Wiskemann, J.; Steindorf, K.; Diener, M.K.; Mihaljevic, A.L. A Systematic Review and Meta-analysis of Physical Exercise Prehabilitation in Major Abdominal Surgery (PROSPERO 2017 CRD42017080366). J. Gastrointest. Surg. 2020, 24, 1375–1385. [Google Scholar] [CrossRef] [PubMed]
- Ausania, F.; Senra, P.; Meléndez, R.; Caballeiro, R.; Ouviña, R.; Casal-Núñez, E. Prehabilitation in patients undergoing pancreaticoduodenectomy: A randomized controlled trial. Rev. Esp. Enferm. Dig. 2019, 111, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, H.; Yokoyama, Y.; Inoue, T.; Nagaya, M.; Mizuno, Y.; Kadono, I.; Nishiwaki, K.; Nishida, Y.; Nagino, M. Clinical Benefit of Preoperative Exercise and Nutritional Therapy for Patients Undergoing Hepato-Pancreato-Biliary Surgeries for Malignancy. Ann. Surg. Oncol. 2018, 26, 264–272. [Google Scholar] [CrossRef]
- Florez Bedoya, C.A.; Cardoso, A.C.F.; Parker, N.; Ngo-Huang, A.; Petzel, M.Q.; Kim, M.P.; Fogelman, D.; Romero, S.G.; Wang, H.; Park, M.; et al. Exercise during preoperative therapy increases tumor vascularity in pancreatic tumor patients. Sci. Rep. 2019, 9, 13966. [Google Scholar] [CrossRef] [Green Version]
- Marker, R.J.; Peters, J.C.; Purcell, W.T.; Jankowski, C.A. Effects of Preoperative Exercise on Physical Fitness and Body Composition in Pancreatic Cancer Survivors Receiving Neoadjuvant Therapy: A Case Series. Rehabil. Oncol. 2018, 36, E1–E9. [Google Scholar] [CrossRef]
- Parker, N.H.; Ngo-Huang, A.; Lee, R.E.; O’Connor, D.P.; Basen-Engquist, K.M.; Petzel, M.Q.; Wang, X.; Xiao, L.; Fogelman, D.R.; Schadler, K.L.; et al. Physical activity and exercise during preoperative pancreatic cancer treatment. Support. Care Cancer 2018, 27, 2275–2284. [Google Scholar] [CrossRef]
- Ngo-Huang, A.; Parker, N.H.; Bruera, E.; Lee, R.E.; Simpson, R.; O’Connor, D.P.; Petzel, M.Q.B.; Fontillas, R.C.; Schadler, K.; Xiao, L.; et al. Home-Based Exercise Prehabilitation During Preoperative Treatment for Pancreatic Cancer Is Associated With Improvement in Physical Function and Quality of Life. Integr. Cancer Ther. 2019, 18, 1534735419894061. [Google Scholar] [CrossRef]
- Ljungqvist, O.; Scott, M.; Fearon, K.C. Enhanced Recovery After Surgery: A Review. JAMA Surg. 2017, 152, 292–298. [Google Scholar] [CrossRef]
- Li, T.; D’Cruz, R.T.; Lim, S.Y.; Shelat, V.G.; Tianpei, L.; Yang, L.S. Somatostatin analogues and the risk of post-operative pancreatic fistulas after pancreatic resection—A systematic review & meta-analysis. Pancreatology 2020, 20, 158–168. [Google Scholar]
- De Rosa, P.; Jewell, A. The potential use for patient reported outcome measures in people with pancreatic cancer, with a specific focus on older patients. Eur. J. Surg. Oncol. 2021, 47, 495–502. [Google Scholar] [CrossRef]
- Van Rijssen, L.B.; Gerritsen, A.; Henselmans, I.; Sprangers, M.A.; Jacobs, M.; Bassi, C.; Busch, O.R.; Fernandez-Del Castillo, C.; Fong, Z.V.; He, F.; et al. Core Set of Patient-reported Outcomes in Pancreatic Cancer (COPRAC): An International Delphi Study Among Patients and Health Care Providers. Ann. Surg. 2019, 270, 158–164. [Google Scholar] [CrossRef]
- ERAS Compliance Group. The Impact of Enhanced Recovery Protocol Compliance on Elective Colorectal Cancer Resection: Results From an International Registry. Ann. Surg. 2015, 261, 1153–1159. [Google Scholar] [CrossRef]
- Roulin, D.; Melloul, E.; Wellg, B.E.; Izbicki, J.; Vrochides, D.; Adham, M.; Hübner, M.; Demartines, N. Feasibility of an Enhanced Recovery Protocol for Elective Pancreatoduodenectomy: A Multicenter International Cohort Study. World J. Surg. 2020, 44, 2761–2769. [Google Scholar] [CrossRef]
- Coolsen, M.M.E.; Van Dam, R.M.; Van Der Wilt, A.A.; Slim, K.; Lassen, K.; DeJong, C.H.C. Systematic Review and Meta-analysis of Enhanced Recovery After Pancreatic Surgery with Particular Emphasis on Pancreaticoduodenectomies. World J. Surg. 2013, 37, 1909–1918. [Google Scholar] [CrossRef]
- Xiong, J.; Szatmary, P.; Huang, W.; de la Iglesia-Garcia, D.; Nunes, Q.M.; Xia, Q.; Hu, W.; Sutton, R.; Liu, X.; Raraty, M.G. Enhanced Recovery After Surgery Program in Patients Undergoing Pancreaticoduodenectomy: A PRISMA-Compliant Systematic Review and Meta-Analysis. Medicine 2016, 95, e3497. [Google Scholar] [CrossRef]
