Loss-of-Function Mutations of BCOR Are an Independent Marker of Adverse Outcomes in Intensively Treated Patients with Acute Myeloid Leukemia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Set
2.2. Definitions
2.3. Molecular Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- Shumilov, E.; Flach, J.; Kohlmann, A.; Banz, Y.; Bonadies, N.; Fiedler, M.; Pabst, T.; Bacher, U. Current status and trends in the diagnostics of AML and MDS. Blood Rev. 2018, 32, 508–519. [Google Scholar] [CrossRef]
- Bullinger, L.; Döhner, K.; Döhner, H. Genomics of Acute Myeloid Leukemia Diagnosis and Pathways. J. Clin. Oncol. 2017, 35, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Huynh, K.D.; Fischle, W.; Verdin, E.; Bardwell, V.J. BCoR, a novel corepressor involved in BCL-6 repression. Genome Res. 2000, 14, 1810–1823. [Google Scholar]
- Li, M.; Collins, R.; Jiao, Y.; Ouillette, P.; Bixby, D.; Erba, H.; Vogelstein, B.; Kinzler, K.W.; Papadopoulos, N.; Malek, S.N. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia. Blood 2011, 118, 5914–5917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astolfi, A.; Fiore, M.; Melchionda, F.; Indio, V.; Bertuccio, S.N.; Pession, A. BCOR involvement in cancer. Epigenomics 2019, 11, 835–855. [Google Scholar] [CrossRef] [Green Version]
- Sparmann, A.; Van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer 2006, 6, 846–856. [Google Scholar] [CrossRef]
- Simon, J.A.; Kingston, R.E. Occupying Chromatin: Polycomb Mechanisms for Getting to Genomic Targets, Stopping Transcriptional Traffic, and Staying Put. Mol. Cell 2013, 49, 808–824. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Gearhart, M.D.; Gery, S.; Shojaee, S.; Yang, H.; Sun, H.; Lin, D.-C.; Bai, J.-W.; Mead, M.; Zhao, Z.; et al. BCOR regulates myeloid cell proliferation and differentiation. Leukemia 2016, 30, 1155–1165. [Google Scholar] [CrossRef] [Green Version]
- Gearhart, M.D.; Corcoran, C.M.; Wamstad, J.A.; Bardwell, V.J. Polycomb Group and SCF Ubiquitin Ligases Are Found in a Novel BCOR Complex That Is Recruited to BCL6 Targets. Mol. Cell. Biol. 2006, 26, 6880–6889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Gearhart, M.D.; Lee, Y.-W.; Kumar, I.; Ramazanov, B.; Zhang, Y.; Hernandez, C.; Lu, A.Y.; Neuenkirchen, N.; Deng, J.; et al. A Non-canonical BCOR-PRC1.1 Complex Represses Differentiation Programs in Human ESCs. Cell Stem Cell 2018, 22, 235–251.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wamstad, J.A.; Corcoran, C.M.; Keating, A.M.; Bardwell, V.J. Role of the Transcriptional Corepressor Bcor in Embryonic Stem Cell Differentiation and Early Embryonic Development. PLoS ONE 2008, 3, e2814. [Google Scholar] [CrossRef] [Green Version]
- Ng, D.; Thakker, N.; Corcoran, C.M.; Donnai, D.; Perveen, R.; Schneider, A.; Hadley, D.W.; Tifft, C.J.; Zhang, L.; Wilkie, A.O.M.; et al. Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat. Genet. 2004, 36, 411–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Benavente, C.A.; McEvoy, J.; Flores-Otero, J.; Ding, L.; Chen, X.; Ulyanov, A.; Wu, G.; Wilson, M.W.; Wang, J.; et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nat. Cell Biol. 2012, 481, 329–334. [Google Scholar] [CrossRef]
