Comparative Analysis of Predictive Biomarkers for PD-1/PD-L1 Inhibitors in Cancers: Developments and Challenges
Abstract
:Simple Summary
Abstract
1. Introduction
2. Tumor Intrinsic-Based Biomarkers
2.1. PD-L1 Expression
2.2. Microsatellite Instability (MSI)
Trial Name/ID | Phase | Tumor Type | Antibody Clone | Stained Cell Types | Cutoff | ORR, % (n/N) | p Value § | p Value | mPFS (95%CI) (Months) | p Value | mOS (95%CI) (Months) | p Value | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PD-L1 Positive | PD-L1 Negative | PD-L1 Positive | PD-L1 Negative | PD-L1 Positive | PD-L1 Negative | ||||||||||
Nivolumab | |||||||||||||||
CheckMate 017 [12] | 3 | NSCLC | 28-8 | TC | 1% | 17 (11/63) | 17 (9/54) | 0.936 | - | 3.3 | 3.1 | 0.698 | 9.3 | 8.7 | 0.556 |
TC | 5% | 21 (9/42) | 15 (11/75) | 0.291 | - | 4.8 | 2.2 | 0.159 | 10.0 | 8.5 | 0.475 | ||||
TC | 10% | 19 (7/36) | 16 (13/81) | 0.641 | - | 3.7 | 2.3 | 0.347 | 11.0 | 8.2 | 0.406 | ||||
CheckMate 057 [13] | 3 | NSCLC | 28-8 | TC | 1% | 31 (38/123) | 9 (10/108) | 0.002 | - | 4.2 | 2.1 | 0.020 | 17.7 | 10.5 | 0.060 |
TC | 5% | 36 (34/95) | 10 (14/136) | 0.002 | - | 5.0 | 2.1 | <0.001 | 19.4 | 9.8 | <0.001 | ||||
TC | 10% | 37 (32/86) | 11 (16/145) | 0.002 | - | 5.0 | 2.1 | <0.001 | 19.9 | 9.9 | <0.001 | ||||
CheckMate 063 [11] | 2 | NSCLC | NR | TC | 5% | 48 (12/25) | 33 (17/51) | - | 0.216 | - | - | - | - | - | - |
CheckMate 078 [58] | 3 | NSCLC | NR | TC | 1% | 17 (29/168) | 18 (25/138) | - | 0.845 | 2.8 | 2.9 | - | 12.0 | 11.4 | - |
CheckMate 227 ǂ [59] | 3 | NSCLC | 28-8 | TC | 1% | 36 (142/396) | 27 (51/187) | - | 0.040 | 5.1 (4.1–6.3) | 5.1 (3.2–6.4) | - | 17.1 (15.0–20.1) | 17.2 (12.8–22.0) | - |
CheckMate 9LA ǂ [60] | 3 | NSCLC | 28-8 | TC | 1% | 52 (105/203) | 51 (69/135) | - | 0.912 | - | - | 15.8 (13.8–NE) | 16.8 (13.7–NE) | - | |
50% | 49 (37/76) | 52 (137/262) | - | 0.580 | - | - | - | - | - | - | |||||
NCT00730639 [5] | 1 | NSCLC | NR | TC | 5% | 15 (5/33) | 14 (3/35) | - | 0.471 | 3.3 (1.8–7.5) | 1.8 (1.7–2.3) | - | 7.8 (5.6–21.7) | 10.5 (5.2–14.8) | - |
CheckMate 012 [10] | 1 | NSCLC | 28-8 | TC | 1% | 28 (9/32) | 14 (2/14) | - | 0.460 | 3.5 (<0.1–28.0+) | 6.6 (<0.1–12.4) | - | - | - | - |
TC | 5% | 31 (8/26) | 15 (3/20) | - | 0.302 | 3.5 (<0.1–28.0+) | 5.0 (<0.1–16.0+) | - | - | - | - | ||||
TC | 10% | 40 (8/20) | 12 (3/26) | - | 0.038 | 5.2 (0.2–28.0+) | 3.5 (<0.1–16.0+) | - | - | - | - | ||||
TC | 25% | 44 (8/18) | 11 (3/28) | - | 0.014 | 5.8 (0.2–28.0+) | 2.4 (<0.1–16.0+) | - | - | - | - | ||||
TC | 50% | 50 (6/12) | 15 (5/34) | - | 0.014 | 8.3 (2.2–28.0+) | 2.4 (<0.1–16.0+) | - | - | - | - | ||||
CheckMate 037 [7] | 3 | Melanoma | NR | TC | 5% | 43 (48/111) | 15 (21/137) | - | <0.001 | - | - | - | 30.62 (20.44–NE) | 9.86 (7.59–12.42) | - |
CheckMate 066 [6] | 3 | Melanoma | NR | TC | 5% | 53 (39/74) | 33 (45/136) | - | 0.006 | - | - | - | - | - | - |
CheckMate 067 [8] | 3 | Melanoma | NR | TC | 1% | 54 (92/171) | 35 (41/117) | - | 0.002 | - | - | - | NE (40.2–NE) | 23.5 (13.0–36.5) | - |
TC | 5% | 58 (46/80) | 42 (87/208) | - | 0.017 | - | - | - | NE (35.8–NE) | 35.9 (23.1–NE) | - | ||||
TC | 10% | 58 (34/59) | 44 (101/229) | - | 0.063 | - | - | - | - | - | - | ||||
CheckMate 141 [14] | 3 | HNSCC | 28-8 | TC | 1% | 17 (15/88) | 12 (9/73) | - | 0.403 | - | - | - | 8.7 (5.7–9.1) | 5.7 (4.4–12.7) | - |
TC | 5% | 22 (12/54) | 11 (12/107) | - | 0.064 | - | - | - | 8.8 | 7.0 | - | ||||
TC | 10% | 28 (12/43) | 10 (12/118) | - | 0.005 | - | - | - | 8.7 | 7.2 | - | ||||
UMIN000005714 [15] | 2 | Ovarian cancer | 27A2 | TC | NR | 13 (2/16) | 25 (1/4) | 0.509 | - | - | - | - | - | - | - |
NCT02873962 [61] | 2 | Ovarian cancer | 28-8 | TC | 1% | 14 (2/14) | 46 (10/22) | - | 0.076 | - | - | - | - | - | - |
IC | 5% | 15 (3/20) | 60 (9/15) | - | 0.011 | - | - | - | - | - | - | ||||