- Ji, H.-B.; Zhu, W.-T.; Wei, Q.; Wang, X.-X.; Wang, H.-B.; Chen, Q.-P. Impact of enhanced recovery after surgery programs on pancreatic surgery: A meta-analysis. World J. Gastroenterol. 2018, 24, 1666–1678. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Gu, H.-Y.; Huang, Z.-D.; Wu, Y.-P.; Zhang, Q.; Luo, J.; Zhang, C.; Fu, Y. Impact of Enhanced Recovery After Surgery on Postoperative Recovery for Pancreaticoduodenectomy: Pooled Analysis of Observational Study. Front. Oncol. 2019, 9, 687. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.-M.; Wang, Y.; Mao, Y.-X.; Wang, W. The Safety and Feasibility of Enhanced Recovery after Surgery in Patients Undergoing Pancreaticoduodenectomy: An Updated Meta-Analysis. BioMed Res. Int. 2020, 2020, 7401276. [Google Scholar] [CrossRef] [PubMed]
- Roulin, D.; Najjar, P.; Demartines, N. Enhanced Recovery After Surgery Implementation: From Planning to Success. J. Laparoendosc. Adv. Surg. Tech. 2017, 27, 876–879. [Google Scholar] [CrossRef] [PubMed]
- Kagedan, D.J.; Devitt, K.S.; St-Germain, A.T.; Ramjaun, A.; Cleary, S.P.; Wei, A.C. The economics of recovery after pancreatic surgery: Detailed cost minimization analysis of an enhanced recovery program. HPB 2017, 19, 1026–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passeri, M.; Lyman, W.B.; Murphy, K.; Iannitti, D.; Martinie, J.; Baker, E.; Vrochides, D. Implementing an ERAS Protocol for Pancreaticoduodenectomy Does Not Affect Oncologic Outcomes when Compared with Traditional Recovery. Am. Surg. 2020, 86, e81–e83. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, C.M.; The Pancreatic Surgery Mortality Study Group; Sanchez, N.; Gondek, S.; McAuliffe, J.C.; Kent, T.S.; Christein, J.D.; Callery, M.P. A Root-Cause Analysis of Mortality Following Major Pancreatectomy. J. Gastrointest. Surg. 2011, 16, 89–103. [Google Scholar] [CrossRef]
- Smits, F.J.; Henry, A.C.; Van Eijck, C.H.; Besselink, M.G.; Busch, O.R.; Arntz, M.; Bollen, T.L.; Van Delden, O.M.; Heuvel, D.V.D.; Van Der Leij, C.; et al. Care after pancreatic resection according to an algorithm for early detection and minimally invasive management of pancreatic fistula versus current practice (PORSCH-trial): Design and rationale of a nationwide stepped-wedge cluster-randomized trial. Trials 2020, 21, 389. [Google Scholar] [CrossRef]
- Roberts, K.J.; Boteon, A.; Marcon, F.; Abradelo, M.; Dasari, B.; Muiesan, P.; Marudanayagam, R.; Sutcliffe, R.P.; Isaac, J.; Mirza, D.F. Risk adjusted assessment of individual surgeon’s pancreatic fistula outcomes. HPB 2020, 22, 452–460. [Google Scholar] [CrossRef]
- Sánchez-Velázquez, P.; Muller, X.; Malleo, G.; Park, J.; Hwang, H.; Napoli, N.; Javed, A.; Inoue, Y.; Beghdadi, N.; Kalisvaart, M.; et al. Benchmarks in pancreatic surgery. A novel tool for unbiased outcome comparisons. HPB 2020, 22, S383. [Google Scholar] [CrossRef]
- Raptis, D.A.; Sánchez-Velázquez, P.; Machairas, N.; Sauvanet, A.; De Leon, A.R.; Oba, A.; Koerkamp, B.G.; Lovasik, B.; Chan, C.; Yeo, C.J.; et al. Defining Benchmark Outcomes for Pancreatoduodenectomy With Portomesenteric Venous Resection. Ann. Surg. 2020, 272, 731–737. [Google Scholar] [CrossRef]
- Mackay, T.M.; Dutch Pancreatic Cancer Group; Smits, F.J.; Latenstein, A.E.J.; Bogte, A.; Bonsing, B.A.; Bos, H.; Bosscha, K.; Brosens, L.A.A.; Hol, L.; et al. Impact of nationwide enhanced implementation of best practices in pancreatic cancer care (PACAP-1): A multicenter stepped-wedge cluster randomized controlled trial. Trials 2020, 21, 334. [Google Scholar] [CrossRef] [Green Version]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.; Raoul, J.-L.; Choné, L.; Francois, E.; Artru, P.; Biagi, J.J.; et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2018, 379, 2395–2406. [Google Scholar] [CrossRef]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.-C.; Raoul, J.-L.; Chone, L.; Francois, E.; Artru, P.; Biagi, J.J.; et al. Unicancer GI PRODIGE 24/CCTG PA.6 trial: A multicenter international randomized phase III trial of adjuvant mFOLFIRINOX versus gemcitabine (gem) in patients with resected pancreatic ductal adenocarcinomas. J. Clin. Oncol. 2018, 36, LBA4001. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Palmer, D.H.; Ghaneh, P.; Psarelli, E.E.; Valle, J.W.; Halloran, C.M.; Faluyi, O.; O’Reilly, D.A.; Cunningham, D.; Wadsley, J.; et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): A multicentre, open-label, randomised, phase 3 trial. Lancet 2017, 389, 1011–1024. [Google Scholar] [CrossRef]