- Pugh, T.J.; Weeraratne, S.D.; Archer, T.C.; Krummel, D.A.P.; Auclair, D.; Bochicchio, J.; Carneiro, M.O.; Carter, S.L.; Cibulskis, K.; Erlich, R.L.; et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nat. Cell Biol. 2012, 488, 106–110. [Google Scholar] [CrossRef]
- Pierron, G.; Tirode, F.; Lucchesi, C.; Reynaud, S.; Ballet, S.; Cohen-Gogo, S.; Perrin, V.; Coindre, J.-M.; Delattre, O. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat. Genet. 2012, 44, 461–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Totoki, Y.; Tatsuno, K.; Yamamoto, S.; Arai, Y.; Hosoda, F.; Ishikawa, S.; Tsutsumi, S.; Sonoda, K.; Totsuka, H.; Shirakihara, T.; et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat. Genet. 2011, 43, 464–469. [Google Scholar] [CrossRef]
- Marsh, J.C.W.; Mufti, G. Clinical significance of acquired somatic mutations in aplastic anaemia. Int. J. Hematol. 2016, 104, 159–167. [Google Scholar] [CrossRef]
- Ogawa, S. Clonal hematopoiesis in acquired aplastic anemia. Blood 2016, 128, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Damm, F.; Chesnais, V.; Nagata, Y.; Yoshida, K.; Scourzic, L.; Okuno, Y.; Itzykson, R.; Sanada, M.; Shiraishi, Y.; Gelsi-Boyer, V.; et al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood 2013, 122, 3169–3177. [Google Scholar] [CrossRef] [Green Version]
- Steensma, D.P. Clinical consequences of clonal hematopoiesis of indeterminate potential. Hematology 2018, 2018, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Abuhadra, N.; Mukherjee, S.; Al-Issa, K.; Adema, V.; Hirsch, C.M.; Advani, A.; Przychodzen, B.; Makhoul, A.; Awada, H.; Maciejewski, J.P.; et al. BCOR and BCORL1 mutations in myelodysplastic syndromes (MDS): Clonal architecture and impact on outcomes. Leuk. Lymphoma 2019, 60, 1587–1590. [Google Scholar] [CrossRef]
- Montalban-Bravo, G.; Takahashi, K.; Patel, K.; Wang, F.; Xingzhi, S.; Nogueras, G.M.; Huang, X.; Pierola, A.A.; Jabbour, E.; Colla, S.; et al. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. Oncotarget 2018, 9, 9714–9727. [Google Scholar] [CrossRef] [Green Version]
- Tara, S.; Isshiki, Y.; Nakajima-Takagi, Y.; Oshima, M.; Aoyama, K.; Tanaka, T.; Shinoda, D.; Koide, S.; Saraya, A.; Miyagi, S.; et al. Bcor insufficiency promotes initiation and progression of myelodysplastic syndrome. Blood 2018, 132, 2470–2483. [Google Scholar] [CrossRef] [Green Version]
- Grossmann, V.; Tiacci, E.; Holmes, A.B.; Kohlmann, A.; Martelli, M.P.; Kern, W.; Spanhol-Rosseto, A.; Klein, H.-U.; Dugas, M.; Schindela, S.; et al. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood 2011, 118, 6153–6163. [Google Scholar] [CrossRef] [Green Version]
- Terada, K.; Yamaguchi, H.; Ueki, T.; Usuki, K.; Kobayashi, Y.; Tajika, K.; Gomi, S.; Kurosawa, S.; Saito, R.; Furuta, Y.; et al. Usefulness ofBCORgene mutation as a prognostic factor in acute myeloid leukemia with intermediate cytogenetic prognosis. Genes Chromosom. Cancer 2018, 57, 401–408. [Google Scholar] [CrossRef] [PubMed]