CPS | 1 | 18 (4/22) | 57 (8/14) | - | 0.029 | - | - | - | - | - | - | ||||
CPS | 10 | 0 (0/9) | 44 (12/27) | - | 0.016 | - | - | - | - | - | - | ||||
CheckMate 025 [17] | 3 | RCC | NR | TC | 1% | - | - | - | - | - | - | - | 21.8 (16.5–28.1) | 27.4 (21.4–NE) | - |
TC | 5% | - | - | - | - | - | - | - | 21.9 (14.0–NE) | 24.6 (21.4–NE) | - | ||||
NCT01354431 [16] | 2 | RCC | 28-8 | TC | 5% | 31 (9/29) | 18 (14/78) | - | 0.143 | 4.9 (1.4–7.8) | 2.9 (2.1–4.2) | - | NE (13.4–NE) | 18.2 (12.7–26.0) | - |
CheckMate 032 [18] | 1/2 | UC | 28-8 | TC | 1% | 24 (6/25) | 26 (11/42) | - | 0.842 | 5.5 (1.4–11.2) | 2.8 (1.4–6.5) | - | 16.2 (7.6–NE) | 9.9 (7.0–NE) | - |
5% | 28 (4/14) | 25 (13/53) | - | 0.740 | 5.5 (1.2–11.2) | 2.8 (1.5–7.0) | - | 12.9 (2.8–NE) | 10.4 (7.0–NE) | - | |||||
CheckMate 275 [19] | 2 | UC | 28-8 | TC | 1% | 24 (29/122) | 16 (23/143) | - | 0.116 | - | - | - | 11.30 (8.74–NE) | 5.95 (4.30–8.08) | - |
ATTRACTION-2 [20] | 3 | Gastric or GOJ | 28-8 | TC | 1% | - | - | - | - | - | - | - | 5.22 (2.79–9.36) | 6.05 (4.83–8.54) | - |
5% | 28 (23/81) | 16 (29/184) | - | 0.017 | - | - | - | - | - | - | |||||
CheckMate 040 [21] | 1/2 | HCC | 28-8 | TC | 1% | 27 (3/11) | 12 (4/33) | - | 0.341 | - | - | - | - | - | - |
CheckMate 142 [22] | 2 | CRC | 28-8 | TC | 1% | 29 (6/21) | 28 (13/47) | - | 0.938 | - | - | - | - | - | - |
NCI-9742 [62] | 2 | NPC | 28-8 | TC | 1% | 39 (7/18) | 14 (3/21) | - | 0.141 | - | - | - | - | - | - |
CheckMate 358 [63] | 1/2 | Merkel cell carcinoma | 28-8 | TC | 1% | 71 (5/7) | 47 (8/17) | - | 0.386 | - | - | - | - | - | - |
NCT00730639 [5] | 1 | Advanced tumors | 5H1 | TC | 5% | 36 (9/25) | 0 (0/17) | 0.006 | - | - | - | - | - | - | - |
Pembrolizumab | |||||||||||||||
KEYNOTE-001 [23] | 1 | NSCLC | 22C3 | TC and IC | 1% | 27 (51/190) | 10 (3/30) | - | 0.065 | - | - | - | - | - | - |
TC or IC | 50% | 42 (33/78) | 15 (21/142) | - | <0.001 | - | - | - | - | - | - | ||||
KEYNOTE-407 [64] | 3 | NSCLC | 22C3 | TC | 1% | 59 (104/176) | 67 (64/95) | - | 0.180 | 8.2 (6.3–10.2) | 6.3 (6.1–8.5) | - | 18.9 (14.0–22.2) | 15.0 (13.2–19.4) | - |
KEYNOTE-012 [24] | 1b | UC | 22C3 | TC | 1% | 14 (2/14) | 27 (3/11) | - | 0.623 | - | - | - | - | - | - |
TC or IC | 1% | 24 (5/21) | 0 (0/4) | - | 0.549 | - | - | - | - | - | - | ||||
KEYNOTE-045 [26] | 3 | UC | 22C3 | TC or IC | 10% | 22 (16/74) | 21 (41/196) | - | 0.899 | - | - | - | - | - | - |
KEYNOTE-052 [25] | 2 | UC | 22C3 | TC or IC | 1% | 27 (59/219) | 11 (5/46) | - | 0.021 | - | - | - | - | - | - |
10% | 39 (31/80) | 18 (33/185) | - | <0.001 | - | - | - | - | - | - | |||||
KEYNOTE-012 [27] | 1b | HNSCC | 22C3 | TC | 1% | 19 (17/89) | 16 (7/43) | 0.348 | - | - | - | 0.195 | - | - | 0.132 |
TC or IC | 1% | 22 (23/107) | 4 (1/25) | 0.021 | - | - | - | 0.008 | 10.1 | 5.0 | 0.008 | ||||
KEYNOTE-055 [28] | 2 | HNSCC | 22C3 | TC or IC | 1% | 18 (25/140) | 12 (3/26) | - | 0.574 | - | - | - | - | - | - |
TC or IC | 50% | 27 (13/48) | 13 (15/118) | - | 0.025 | - | - | - | - | - | - | ||||
KEYNOTE-012 [29] | 1b | Gastric cancer | 22C3 | TC or IC | 1% | 17 (1/6) | 24 (7/29) | - | 1.000 | - | - | - | - | - | - |
TC or IC | 50% | 33 (1/3) | 22 (7/32) | - | 0.553 | - | - | - | - | - | - | ||||
KEYNOTE-059 [65] | 2 | Gastric or GOJ | 22C3 | TC or IC | 1% | 16 (23/148) | 6 (7/109) | - | 0.024 | - | - | - | - | - | - |
KEYNOTE-180 [66] | 2 | ESCC and adenocarcinoma | 22C3 | CPS | 10 | 14 (8/58) | 6 (4/63) | - | 0.227 | - | - | - | - | - | - |
CP-MGAH22–05 [67] | 1b/2 | GOJ | 22C3 | CPS | 1 | 33 (11/33) | 7 (3/43) | - | 0.006 | - | - | - | - | - | - |
KEYNOTE-086 [68] | 2 | TNBC | 22C3 | CPS | 1 | 6 (6/105) | 5 (3/64) | - | 1.000 | 2.0 (1.9–2.1) | 1.9 (1.7–2.0) | - | 8.8 (7.1–11.2) | 9.7 (6.2–12.6) | - |