- Van Roessel, S.; van Veldhuisen, E.; Klompmaker, S.; Janssen, Q.P.; Abu Hilal, M.; Alseidi, A.; Balduzzi, A.; Balzano, G.; Bassi, C.; Berrevoet, F.; et al. Evaluation of Adjuvant Chemotherapy in Patients With Resected Pancreatic Cancer After Neoadjuvant FOLFIRINOX Treatment. JAMA Oncol. 2020, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sata, N.; Kurashina, K.; Nagai, H.; Nagakawa, T.; Ishikawa, O.; Ohta, T.; Oka, M.; Kinoshita, H.; Kimura, W.; Shimada, H.; et al. The effect of adjuvant and neoadjuvant chemo(radio)therapy on survival in 1679 resected pancreatic carcinoma cases in Japan: Report of the national survey in the 34th annual meeting of Japanese Society of Pancreatic Surgery. J. Hepatobiliary Pancreat. Surg. 2009, 16, 485–492. [Google Scholar] [CrossRef]
- Bakens, M.J.; van der Geest, L.G.; van Putten, M.; van Laarhoven, H.W.; Creemers, G.-J.; Besselink, M.G.; Lemmens, V.E.; de Hingh, I.H.; Dutch Pancreatic Cancer Group. The use of adjuvant chemotherapy for pancreatic cancer varies widely between hospitals: A nationwide population-based analysis. Cancer Med. 2016, 5, 2825–2831. [Google Scholar] [CrossRef]
- Kagedan, D.; Dixon, M.; Raju, R.; Li, Q.; Elmi, M.; Shin, E.; Liu, N.; El-Sedfy, A.; Paszat, L.; Kiss, A.; et al. Predictors of Adjuvant Treatment for Pancreatic Adenocarcinoma at the Population Level. Curr. Oncol. 2016, 23, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Mayo, S.C.; Gilson, M.M.; Herman, J.M.; Cameron, J.L.; Nathan, H.; Edil, B.H.; Choti, M.A.; Schulick, R.D.; Wolfgang, C.L.; Pawlik, T.M. Management of Patients with Pancreatic Adenocarcinoma: National Trends in Patient Selection, Operative Management, and Use of Adjuvant Therapy. J. Am. Coll. Surg. 2012, 214, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Kagedan, D.J.; Abraham, L.; Goyert, N.; Li, Q.; Paszat, L.F.; Kiss, A.; Earle, C.C.; Mittmann, N.; Coburn, N.G. Beyond the dollar: Influence of sociodemographic marginalization on surgical resection, adjuvant therapy, and survival in patients with pancreatic cancer. Cancer 2016, 122, 3175–3182. [Google Scholar] [CrossRef] [PubMed]
- Van der Geest, L.G.M.; van Eijck, C.H.J.; Groot Koerkamp, B.; Lemmens, V.; Busch, O.R.; Vissers, P.A.J.; Wilmink, J.W.; Besselink, M.G.; Dutch Pancreatic Cancer Group. Trends in treatment and survival of patients with nonresected, nonmetastatic pancreatic cancer: A population-based study. Cancer Med. 2018, 7, 4943–4951. [Google Scholar] [CrossRef] [PubMed]
- Neoptolemos, J.P.; Stocken, D.D.; Friess, H.; Bassi, C.; Dunn, J.A.; Hickey, H.; Beger, H.; Fernandez-Cruz, L.; Dervenis, C.; Lacaine, F.; et al. A Randomized Trial of Chemoradiotherapy and Chemotherapy after Resection of Pancreatic Cancer. N. Engl. J. Med. 2004, 350, 1200–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faluyi, O.O.; Connor, J.L.; Chatterjee, M.; Ikin, C.; Wong, H.; Palmer, D.H. Advanced pancreatic adenocarcinoma outcomes with transition from devolved to centralised care in a regional Cancer Centre. Br. J. Cancer 2017, 116, 424–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, A.V.; Ma, Y.; Wang, X.; Campbell-Flohr, S.A.; Rathouz, P.J.; Ronnekleiv-Kelly, S.M.; Abbott, D.E.; Weber, S.M. National Trends in Centralization of Surgical Care and Multimodality Therapy for Pancreatic Adenocarcinoma. J. Gastrointest. Surg. 2019, 24, 2021–2029. [Google Scholar] [CrossRef]
- Sorenson, G.D.; Pribish, D.M.; Valone, F.H.; Memoli, V.A.; Bzik, D.J.; Yao, S.L. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol. Biomark. Prev. 1994, 3, 67–71. [Google Scholar]
- Glantz, M.J.; Cole, B.F.; Glantz, L.K.; Cobb, J.; Mills, P.; Lekos, A.; Walters, B.C.; Recht, L.D. Cerebrospinal fluid cytology in patients with cancer: Minimizing false-negative results. Cancer 1998, 82, 733–739. [Google Scholar] [CrossRef]
- Anker, P.; Stroun, M.; Maurice, P.A. Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res. 1975, 35, 2375–2382. [Google Scholar]
- Stroun, M.; Lyautey, J.; Lederrey, C.; Olson-Sand, A.; Anker, P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin. Chim. Acta 2001, 313, 139–142. [Google Scholar] [CrossRef]