- De Rooij, J.D.; Heuvel-Eibrink, M.M.V.D.; Hermkens, M.C.; Verboon, L.J.; Arentsen-Peters, S.T.C.J.M.; Fornerod, M.; Baruchel, A.; Stary, J.; Reinhardt, D.; De Haas, V.; et al. BCOR and BCORL1 mutations in pediatric acute myeloid leukemia. Hematology 2015, 100, e194–e195. [Google Scholar] [CrossRef] [Green Version]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Röllig, C.; Thiede, C.; Gramatzki, M.; Aulitzky, W.; Bodenstein, H.; Bornhäuser, M.; Platzbecker, U.; Stuhlmann, R.; Schuler, U.; Soucek, S.; et al. A novel prognostic model in elderly patients with acute myeloid leukemia: Results of 909 patients entered into the prospective AML96 trial. Blood 2010, 116, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Schaich, M.; Parmentier, S.; Kramer, M.; Illmer, T.; Stölzel, F.; Röllig, C.; Thiede, C.; Hänel, M.; Schäfer-Eckart, K.; Aulitzky, W.; et al. High-Dose Cytarabine Consolidation with or Without Additional Amsacrine and Mitoxantrone in Acute Myeloid Leukemia: Results of the Prospective Randomized AML2003 Trial. J. Clin. Oncol. 2013, 31, 2094–2102. [Google Scholar] [CrossRef]
- Röllig, C.; Kramer, M.; Gabrecht, M.; Hänel, M.; Herbst, R.; Kaiser, U.; Schmitz, N.; Kullmer, J.; Fetscher, S.; Link, H.; et al. Intermediate-dose cytarabine plus mitoxantrone versus standard-dose cytarabine plus daunorubicin for acute myeloid leukemia in elderly patients. Ann. Oncol. 2018, 29, 973–978. [Google Scholar] [CrossRef]
- Röllig, C.; Serve, H.; Hüttmann, A.; Noppeney, R.; Müller-Tidow, C.; Krug, U.; Baldus, C.D.; Brandts, C.H.; Kunzmann, V.; Einsele, H.; et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): A multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015, 16, 1691–1699. [Google Scholar] [CrossRef]
- Gebhard, C.; Glatz, D.; Schwarzfischer, L.; Wimmer, J.; Stasik, S.; Nuetzel, M.; Heudobler, D.; Andreesen, R.; Ehninger, G.; Thiede, C.; et al. Profiling of aberrant DNA methylation in acute myeloid leukemia reveals subclasses of CG-rich regions with epigenetic or genetic association. Leukemia 2019, 33, 26–36. [Google Scholar] [CrossRef]
- Stasik, S.; Schuster, C.; Ortlepp, C.; Platzbecker, U.; Bornhauser, M.; Schetelig, J.; Ehninger, G.; Folprecht, G.; Thiede, C. An optimized targeted Next-Generation Sequencing approach for sensitive detection of single nucleotide variants. Biomol. Detect. Quantif. 2018, 15, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting Functional Effect of Human Missense Mutations Using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 76, 7–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazha, A.; Zarzour, A.; Al-Issa, K.; Radivoyevitch, T.; Carraway, H.E.; Hirsch, C.M.; Przychodzen, B.; Patel, B.J.; Clemente, M.; Sanikommu, S.R.; et al. The complexity of interpreting genomic data in patients with acute myeloid leukemia. Blood Cancer J. 2016, 6, e510. [Google Scholar] [CrossRef] [Green Version]
- Ley, T.J.; Ding, L.; Walter, M.J.; McLellan, M.D.; Lamprecht, T.L.; Larson, D.E.; Kandoth, C.; Payton, J.E.; Baty, J.; Welch, J.J.; et al. DNMT3AMutations in Acute Myeloid Leukemia. N. Engl. J. Med. 2010, 363, 2424–2433. [Google Scholar] [CrossRef] [Green Version]