KEYNOTE-355 [69] | 3 | TNBC | 22C3 | CPS | 1 | - | - | - | - | 7.6 | 6.3 | - | - | - | |
CPS | 10 | - | - | - | - | 9.7 | 5.8 | - | - | - | - | ||||
CPS | 20 | - | - | - | - | 9.5 | 6.6 | - | - | - | - | ||||
PANACEA [70] | 1b/2 | HER2+ BC | 22C3 | CPS | 1 | 15 (7/46) | 0 (0/12) | - | 0.325 | 2.7 (2.6–4.0) | 2.5 (1.4–2.7) | - | NE (13.1–NE) | 7.0 (4.9–9.8) | - |
KEYNOTE-100 [71] | 2 | Ovarian cancer | 73-10 | CPS | 1 | 10 (20/197) | 17 (14/82) | - | 0.107 | - | - | - | - | - | - |
KEYNOTE-158 [72] | 2 | Cervical cancer | 22C3 | CPS | 1 | 15 (12/82) | 0 (0/15) | - | 0.203 | - | - | - | - | - | - |
KEYNOTE-158 [73] | 2 | Mesothelioma | 22C3 | CPS | 1 | 8 (6/77) | 13 (4/31) | - | 0.468 | - | - | - | - | - | - |
KEYNOTE-199 [74] | 2 | Prostate cancer | 22C3 | CPS | 1 | 5 (7/133) | 3 (2/66) | - | 0.475 | - | - | - | - | - | - |
NCT02501096 [75] | 2 | Endometrial cancer | 22C3 | CPS | 1 | 50 (6/12) | 60 (6/10) | - | 0.691 | - | - | - | - | - | - |
NCT02267603 [30] | 2 | Merkel cell carcinoma | 22C3 | TC | 1% | 33 (4/12) | 45 (5/11) | 0.610 | - | - | - | - | - | - | - |
CARSKIN [76] | 2 | CSCC | E1L3N | TC | 1% | 55 (22/42) | 17 (2/12) | - | 0.046 | - | - | - | - | - | - |
JVDF [77] | 1a/b | Gastric or GOJ | 22C3 | CPS | 1 | 24 (4/17) | 8 (1/13) | - | 0.355 | - | - | - | - | - | - |
NSCLC | 22C3 | CPS | 1 | 55 (6/11) | 40 (4/10) | - | 0.670 | - | - | - | - | - | - | ||
UC | 22C3 | CPS | 1 | 30 (3/10) | 0 (0/10) | - | 0.211 | - | - | - | - | - | - | ||
Cemiplimab | |||||||||||||||
EMPOWER-Lung 1 [78] | 3 | NSCLC | 22C3 | TC | 50% | 40 (85/210) | 36 (26/73) | - | 0.464 | 8.2 (6.1–8.8) | 4.1 (2.6–6.1) | - | NE (17.9–NE) | 16.5 (11.6–NE) | - |
Sintilimab | |||||||||||||||
ORIENT-11 [79] | 3 | NSCLC | 22C3 | TC | 1% | - | - | - | - | - | - | - | - | - | - |
Atezolizumab | |||||||||||||||
POPLAR [35] | 2 | NSCLC | SP142 | TC or IC | 1% | 18 (17/93) | 8 (4/51) | - | 0.137 | 2.8 (2.6–5.5) | 1.7 (1.4–4.2) | - | 15.5 (11.0–NE) | 9.7 (6.7–12.0) | - |
OAK [36] | 3 | NSCLC | SP142 | TC or IC | 1% | 18 (43/241) | 8 (14/180) | - | 0.003 | 2.8 (2.6–4.0) | 2.6 (1.7–2.9) | - | 15.7 (12.6–18.0) | 12.6 (9.6–15.2) | - |
IMpower150 [80] | 3 | NSCLC | SP142 | TC or IC | 1% | - | - | - | - | - | - | - | 24.4 (20.2–28.1) | 14.8 (11.9–16.8) | - |
IMpower133 [81] | 3 | SCLC | NR | TC or IC | 1% | 53 (19/36) | 75 (21/28) | - | 0.069 | 5.1 (4.2–5.6) | 5.4 (4.5–5.6) | - | 9.7 (7.6–17.4) | 10.2 (7.9–15.7) | - |
NR | TC or IC | 5% | - | - | - | - | - | - | - | 21.6 (9.4–NE) | 9.2 (7.6–12.2) | - | |||
IMpassion130 [82] | 3 | TNBC | SP142 | IC | 1% | - | - | - | - | - | - | - | 25.4 | 19.7 | - |
PCD4989g [83] | 1 | TNBC | SP142 | IC | 1% | 12 (11/91) | 0 (0/21) | - | 0.121 | - | - | - | 10.1 (7.0–13.8) | 6.0 (2.6–12.6) | - |
10% | - | - | - | - | - | - | - | 12.6 (9.5–15.5) | 6.7 (4.9–7.6) | - | |||||
KATE2 [84] | 2 | HER2+ BC | SP142 | IC | 1% | - | - | - | - | 8.5 (5.7–NE) | 6.8 (5.4–NE) | - | - | - | - |
GO30140 [85] | 1b | HCC | SP263 | TC or IC | 1% | 41 (25/61) | 28 (7/25) | - | 0.258 | 5.6 (2.6–NE) | 5.7 (3.6–NE) | - | - | - | - |
TC or IC | 5% | 46 (17/37) | 31 (15/49) | - | 0.145 | 4.1 (1.8–NE) | 5.7 (3.6–NE) | - | - | - | - | ||||
TC or IC | 10% | 50 (15/30) | 30 (17/56) | - | 0.101 | 3.7 (1.8–NE) | 5.7 (4.4–NE) | - | - | - | - | ||||
NCT01375842 [32] | 1a | RCC | SP142 | IC | 1% | 18 (6/33) | 9 (2/22) | - | 0.454 | 5.6 (2.8–9.0) | 4.5 (1.3–8.1) | NE (20.0–NE) | 28.8 (16.3–28.9) | - | |
IMvigor010 [86] | 3 | UC | SP142 | IC | 5% | - | - | - | - | 24.8 (17.2–NE) | 16.4 (12.0–20.0) | - | - | - | - |
NCT02108652 [33] | 2 | UC | SP142 | IC | 1% | 18 (37/207) | 8 (8/103) | - | 0.017 | - | - | - | - | 6.5 (4.4–8.3) | - |
IC | 5% | 26 (26/100) | 10 (11/107) | - | 0.003 | - | - | - | 11.4 (9.0–NE) | - | - | ||||