- Kim, N.; Han, I.W.; Ryu, Y.; Hwang, D.W.; Heo, J.S.; Choi, D.W.; Shin, S.H. Predictive Nomogram for Early Recurrence after Pancreatectomy in Resectable Pancreatic Cancer: Risk Classification Using Preoperative Clinicopathologic Factors. Cancers 2020, 12, 137. [Google Scholar] [CrossRef] [Green Version]
- Brennan, M.F.; Kattan, M.W.; Klimstra, D.; Conlon, K. Prognostic Nomogram for Patients Undergoing Resection for Adenocarcinoma of the Pancreas. Ann. Surg. 2004, 240, 293–298. [Google Scholar] [CrossRef]
- Ferrone, C.R.; Kattan, M.W.; Tomlinson, J.S.; Thayer, S.P.; Brennan, M.F.; Warshaw, A.L. Validation of a Postresection Pancreatic Adenocarcinoma Nomogram for Disease-Specific Survival. J. Clin. Oncol. 2005, 23, 7529–7535. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Mao, Y.; Wang, J.; Duan, F.; Lin, X.; Li, S. Nomograms predict long-term survival for patients with periampullary adenocarcinoma after pancreatoduodenectomy. BMC Cancer 2018, 18, 327. [Google Scholar] [CrossRef]
- Li, H.-B.; Zhou, J.; Zhao, F.-Q. A Prognostic Nomogram for Disease-Specific Survival in Patients with Pancreatic Ductal Adenocarcinoma of the Head of the Pancreas Following Pancreaticoduodenectomy. Med. Sci. Monit. 2018, 24, 6313–6321. [Google Scholar] [CrossRef]
- Parmar, A.D.; Vargas, G.M.; Tamirisa, N.P.; Sheffield, K.M.; Riall, T.S. Trajectory of care and use of multimodality therapy in older patients with pancreatic adenocarcinoma. Surgery 2014, 156, 280–289. [Google Scholar] [CrossRef] [Green Version]
- Frakes, J.M.; Strom, T.; Springett, G.M.; Hoffe, S.E.; Balducci, L.; Hodul, P.; Malafa, M.P.; Shridhar, R. Resected pancreatic cancer outcomes in the elderly. J. Geriatr. Oncol. 2015, 6, 127–132. [Google Scholar] [CrossRef]
- Nagrial, A.M.; Chang, D.K.; Nguyen, N.Q.; Johns, A.L.; Chantrill, L.A.; Humphris, J.L.; Chin, V.T.; Samra, J.S.; Gill, A.J.; Pajic, M.; et al. Adjuvant chemotherapy in elderly patients with pancreatic cancer. Br. J. Cancer 2013, 110, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.H.; Park, Y.; Hwang, D.W.; Song, K.B.; Lee, J.H.; Kwon, J.; Yoo, C.; Alshammary, S.; Kim, S.C. Prognostic Value of Adjuvant Chemotherapy Following Pancreaticoduodenectomy in Elderly Patients With Pancreatic Cancer. Anticancer. Res. 2019, 39, 1005–1012. [Google Scholar] [CrossRef]
- Oettle, H.; Neuhaus, P.; Hochhaus, A.; Hartmann, J.T.; Gellert, K.; Ridwelski, K.; Niedergethmann, M.; Zülke, C.; Fahlke, J.; Arning, M.B.; et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: The CONKO-001 randomized trial. JAMA 2013, 310, 1473–1481. [Google Scholar] [CrossRef] [Green Version]
- Neoptolemos, J.P.; Stocken, D.D.; Bassi, C.; Ghaneh, P.; Cunningham, D.; Goldstein, D.; Padbury, R.; Moore, M.J.; Gallinger, S.; Mariette, C.; et al. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: A randomized controlled trial. JAMA 2010, 304, 1073–1081. [Google Scholar] [CrossRef]
- Miyamoto, D.T.; Mamon, H.J.; Ryan, D.P.; Willett, C.G.; Ancukiewicz, M.; Kobayashi, W.K.; Blaszkowsky, L.; Castillo, C.F.-D.; Hong, T.S. Outcomes and Tolerability of Chemoradiation Therapy for Pancreatic Cancer Patients Aged 75 Years or Older. Int. J. Radiat. Oncol. 2010, 77, 1171–1177. [Google Scholar] [CrossRef]
- Miura, J.T.; Krepline, A.N.; George, B.; Ritch, P.S.; Erickson, B.A.; Johnston, F.M.; Oshima, K.; Christians, K.K.; Evans, D.B.; Tsai, S. Use of neoadjuvant therapy in patients 75 years of age and older with pancreatic cancer. Surgery 2015, 158, 1545–1555. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, D.-B.; Zhang, Q.; Guo, C.-X.; Fu, Q.-H.; Zhang, X.-C.; Tang, T.-Y.; Su, W.; Chen, Y.-W.; Chen, W.; et al. The efficacy and toxicity of chemotherapy in the elderly with advanced pancreatic cancer. Pancreatology 2020, 20, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, J.D.; Rogers, J.E.; Hess, K.R.; Wolff, R.A.; Varadhachary, G.R.; Javle, M.M.; Shroff, R.T.; Ho, L.; Fogelman, D.R.; Raghav, K.P.; et al. Modified FOLFIRINOX in pancreatic cancer patients Age 75 or older. Pancreatology 2020, 20, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Kalsi, T.; Babic-Illman, G.; Ross, P.; Maisey, N.; Hughes, S.; Fields, P.E.; Martin, F.C.; Wang, Y.; Harari, D. The impact of comprehensive geriatric assessment interventions on tolerance to chemotherapy in older people. Br. J. Cancer 2015, 112, 1435–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overcash, J.; Ford, N.; Kress, E.; Ubbing, C.; Williams, N. Comprehensive Geriatric Assessment as a Versatile Tool to Enhance the Care of the Older Person Diagnosed with Cancer. Geriatrics 2019, 4, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurria, A.; Togawa, K.; Mohile, S.G.; Owusu, C.; Klepin, H.D.; Gross, C.P.; Lichtmnan, S.M.; Gajra, A.; Bhatia, S.; Katheria, V.; et al. Predicting chemotherapy toxicity in older adults with cancer: A prospective multicenter study. J. Clin. Oncol. 2011, 29, 3457–3465. [Google Scholar] [CrossRef] [Green Version]