- Sportoletti, P.; Sorcini, D.; Guzman, A.G.; Reyes, J.M.; Stella, A.; Marra, A.; Sartori, S.; Brunetti, L.; Rossi, R.; Del Papa, B.; et al. Bcor deficiency perturbs erythro-megakaryopoiesis and cooperates with Dnmt3a loss in acute erythroid leukemia onset in mice. Leukemia 2020, 1–15. [Google Scholar] [CrossRef]
- Wang, M.; Yang, C.; Zhang, L.; Schaar, D.G. Molecular Mutations and Their Cooccurrences in Cytogenetically Normal Acute Myeloid Leukemia. Stem Cells Int. 2017, 2017, 6962379. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; D’Alessio, A.C.; Taranova, O.V.; Hong, K.; Sowers, L.C.; Zhang, Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nat. Cell Biol. 2010, 466, 1129–1133. [Google Scholar] [CrossRef] [Green Version]
- Malcovati, L.; Papaemmanuil, E.; Ambaglio, I.; Elena, C.; Gallì, A.; Della Porta, M.G.; Travaglino, E.; Pietra, D.; Pascutto, C.; Ubezio, M.; et al. Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia. Blood 2014, 124, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, M.; Yoshimi, A.; Nakagawa, M.; Nishimoto, N.; Watanabe-Okochi, N.; Kurokawa, M. A role for RUNX1 in hematopoiesis and myeloid leukemia. Int. J. Hematol. 2013, 97, 726–734. [Google Scholar] [CrossRef]
- Kelly, M.J.; So, J.; Rogers, A.J.; Gregory, G.; Li, J.; Zethoven, M.; Gearhart, M.D.; Bardwell, V.J.; Johnstone, R.W.; Vervoort, S.J.; et al. Bcor loss perturbs myeloid differentiation and promotes leukaemogenesis. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Eisfeld, A.-K.; Kohlschmidt, J.; Mims, A.; Nicolet, D.; Walker, C.J.; Blachly, J.S.; Carroll, A.J.; Papaioannou, D.; Kolitz, J.E.; Powell, B.E.; et al. Additional gene mutations may refine the 2017 European LeukemiaNet classification in adult patients with de novo acute myeloid leukemia aged <60 Years. Leukemia 2020, 34, 3215–3227. [Google Scholar] [CrossRef] [PubMed]
Parameter | wtBCOR | mBCOR-LOF | mBCOR–UF | p-Value |
---|---|---|---|---|
N. of patients | 1458 | 48 | 23 | |
Age, median (IQR) | 55 (44–64) | 53 (45–65) | 61 (51–69) | 0.165 |
Sex, n (%) | 0.150 | |||
Female | 689 (47.3) | 26 (54.2) | 15 (65.2) | |
Male | 769 (52.7) | 22 (45.8) | 8 (34.8) | |
AML type, n (%) | 0.065 | |||
De novo | 1235 (85.6) | 37 (78.7) | 15 (68.2) | |
sAML | 158 (11) | 9 (19.1) | 6 (27.3) | |
tMN | 49 (3.4) | 1 (2.1) | 1 (4.5) | |
ELN2017, n (%) | <0.001 | |||
Favorable | 561 (41.7) | 1 (2.3) | 8 (38.1) | |
Intermediate | 522 (38.8) | 38 (86.4) | 6 (28.6) | |
Adverse | 261 (19.4) | 5 (11.4) | 7 (33.3) | |
Complex karyotype, n (%) | 0.111 | |||
No | 1178 (87.8) | 44 (93.6) | 19 (82.6) | |
Yes | 164 (12.2) | 3 (6.4) | 4 (17.4) | |
FLT3-ITD, n (%) | 0.022 | |||
wt | 1114 (76.9) | 44 (93.6) | 19 (82.6) | |
m | 334 (23.1) | 3 (6.4) | 4 (17.4) | |
NPM1, n (%) | <0.001 | |||
wt | 961 (67) | 45 (97.8) | 16 (69.6) | |
m | 474 (33) | 1 (2.2) | 7 (30.4) | |
WBC, median (IQR) in GPt/L | 20.85 (4.96–56.4) | 4 (1.82–16.88) | 16.5 (6.46–34.65) | <0.001 |
Hb, median (IQR) in mmol/L | 5.9 (5.0–7.0) | 6.15 (5.25–7.78) | 5.59 (5.06–6.01) | 0.211 |
Platelets, median (IQR) in GPt/L | 50 (27.0–92.0) | 54 (25.5–106) | 73 (41.5–118.5) | 0.176 |