NCT01375842 [31] | 1a | Urothelial bladder cancer | NR | TC or IC | 5% | 43 (13/30) | 11 (4/35) | - | 0.005 | - | - | - | - | - | - |
Avelumab | |||||||||||||||
JAVELIN Solid Tumor [37] | 1b | NSCLC | 73-10 | TC | 1% | 14 (17/122) | 10 (2/20) | >0.99 | - | 2.8 (2.4–4.1) | 1.4 (1.3–1.7) | - | 8.9 (8.0–NE) | 4.6 (2.8–NE) | - |
TC | 5% | 14 (12/84) | 12 (7/58) | 0.810 | - | 2.8 (1.6–4.3) | 1.8 (1.4–2.8) | - | 10.6 (7.9–NE) | 8.4 (5.6–NE) | - | ||||
TC | 25% | 17 (9/53) | 11 (10/89) | 0.450 | - | 2.8 (1.4–5.3) | 2.5 (1.4–3.2) | - | 8.44 (6.0–11.1) | 8.57 (7.16–NE) | - | ||||
IC | 10% | 15 (4/27) | 13 (15/115) | 0.760 | - | 2.0 (1.3–3.5) | 2.6 (1.6–3.6) | - | 8.5 (3.9–NE) | 8.9 (7.9–NE) | - | ||||
JAVELIN Lung 200 [87] | 3 | NSCLC | 73-10 | TC | 50% | - | - | - | - | - | - | - | 13·6 (10·1–18·5) | 9·4 (7·5–10·8) | - |
TC | 80% | - | - | - | - | - | - | - | 17·1 (10·6–25·0) | 9·4 (7·9–10·7) | - | ||||
JAVELIN Solid Tumor [38] | 1b | BC | 73-10 | TC | 1% | 2 (2/85) | 4 (2/51) | 0.631 | - | 1.38 (1.33–1.40) | 1.40 (1.38–1.40) | - | 6.5 (2.7–9.2) | 8.3 (6.3–NE) | - |
TC | 5% | 4 (1/23) | 3 (3/113) | 0.528 | - | 1.40 (1.33–1.66) | 1.38 (1.38–1.40) | - | 6.5 (2.2–NE) | 7.5 (5.1–11.3) | - | ||||
TC | 25% | 0 (0/3) | 3.0 (4/133) | >0.99 | - | 1.40 (1.26–NE) | 1.38 (1.38–1.40) | - | 9.2 (NE–NE) | 6.8 (4.9–10.8) | - | ||||
IC | 10% | 17 (2/12) | 2 (2/124) | 0.039 | - | 1.42 (0.54–5.62) | 1.38 (1.38–1.40) | - | 11.3 (1.4–NE) | 6.8 (4.7–9.2) | - | ||||
JAVELIN Solid Tumor [88] | 1b | UC | 73-10 | TC | 5% | 24 (15/63) | 13 (10/76) | - | 0.104 | 11.9 (6.1–18.0) | 6.1 (5.9–8.0) | - | 8.2 (5.7–13.7) | 6.2 (4.3–14.0) | |
JAVELIN Bladder 100 [89] | 3 | UC | SP263 | TC or IC | 25% | - | - | - | - | 5.7 (3.7–7.4) | 3.0 (2.0–3.7) | - | NE (20.3–NE) | 18.8 (13.3–22.5) | |
NCT01772004 [39] | 1b | UC | 73-10 | TC | 1% | 50 (7/14) | 4 (1/23) | 0.002 | - | 11.2 (2.6–NE) | 1.7 (1.3–2.8) | - | NE (8.5–NE) | 14.0 (2.7–NE) | - |
TC | 5% | 54 (7/13) | 4 (1/24) | 0.001 | - | 11.2 (2.6–NE) | 1.7 (1.3–2.8) | - | NE (8.5–NE) | 12.9 (2.7–NE) | - | ||||
TC | 25% | 20 (1/5) | 22 (7/32) | >0.99 | - | 2.8 (1.2–11.2) | 2.8 (1.4–5.5) | - | NE (8.5–NE) | 14.3 (4.4–NE) | - | ||||
IC | 10% | 50 (1/2) | 20 (7/35) | 0.390 | - | NE (2.7–NE) | 2.8 (1.4–4.1) | - | NE (NE–NE) | 14.0 (8.5–NE) | - | ||||
JAVELIN Renal 101 [90] | 3 | RCC | SP263 | IC | 1% | 55 (149/270) | 47 (62/132) | - | 0.121 | - | - | - | - | - | - |
JAVELIN Merkel 200 [91] | 2 | Merkel cell carcinoma | 73-10 | TC | 1% | 36 (21/58) | 18 (3/16) | - | 0.238 | - | - | - | - | - | - |
TC | 5% | 58 (11/19) | 24 (13/55) | - | 0.006 | - | - | - | - | - | - | ||||
NCT02155647 [40] | 2 | Merkel cell carcinoma | 73-10 | TC | 1% | 34 (20/58) | 19 (3/16) | - | 0.361 | - | - | - | - | - | - |
Durvalumab | |||||||||||||||
MYSTIC [92] | 3 | NSCLC | SP263 | TC | 1% | - | - | - | - | - | - | - | 14.6 (10.5–17.7) | 10.1 (6.7–12.2) | - |
PACIFIC [93] | 3 | NSCLC | SP263 | TC | 1% | - | - | - | - | 17.8 (16.9–NE) | 10.7 (7.3–NE) | - | NE (43.3–NE) | 33.1 (20.8–NE) | - |
25% | - | - | - | - | 17.8 (11.1–NE) | 16.9 (11.0–NE) | - | NE (NE–NE) | 39.7 (33.1–NE) | - | |||||
SAFIR02-BREAST IMMUNO [94] | 2 | TNBC | SP142 | IC | 1% | - | - | - | - | - | - | - | 27.3 (10.5–NE) | 19.5 (5.0–29.4) | - |
MEDIOLA [95] | 1/2 | BC | SP263 | TC | 1% | 80 (8/10) | 53 (9/17) | - | 0.230 | - | - | - | - | - | - |
SP263 | IC | 1% | 65 (11/17) | 60 (6/10) | - | 1.000 | - | - | - | - | - | - | |||
NCT01693562 [41] | 1/2 | UC | SP263 | TC or IC | 25% | 28 (27/98) | 5 (4/79) | - | <0.001 | 2.1 (1.4–2.8) | 1.4 (1.3–1.5) | - | 20.0 (11.6–NE) | 8.1 (3.1–NE) | - |
MEDI4736 [96] | 1/2 | Urothelial bladder cancer | SP263 | TC | 25% | 47 (7/15) | 22 (6/27) | - | 0.163 | - | - | - | - | - | - |
SP263 | IC | 25% | 56 (10/18) | 13 (3/24) | - | 0.006 | - | - | - | - | - | - | |||