- Puts, M.T.E.; Santos, B.; Hardt, J.; Monette, J.; Girre, V.; Atenafu, E.G.; Springall, E.; Alibhai, S.M.H. An update on a systematic review of the use of geriatric assessment for older adults in oncology. Ann. Oncol. 2014, 25, 307–315. [Google Scholar] [CrossRef]
- Hurria, A.; Wildes, T.; Blair, S.L.; Browner, I.S.; Cohen, H.J.; DeShazo, M.; Dotan, E.; Edil, B.H.; Extermann, M.; Ganti, A.K.P.; et al. Senior Adult Oncology, Version 2.2014. J. Natl. Compr. Cancer Netw. 2014, 12, 82–126. [Google Scholar] [CrossRef]
- Wildiers, H.; Heeren, P.; Puts, M.; Topinkova, E.; Janssen-Heijnen, M.L.G.; Extermann, M.; Falandry, C.; Artz, A.; Brain, E.; Colloca, G.; et al. International Society of Geriatric Oncology Consensus on Geriatric Assessment in Older Patients With Cancer. J. Clin. Oncol. 2014, 32, 2595–2603. [Google Scholar] [CrossRef] [Green Version]
- Extermann, M.; Aapro, M.; Bernabei, R.; Cohen, H.J.; Droz, J.-P.; Lichtman, S.; Mor, V.; Monfardini, S.; Repetto, L.; Sørbye, L.; et al. Use of comprehensive geriatric assessment in older cancer patients: Recommendations from the task force on CGA of the International Society of Geriatric Oncology (SIOG). Crit. Rev. Oncol. Hematol. 2005, 55, 241–252. [Google Scholar] [CrossRef]
- Pallis, A.; Fortpied, C.; Wedding, U.; Van Nes, M.; Penninckx, B.; Ring, A.; Lacombe, D.; Monfardini, S.; Scalliet, P.; Wildiers, H. EORTC elderly task force position paper: Approach to the older cancer patient. Eur. J. Cancer 2010, 46, 1502–1513. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.D.; Newman, A.B.; Hirsch, C.; Gottdiener, J.S.; Seeman, T.E.; Tracy, R.P.; Kop, W.J.; Burke, G.L.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Rockwood, K.; Song, X.; Macknight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A global clinical measure of fitness and frailty in elderly people. Can. Med. Assoc. J. 2005, 173, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Bellera, C.A.; Rainfray, M.; Mathoulin-Pélissier, S.; Mertens, C.; Delva, F.; Fonck, M.; Soubeyran, P.L. Screening older cancer patients: First evaluation of the G-8 geriatric screening tool. Ann. Oncol. 2012, 23, 2166–2172. [Google Scholar] [CrossRef]
- Ducreux, M.; Cuhna, A.S.; Caramella, C.; Hollebecque, A.; Burtin, P.; Goéré, D.; Seufferlein, T.; Haustermans, K.; Van Laethem, J.L.; Conroy, T.; et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26, v56–v68. [Google Scholar] [CrossRef]
- Takaori, K.; Bassi, C.; Biankin, A.; Brunner, T.B.; Cataldo, I.; Campbell, F.; Cunningham, D.; Falconi, M.; Frampton, A.E.; Furuse, J.; et al. International Association of Pancreatology (IAP)/European Pancreatic Club (EPC) consensus review of guidelines for the treatment of pancreatic cancer. Pancreatology 2016, 16, 14–27. [Google Scholar] [CrossRef]
- Jones, R.P.; Psarelli, E.E.; Jackson, R.; Ghaneh, P.; Halloran, C.M.; Palmer, D.H.; Campbell, F.; Valle, J.W.; Faluyi, O.; O’Reilly, D.; et al. Patterns of Recurrence After Resection of Pancreatic Ductal Adenocarcinoma: A Secondary Analysis of the ESPAC-4 Randomized Adjuvant Chemotherapy Trial. JAMA Surg. 2019, 154, 1038–1048. [Google Scholar] [CrossRef]
- Goldsmith, C.; Plowman, P.N.; Green, M.M.; Dale, R.G.; Price, P.M. Stereotactic ablative radiotherapy (SABR) as primary, adjuvant, consolidation and re-treatment option in pancreatic cancer: Scope for dose escalation and lessons for toxicity. Radiat. Oncol. 2018, 13, 204. [Google Scholar] [CrossRef]
- Elberg Dengsø, K.; Tjørnhøj-Thomsen, T.; Oksbjerg Dalton, S.; Marcel Christensen, B.; Hillingsø, J.; Thomsen, T. It’s all about the CA-19-9. A longitudinal qualitative study of patients’ experiences and perspectives on follow-up after curative surgery for cancer in the pancreas, duodenum or bile-duct. Acta Oncol. 2019, 58, 642–649. [Google Scholar] [CrossRef]