LDH, median (IQR) in mmol/L | 457 (290.25–795.0) | 306 (223.65–458.3) | 407 (254.5–897) | 0.001 |
BM blasts (%), median (IQR) | 63 (44–79) | 58.75 (48.88–72.12) | 61 (45–72.73) | 0.874 |
PB blasts (%), median (IQR) | 42 (13–75) | 19 (6–59) | 39 (19.75–70) | 0.076 |
Parameter | wtBCORL1 | mBCORL1 | p-Value |
---|---|---|---|
N. of patients | 1476 | 53 | |
Age, median (IQR) | 55 (44–65) | 52 (43–62) | 0.177 |
Sex, n (%) | 0.044 | ||
Female | 697 (47.2) | 33 (62.3) | |
Male | 779 (52.8) | 20 (37.7) | |
AML type, n (%) | 0.621 | ||
De novo | 1244 (85.3) | 43 (82.7) | |
sAML | 167 (11.4) | 6 (11.5) | |
tMN | 48 (3.3) | 3 (5.8) | |
ELN2017, n (%) | <0.001 | ||
Favorable | 564 (41.5) | 6 (12) | |
Intermediate | 531 (39.1) | 35 (70) | |
Adverse | 264 (19.4) | 9 (18) | |
Complex karyotype, n (%) | 0.975 | ||
No | 1192 (88) | 39 (86.7) | |
yes | 163 (12) | 6 (13.3) | |
FLT3-ITD, n (%) | 0.782 | ||
wt | 1138 (77.6) | 39 (75) | |
m | 328 (22.4) | 13 (25) | |
NPM1, n (%) | 0.006 | ||
wt | 977 (67.3) | 45 (86.5) | |
m | 475 (32.7) | 7 (13.5) | |
WBC, median (IQR) in GPt/L | 20.09 (4.8–55.27) | 14.35 (3.55–54.95) | 0.340 |
Hb, median (IQR) in mmol/L | 5.9 (5.0–7.0) | 6.2 (5.3–7.0) | 0.341 |
Platelets, median (IQR) in GPt/L | 51 (27.0–93.3) | 50.5 (30.0–90.5) | 0.727 |
LDH, median (IQR) in mmol/L | 452 (288.0–794.8) | 333 (254.0–621.0) | 0.053 |
BM blasts (%), median (IQR) | 63 (44–79) | 65.25 (48.88–82.75) | 0.299 |
PB blasts (%), median (IQR) | 40.5 (12–74) | 48.5 (15–78) | 0.419 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eckardt, J.-N.; Stasik, S.; Kramer, M.; Röllig, C.; Krämer, A.; Scholl, S.; Hochhaus, A.; Crysandt, M.; Brümmendorf, T.H.; Naumann, R.; et al. Loss-of-Function Mutations of BCOR Are an Independent Marker of Adverse Outcomes in Intensively Treated Patients with Acute Myeloid Leukemia. Cancers 2021, 13, 2095. https://doi.org/10.3390/cancers13092095
Eckardt J-N, Stasik S, Kramer M, Röllig C, Krämer A, Scholl S, Hochhaus A, Crysandt M, Brümmendorf TH, Naumann R, et al. Loss-of-Function Mutations of BCOR Are an Independent Marker of Adverse Outcomes in Intensively Treated Patients with Acute Myeloid Leukemia. Cancers. 2021; 13(9):2095. https://doi.org/10.3390/cancers13092095
Chicago/Turabian StyleEckardt, Jan-Niklas, Sebastian Stasik, Michael Kramer, Christoph Röllig, Alwin Krämer, Sebastian Scholl, Andreas Hochhaus, Martina Crysandt, Tim H. Brümmendorf, Ralph Naumann, and et al. 2021. "Loss-of-Function Mutations of BCOR Are an Independent Marker of Adverse Outcomes in Intensively Treated Patients with Acute Myeloid Leukemia" Cancers 13, no. 9: 2095. https://doi.org/10.3390/cancers13092095
APA StyleEckardt, J. -N., Stasik, S., Kramer, M., Röllig, C., Krämer, A., Scholl, S., Hochhaus, A., Crysandt, M., Brümmendorf, T. H., Naumann, R., Steffen, B., Kunzmann, V., Einsele, H., Schaich, M., Burchert, A., Neubauer, A., Schäfer-Eckart, K., Schliemann, C., Krause, S. W., ... Middeke, J. M. (2021). Loss-of-Function Mutations of BCOR Are an Independent Marker of Adverse Outcomes in Intensively Treated Patients with Acute Myeloid Leukemia. Cancers, 13(9), 2095. https://doi.org/10.3390/cancers13092095