SP263 | TC or IC | 25% | 46 (13/28) | 0 (0/14) | - | 0.002 | - | - | - | - | - | - | |||
NIBIT-MESO-1 φ [97] | 2 | Mesothelioma | SP263 | TC | 0% | 30 (7/23) | 27 (4/15) | 0.800 | - | 8.5 (7.8–9.0) | 5.2 (4.5–5.8) | 0.380 | - | - | - |
SP263 | TC | 1% | 35 (7/20) | 22 (4/18) | 0.390 | - | 11.7 (6.9–16.5) | 5.2 (4.5–5.8) | 0.130 | - | - | - | |||
SP263 | TC | 5% | 35 (6/17) | 24 (5/21) | 0.440 | - | 8.5 (7.7–9.1) | 5.7 (4.9–6.4) | 0.510 | - | - | - | |||
SP263 | TC | 10% | 27 (3/11) | 30 (8/27) | 0.880 | - | 8.5 (7.5–9.4) | 5.7 (2.9–8.1) | 0.750 | - | - | - | |||
SP263 | TC | 25% | 43 (3/7) | 26 (8/31) | 0.370 | - | 8.5 (8.2–8.7) | 5.2 (2.8–7.3) | 0.870 | - | - | - | |||
SP263 | TC | 50% | 25 (1/4) | 29 (10/34) | 0.850 | - | 11.7 (8.9–14.5) | 5.2 (2.4–7.9) | 0.990 | - | - | - |
2.3. Tumor Mutation Burden (TMB)
Predictive Biomarkers | Assays | Results or Conclusions |
---|---|---|
Tumor intrinsic-based biomarkers | ||
PD-L1 [13,35,103] | IHC | PD-L1 expression correlated with improved survival or responses to PD-1/PD-L1 inhibitors. |
CTLA4, TH1, absence of CX3CL1 [103] | PCR | CTLA4, TH1, and absence of CX3CL1 correlated with responses to the anti-PD-L1 antibody. |
MMR-deficiency/MSI-H [104,105] | IHC | MMR-deficinecy correlated with improved survival or responses to PD-1 blockade. |
TMB [98,106] | NGS | Higher nonsynonymous TMB correlated with improved response, durable clinical benefit, and PFS. |
Neoantigen burden [107] | WES | Higher neoantigen burden correlated with improved theraputic efficacy. |
IFN-γ-related gene signatures [19,35,108] | Gene expression profile | Higher IFN-γ signatures correlated with response and survival benefit. |
EGFR mutation [105,109] | DNA sequencing | Patients with wild-type EGFR derived survival benefit from PD-1/PD-L1 blockades whereas those with EGFR mutation did not. |
KRAS mutation [13] | DNA sequencing | Patients with KRAS mutation derived survival benefit from PD-1/PD-L1 blockades whereas those with wild-type KRAS did not. |
JAK1/2 mutations, B2M mutation [110,111] | WES | JAK1/2 and B2M mutations correlated with acquired resistance to PD-1 blockade. |
PTEN loss [112] | WES | PTEN Loss correlated with resistance to anti-PD-1 therapy. |
POLE mutation [113,114] | NGS | POLE mutation correlated with high mutational burden and elevated expression of immune checkpoint genes. |
EPIMMUNE-positive/unmethylated status of FOXP1 [115] | Infnium MethylationEPIC Array | EPIMMUNE-positive signature and unmethylated status of FOXP1 correlated with improved PFS and OS with PD-1 blockers. |
ITH [116] | WES | High ITH was more likely to have disease progression during immunotherapy. |
Tumor microenvironment-based biomarkers | ||
PD-L1 in ICs [33] | IHC | High PD-L1 expression on ICs correlated with improved response. |
TILs (CD8+ T cells) [117] | IHC | Baseline or post-treatment increase in TILs correlated with responses. |
Early TILs and macrophages increase [118] | IHC | Increased TILs and macrophages from baseline correlated with response to anti-PD-1 antibody treatment. |
HLA-I LOH [119] | DNA sequencing/HLA typing assay | HLA-I LOH correlated with poor response and survival benefit. |
INF-γ, IL-6, IL-10 [120] | Human Cytokine Antibody Array | Baseline INF-γ, IL-6, and IL-10 were higher in the responders than non-responders. |
REC, RLC [121] | Complete blood counts test | Baseline high REC and RLC correlated with favorable OS of patients treated with PD-1 inhibitors. |
NLR, PLR [122,123,124] | Complete blood counts test | Baseline high NLR and PLR correlated with poor survival and lower responses of patients treated with PD-1 inhibitors. |
Early IL-8 decrease [125] | ELISA | Early decrease of IL-8 level correlated with responses to PD-1 inhibitors. |