- Deobald, R.G.; Cheng, E.S.W.; Ko, Y.-J.; Wright, F.C.; Karanicolas, P.J. A qualitative study of patient and clinician attitudes regarding surveillance after a resection of pancreatic and peri-ampullary cancer. HPB 2015, 17, 409–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaneh, P.; Hanson, R.; Titman, A.; Lancaster, G.; Plumpton, C.; Lloyd-Williams, H.; Yeo, S.T.; Edwards, R.T.; Johnson, C.; Abu Hilal, M.; et al. PET-PANC: Multicentre prospective diagnostic accuracy and health economic analysis study of the impact of combined modality 18fluorine-2-fluoro-2-deoxy-d-glucose positron emission tomography with computed tomography scanning in the diagnosis and management of pancreatic cancer. Health Technol. Assess. 2018, 22, 1–114. [Google Scholar] [PubMed]
- Palmieri, L.-J.; Coriat, R. 18F-FDG PET/CT in pancreatic adenocarcinoma: On the edge of a paradigm shift? Diagn. Interv. Imaging 2019, 100, 731–733. [Google Scholar] [CrossRef]
- Wang, L.; Dong, P.; Wang, W.; Tian, B. Positron emission tomography modalities prevent futile radical resection of pancreatic cancer: A meta-analysis. Int. J. Surg. 2017, 46, 119–125. [Google Scholar] [CrossRef]
- Riviere, D.M.; Van Geenen, E.J.M.; Van Der Kolk, B.M.; Nagtegaal, I.D.; Radema, S.A.; Van Laarhoven, C.J.H.M.; Hermans, J.J. Improving preoperative detection of synchronous liver metastases in pancreatic cancer with combined contrast-enhanced and diffusion-weighted MRI. Abdom. Radiol. 2019, 44, 1756–1765. [Google Scholar] [CrossRef] [Green Version]
- Marion-Audibert, A.-M.; Vullierme, M.-P.; Ronot, M.; Mabrut, J.-Y.; Sauvanet, A.; Zins, M.; Cuilleron, M.; Sa-Cunha, A.; Lévy, P.; Rode, A. Routine MRI With DWI Sequences to Detect Liver Metastases in Patients With Potentially Resectable Pancreatic Ductal Carcinoma and Normal Liver CT: A Prospective Multicenter Study. Am. J. Roentgenol. 2018, 211, W217–W225. [Google Scholar] [CrossRef]
- Jeon, S.K.; Lee, J.M.; Joo, I.; Lee, N.H.; Ahn, S.J.; Woo, H.; Lee, M.S.; Jang, J.-Y.; Han, J.K. Correction to: Magnetic resonance with diffusion-weighted imaging improves assessment of focal liver lesions in patients with potentially resectable pancreatic cancer on CT. Eur. Radiol. 2018, 28, 4475. [Google Scholar] [CrossRef] [Green Version]
- Kalisvaart, M.; Broadhurst, D.; Marcon, F.; Pande, R.; Schlegel, A.; Sutcliffe, R.; Marudanayagam, R.; Mirza, D.; Chatzizacharias, N.; Abradelo, M.; et al. Recurrence patterns of pancreatic cancer after pancreatoduodenectomy: Systematic review and a single-centre retrospective study. HPB 2020, 22, 1240–1249. [Google Scholar] [CrossRef]
- Butler, J.R.; Ahmad, S.A.; Katz, M.H.; Cioffi, J.L.; Zyromski, N.J. A systematic review of the role of periadventitial dissection of the superior mesenteric artery in affecting margin status after pancreatoduodenectomy for pancreatic adenocarcinoma. HPB 2016, 18, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Versteijne, E.; Vogel, J.A.; Besselink, M.G.; Busch, O.R.C.; Wilmink, J.W.; Daams, J.G.; van Eijck, C.H.J.; Koerkamp, B.G.; Rasch, C.R.N.; van Tienhoven, G. Meta-analysis comparing upfront surgery with neoadjuvant treatment in patients with resectable or borderline resectable pancreatic cancer. Br. J. Surg. 2018, 105, 946–958. [Google Scholar] [CrossRef] [Green Version]
- Petrucciani, N.; Nigri, G.; Debs, T.; Giannini, G.; Sborlini, E.; Antolino, L.; Aurello, P.; D’Angelo, F.; Gugenheim, J.; Ramacciato, G. Frozen section analysis of the pancreatic margin during pancreaticoduodenectomy for cancer: Does extending the resection to obtain a secondary R0 provide a survival benefit? Results of a systematic review. Pancreatology 2016, 16, 1037–1043. [Google Scholar] [CrossRef]
- Schwarz, L.; Vernerey, D.; Bachet, J.B.; Tuech, J.J.; Portales, F.; Michel, P.; Cunha, A.S. Resectable pancreatic adenocarcinoma neo-adjuvant FOLF(IRIN)OX-based chemotherapy—A multicenter, non-comparative, randomized, phase II trial (PANACHE01-PRODIGE48 study). BMC Cancer 2018, 18, 762. [Google Scholar] [CrossRef]
- Wang, W.; He, Y.; Wu, L.; Ye, L.; Yao, L.; Tang, Z. Efficacy of extended versus standard lymphadenectomy in pancreatoduodenectomy for pancreatic head adenocarcinoma. An update meta-analysis. Pancreatology 2019, 19, 1074–1080. [Google Scholar] [CrossRef]
- Dasari, B.V.M.; Pasquali, S.; Vohra, R.S.; Smith, A.M.; Taylor, M.A.; Sutcliffe, R.P.; Muiesan, P.; Roberts, K.J.; Isaac, J.; Mirza, D.F. Extended Versus Standard Lymphadenectomy for Pancreatic Head Cancer: Meta-Analysis of Randomized Controlled Trials. J. Gastrointest. Surg. 2015, 19, 1725–1732. [Google Scholar] [CrossRef]
- Sabater, L.; Cugat, E.; Serrablo, A.; Suarez-Artacho, G.; Diez-Valladares., L.; Santoyo-Santoyo, J.; Martín-Pérez, E.; Ausania, F.; Lopez-Ben, S.; Jover-Navalon, J.M.; et al. Does the Artery-first Approach Improve the Rate of R0 Resection in Pancreatoduodenectomy?: A Multicenter, Randomized, Controlled Trial. Ann. Surg. 2019, 270, 738–746. [Google Scholar] [CrossRef]
- Negoi, I.; Hostiuc, S.; Runcanu, A.; Negoi, R.I.; Beuran, M. Superior mesenteric artery first approach versus standard pancreaticoduodenectomy: A systematic review and meta-analysis. Hepatobiliary Pancreat. Dis. Int. 2017, 16, 127–138. [Google Scholar] [CrossRef]
- Hiraoka, T.; Uchino, R.; Kanemitsu, K.; Toyonaga, M.; Saitoh, N.; Nakamura, I.; Tashiro, S.; Miyauchi, Y. Combination of intraoperative radiation with resection of cancer of the pancreas. Int. J. Pancreatol. 1990, 7, 201–207. [Google Scholar]
- Katz, M.H.G.; Ou, F.S.; Herman, J.M.; Ahmad, S.A.; Wolpin, B.; Marsh, R.; Behr, S.; Shi, Q.; Chuong, M.; Schwartz, L.H.; et al. Alliance for clinical trials in oncology (ALLIANCE) trial A021501: Preoperative extended chemotherapy vs. chemotherapy plus hypofractionated radiation therapy for borderline resectable adenocarcinoma of the head of the pancreas. BMC Cancer 2017, 17, 505. [Google Scholar] [CrossRef]
- Lafranceschina, S.; Brunetti, O.; DelVecchio, A.; Conticchio, M.; Ammendola, M.; Currò, G.; Piardi, T.; De’Angelis, N.; Silvestris, N.; Memeo, R. Systematic Review of Irreversible Electroporation Role in Management of Locally Advanced Pancreatic Cancer. Cancers 2019, 11, 1718. [Google Scholar] [CrossRef] [Green Version]
- Tsuchida, H.; Fujii, T.; Mizuma, M.; Satoi, S.; Igarashi, H.; Eguchi, H.; Kuroki, T.; Shimizu, Y.; Tani, M.; Tanno, S.; et al. Prognostic importance of peritoneal washing cytology in patients with otherwise resectable pancreatic ductal adenocarcinoma who underwent pancreatectomy: A nationwide, cancer registry–based study from the Japan Pancreas Society. Surgery 2019, 166, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Fujii, T.; Yamamoto, T.; Takami, H.; Yoshioka, I.; Yamaki, S.; Sonohara, F.; Shibuya, K.; Motoi, F.; Hirano, S.; et al. Phase I/II study of adding intraperitoneal paclitaxel in patients with pancreatic cancer and peritoneal metastasis. BJS 2020, 107, 1811–1817. [Google Scholar] [CrossRef]
- Satoi, S.; Fujii, T.; Yanagimoto, H.; Motoi, F.; Kurata, M.; Takahara, N.; Yamada, S.; Yamamoto, T.; Mizuma, M.; Honda, G.; et al. Multicenter Phase II Study of Intravenous and Intraperitoneal Paclitaxel With S-1 for Pancreatic Ductal Adenocarcinoma Patients With Peritoneal Metastasis. Ann. Surg. 2017, 265, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Lai, E.; Puzzoni, M.; Ziranu, P.; Pretta, A.; Impera, V.; Mariani, S.; Liscia, N.; Soro, P.; Musio, F.; Persano, M.; et al. New therapeutic targets in pancreatic cancer. Cancer Treat. Rev. 2019, 81, 101926. [Google Scholar] [CrossRef] [PubMed]
- Holter, S.; Borgida, A.; Dodd, A.; Grant, R.; Semotiuk, K.; Hedley, D.; Dhani, N.; Narod, S.; Akbari, M.; Moore, M.; et al. Germline BRCA Mutations in a Large Clinic-Based Cohort of Patients With Pancreatic Adenocarcinoma. J. Clin. Oncol. 2015, 33, 3124–3129. [Google Scholar] [CrossRef] [PubMed]
- Waddell, N.; Initiative, A.P.C.G.; Pajic, M.; Patch, A.-M.; Chang, D.K.; Kassahn, K.S.; Bailey, P.; Johns, A.L.; Miller, D.; Nones, K.; et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nat. Cell Biol. 2015, 518, 495–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.-O.; Hochhauser, D.; Arnold, D.; Oh, D.-Y.; et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019, 381, 317–327. [Google Scholar] [CrossRef] [PubMed]
Indication for PDB | Comment | |
---|---|---|
Absolute | Neoadjuvant therapy | |
Renal dysfunction | If mild, percutaneous external drainage and fluid replacement may permit early surgery with trans-sphincteric drainage to reduce the risk of pancreatitis | |
Cholangitis with organ dysfunction | If mild, percutaneous external drainage and fluid replacement may permit early surgery with trans-sphincteric drainage to reduce the risk of pancreatitis | |
Relative | Bilirubin level | Exact cut off leve currently unclear, see text. |
Delay to surgery | Need to consider daily rate if increase in bilirubin as this may vary from patient to patient | |
Malnutrition | Ensure exocrine insufficiency corrected and balance delays to surgery, cancer progression against severity of malnutrition | |
Frailty | Frail patients are less likely to tolerate complications of PBD so a difficult discussion or choice often needs to be made. For some frail patients, direct to surgery may be there best chance to have surgery as delays or complications of PBD can exacerbate frailty |
Indication for PDB | Comment |
---|---|
Initial attempt at PBD | ERCP with self-expanding metal stent |
Position of stent | The stent should be short and ideally not occlude the cystic duct origin as this can lead to cholecystitis which can delay surgery or chemotherapy |
Periprocedural care | Antibiotics before and after the procedure Regular observations with escalation to medical team in event of abdominal pain and/or hypotension. Consideration of CT in event to exclude pancreatitis or perforation. |
Options if initial PBD fails | Maximum of two attempts at ERCP. If unsuccessful for PTC with stent placement as a rescue option (referral to specialist centre may be optimal depending on local experience) |
Definition of successful PBD | Biliary drainage is defined as successful if the serum bilirubin level decreased by 50% or more within 2 weeks after the procedure. |
Year | Study Design | No. | Exercise Plan | Key Findings | |
---|---|---|---|---|---|
Nakajima et al. | 2019 | Retrospective, cohort | 76 | 30 days Unsupervised, self-reported exercise | Shorter length of stay in prehabilitation group (23 days vs. 30 days, p = 0.045) |
Ausania et al. | 2019 | Randomised controlled trial | 18 | 2 weeks supervised and unsupervised, aerobic exercise | Reduction in DGE in prehabilitation group (5.6% vs. 40.9%, p = 0.01) |
Florez Bedoya et al. | 2019 | Prospective, cohort | 23 | 15 weeks unsupervised, self-reported, aerobic and resistance exercise | No comment on clinical outcomes Evidence of prehabilitation increasing tumour vascularity. |
Marker et al. | 2018 | Case series | 3 | 12–16 weeks, supervised, physiotherapist reported, hour long, 3× a week | Underpowered |
Parker et al | 2018 | Prospective, cohort | 50 | 60 min per week unsupervised, self-reported aerobic and strengthening exercise | No comment on clinical outcomes Home based exercise programme feasible |
Ngo-Huang et al | 2019 | Prospective, cohort | 50 | 2 weeks, unsupervised, self-reported, hour long aerobic exercise | Prehabilitation associated with improved physical function (6MWT, STS, GS improved from baseline, p = 0.48, 0.03 & 0.08, respectively) and HRQOL (Improved with increased LPA (p = 0.01) |
Areas for Gain Pre-Operatively | Problem | Intervention | Gain |
---|---|---|---|
Avoidance of pre-operative biliary drainage |
|
|
|
Correction of PEI related malnutrition |
|
|
|
Prehabilitation |
|
|
|
Old age/frailty |
|
|
|
Areas for Gain Peri-Operatively | Problem | Intervention | Gain |
---|---|---|---|
ERAS |
|
|
|
Reducing complications |
|
|
|
Correction of PEI related malnutrition |
|
|
|
Areas for Gain Post-Operatively | Problem | Intervention | Gain |
---|---|---|---|
Adjuvant chemotherapy |
|
|
|
Surveillance |
|
|
|
Nutrition |
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Powell-Brett, S.; Pande, R.; Roberts, K.J. Achieving ‘Marginal Gains’ to Optimise Outcomes in Resectable Pancreatic Cancer. Cancers 2021, 13, 1669. https://doi.org/10.3390/cancers13071669
Powell-Brett S, Pande R, Roberts KJ. Achieving ‘Marginal Gains’ to Optimise Outcomes in Resectable Pancreatic Cancer. Cancers. 2021; 13(7):1669. https://doi.org/10.3390/cancers13071669
Chicago/Turabian StylePowell-Brett, Sarah, Rupaly Pande, and Keith J. Roberts. 2021. "Achieving ‘Marginal Gains’ to Optimise Outcomes in Resectable Pancreatic Cancer" Cancers 13, no. 7: 1669. https://doi.org/10.3390/cancers13071669
APA StylePowell-Brett, S., Pande, R., & Roberts, K. J. (2021). Achieving ‘Marginal Gains’ to Optimise Outcomes in Resectable Pancreatic Cancer. Cancers, 13(7), 1669. https://doi.org/10.3390/cancers13071669