TNF-α decrease [126] | Multiplex Assay System | TNF-α decrease correlated with responses to nivolumab. |
Early Th9 cell increase [127] | Flow cytometry | Early increase in Th9 cells correlated with improved responses to nivolumab. |
Early ALC increase, early ANC decrease [128] | Complete blood counts test | Early ALC increase and early ANC decrease correlated with favorable OS of patients treated with nivolumab. |
Patient-based biomarkers | ||
Sex [78] | - | Males derived survival benefit from PD-1/PD-L1 blockades whereas females did not. |
Age [129] | - | Patients <65 years old derived survival benefit from PD-1/PD-L1 blockades whereas those ≥65 did not. |
ECOG PS [92] | - | ECOG PS ≥1 or ≥2 correlated with poor OS or PFS in patients treated with nivolumab. |
Current or former smoker [36] | - | Current or former smokers derived survival benefit from PD-1/PD-L1 blockades whereas the patients who never smoked did not. |
Tumor size [128] | - | Maximum tumor diameters of ≥30 mm correlated with poor OS in patients treated with nivolumab. |
No baseline metastases (brain, liver) [26,79] | - | Patients without baseline metastasis derived survival benefit from PD-1/PD-L1 blockades whereas those with metastasis did not. |
Gut microbiome [130,131,132] | WGS/16s rRNA sequencing | Gut microbiome correlated with responses to immune checkpoint blockade. |
Antibiotics use [133,134] | - | Antibiotics use correlated with poor PFS and OS in patients receving PD-1 blockers. |
Corticosteroid use [135] | - | High-does corticosteroid use correlated with inferior clinical benefit. |
Viral infection (EBV, HPV, MCPyV) [30,136,137] | - | Viral infection correlated with increased immune cytolytic activity and high response. |
Previous radiotherapy [138] | - | Previous radiotherapy correlated with longer PFS and OS with pembrolizumab treatment. |
Response to the treatment immediately before nivolumab monotherapy [139] | - | Response to the treatment immediately before nivolumab monotherapy correlated with responses. |
A long-time lapse from diagnosis to anti-PD-1 initiation [140] | - | Median time from diagnosis to anti-PD-1 initiation was longer among responders than non-responders. |
irAEs (rash, vitiligo, colitis, etc.) [141,142,143,144] | - | High occurrence of irAEs correlated with improved survival and responses to PD-1 blockades. |
2.4. Drive Mutation Status
2.5. Tumor Neoantigen Burden (TNB)
2.6. Intratumor Heterogeneity (ITH)
3. Tumor Microenvironment (TME)-Based Biomarkers
3.1. PD-L1
3.2. Tumor-Infiltrating Lymphocytes (TILs)
3.3. Human Leukocyte Antigen (HLA)
3.4. Serum Cytokines and Biochemical Indicators
3.5. Blood Cell Count
4. Patient-Based Biomarkers
4.1. General Clinical Characteristics
4.2. Gut Microbiome and Antibiotics (ATB) Use
4.3. Viral Infection
4.4. Corticosteroid Use
4.5. Previous Treatment and Response
4.6. Immune-Related Adverse Events
5. Challenges and Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Farhood, B.; Najafi, M.; Mortezaee, K. CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Physiol. 2019, 234, 8509–8521. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, S.; Yang, F.; Qi, X.; Wang, X.; Guan, X.; Shen, C.; Duma, N.; Vera Aguilera, J.; Chintakuntlawar, A.; et al. Treatment-Related Adverse Events of PD-1 and PD-L1 Inhibitors in Clinical Tri-als: A Systematic Review and Meta-analysis. JAMA Oncol. 2019, 5, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Riaz, N.; Havel, J.; Makarov, V.; Desrichard, A.; Urba, W.J.; Sims, J.S.; Hodi, F.S.; Martín-Algarra, S.; Mandal, R.; Sharfman, W.H.; et al. Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell 2017, 171, 934–949.e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brueckl, W.M.; Ficker, J.H.; Zeitler, G. Clinically relevant prognostic and predictive markers for immune-checkpoint-inhibitor (ICI) therapy in non-small cell lung cancer (NSCLC). BMC Cancer 2020, 20, 1185. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
- Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in previously untreated melanoma without BRAF muta-tion. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Larkin, J.; Minor, D.; D’Angelo, S.; Neyns, B.; Smylie, M.; Jr, W.H.M.; Gutzmer, R.; Linette, G.; Chmielowski, B.; Lao, C.D.; et al. Overall Survival in Patients With Advanced Melanoma Who Received Nivolumab Versus Investigator’s Choice Chemotherapy in CheckMate 037: A Randomized, Controlled, Open-Label Phase III Trial. J. Clin. Oncol. 2018, 36, 383–390. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef]
- Gettinger, S.N.; Horn, L.; Gandhi, L.; Spigel, D.R.; Antonia, S.J.; Rizvi, N.A.; Powderly, J.D.; Heist, R.S.; Carvajal, R.D.; Jackman, D.M.; et al. Overall Survival and Long-Term Safety of Nivolumab (An-ti-Programmed Death 1 Antibody, BMS-936558, ONO-4538) in Patients With Previously Treated Ad-vanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2015, 33, 2004–2012. [Google Scholar] [CrossRef]
- Gettinger, S.; Rizvi, N.A.; Chow, L.Q.; Borghaei, H.; Brahmer, J.; Ready, N.; Gerber, D.; Shepherd, F.A.; Antonia, S.; Goldman, J.W.; et al. Nivolumab Monotherapy for First-Line Treatment of Advanced Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2016, 34, 2980–2987. [Google Scholar] [CrossRef]
- Rizvi, N.A.; Mazières, J.; Planchard, D.; Stinchcombe, T.E.; Dy, G.K.; Antonia, S.J.; Horn, L.; Lena, H.; Minenza, E.; Mennecier, B.; et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): A phase 2, single-arm trial. Lancet Oncol. 2015, 16, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef] [Green Version]
- Hamanishi, J.; Mandai, M.; Ikeda, T.; Minami, M.; Kawaguchi, A.; Murayama, T.; Kanai, M.; Mori, Y.; Matsumoto, S.; Chikuma, S.; et al. Safety and Antitumor Activity of Anti-PD-1 Antibody, Nivolumab, in Patients With Platinum-Resistant Ovarian Cancer. J. Clin. Oncol. 2015, 33, 4015–4022. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Rini, B.I.; McDermott, D.F.; Redman, B.G.; Kuzel, T.M.; Harrison, M.R.; Vaishampayan, U.; Drabkin, H.A.; George, S.; Logan, T.F.; et al. Nivolumab for Metastatic Renal Cell Carcinoma: Results of a Randomized Phase II Trial. J. Clin. Oncol. 2015, 33, 1430–1437. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef]
- Sharma, P.; Callahan, M.K.; Bono, P.; Kim, J.; Spiliopoulou, P.; Calvo, E.; Pillai, R.N.; Ott, P.A.; de Braud, F.G.M.; Morse, M.; et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): A multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol. 2016, 17, 1590–1598. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Retz, M.; Siefker-Radtke, A.; Baron, A.; Necchi, A.; Bedke, J.; Plimack, E.R.; Vaena, D.; Grimm, M.-O.; Bracarda, S.; et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017, 18, 312–322. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Boku, N.; Satoh, T.; Ryu, M.-H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.-S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling, T.H.R.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.-J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 2017, 18, 1182–1191. [Google Scholar] [CrossRef]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- Plimack, E.R.; Bellmunt, J.; Gupta, S.; Berger, R.; Chow, L.Q.M.; Juco, J.; Lunceford, J.; Saraf, S.; Perini, R.F.; O’Donnell, P.H. Safety and activity of pembrolizumab in patients with locally advanced or metastatic urothelial cancer (KEYNOTE-012): A non-randomised, open-label, phase 1b study. Lancet Oncol. 2017, 18, 212–220. [Google Scholar] [CrossRef]
- Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; de Wit, R.; Pang, L.; et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 1483–1492. [Google Scholar] [CrossRef]
- Bellmunt, J.; De Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Chow, L.Q.M.; Haddad, R.; Gupta, S.; Mahipal, A.; Mehra, R.; Tahara, M.; Berger, R.; Eder, J.P.; Burtness, B.; Lee, S.-H.; et al. Antitumor Activity of Pembrolizumab in Biomarker-Unselected Patients With Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma: Results From the Phase Ib KEYNOTE-012 Expansion Cohort. J. Clin. Oncol. 2016, 34, 3838–3845. [Google Scholar] [CrossRef] [PubMed]
- Bauml, J.; Seiwert, T.Y.; Pfister, D.G.; Worden, F.; Liu, S.V.; Gilbert, J.; Saba, N.F.; Weiss, J.; Wirth, L.; Sukari, A.; et al. Pembrolizumab for Platinum- and Cetuximab-Refractory Head and Neck Cancer: Results From a Single-Arm, Phase II Study. J. Clin. Oncol. 2017, 35, 1542–1549. [Google Scholar] [CrossRef]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef]
- Nghiem, P.T.; Bhatia, S.; Lipson, E.J.; Kudchadkar, R.R.; Miller, N.J.; Annamalai, L.; Berry, S.; Chartash, E.K.; Daud, A.; Fling, S.P.; et al. PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma. N. Engl. J. Med. 2016, 374, 2542–2552. [Google Scholar] [CrossRef]
- Powles, T.; Eder, J.P.; Fine, G.D.; Braiteh, F.S.; Loriot, Y.; Cruz, C.; Bellmunt, J.; Burris, H.A.; Petrylak, D.P.; Teng, S.-L.; et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 2014, 515, 558–562. [Google Scholar] [CrossRef] [PubMed]
- McDermott, D.F.; Sosman, J.A.; Sznol, M.; Massard, C.; Gordon, M.S.; Hamid, O.; Powderly, J.D.; Infante, J.R.; Fassò, M.; Wang, Y.V.; et al. Atezolizumab, an Anti–Programmed Death-Ligand 1 Antibody, in Metastatic Renal Cell Carcinoma: Long-Term Safety, Clinical Activity, and Immune Correlates From a Phase Ia Study. J. Clin. Oncol. 2016, 34, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 2016, 387, 1909–1920. [Google Scholar] [CrossRef] [Green Version]
- Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet 2017, 389, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016, 387, 1837–1846. [Google Scholar] [CrossRef]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Gulley, J.L.; Rajan, A.; Spigel, D.R.; Iannotti, N.; Chandler, J.; Wong, D.J.L.; Leach, J.; Edenfield, W.J.; Wang, D.; Grote, H.J.; et al. Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): Dose-expansion cohort of a multicentre, open-label, phase 1b trial. Lancet Oncol. 2017, 18, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Dirix, L.Y.; Takacs, I.; Jerusalem, G.; Nikolinakos, P.; Arkenau, H.T.; Forero-Torres, A.; Boccia, R.; Lippman, M.E.; Somer, R.; Smakal, M.; et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: A phase 1b JAVELIN Solid Tumor study. Breast Cancer Res. Treat. 2018, 167, 671–686. [Google Scholar] [CrossRef] [Green Version]
- Apolo, A.B.; Infante, J.R.; Balmanoukian, A.; Patel, M.R.; Wang, D.; Kelly, K.; Mega, A.E.; Britten, C.D.; Ravaud, A.; Mita, A.C.; et al. Avelumab, an Anti–Programmed Death-Ligand 1 Antibody, In Patients With Refractory Metastatic Urothelial Carcinoma: Results From a Multicenter, Phase Ib Study. J. Clin. Oncol. 2017, 35, 2117–2124. [Google Scholar] [CrossRef]
- Kaufman, H.L.; Russell, J.; Hamid, O.; Bhatia, S.; Terheyden, P.; D’Angelo, S.P.; Shih, K.C.; Lebbé, C.; Linette, G.P.; Milella, M.; et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: A multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016, 17, 1374–1385. [Google Scholar] [CrossRef] [Green Version]
- Powles, T.; O’Donnell, P.H.; Massard, C.; Arkenau, H.T.; Friedlander, T.W.; Hoimes, C.J.; Lee, J.L.; Ong, M.; Sridhar, S.S.; Vogelzang, N.J.; et al. Efficacy and Safety of Durvalumab in Locally Advanced or Metastatic Urothelial Carcinoma: Updated Results From a Phase 1/2 Open-label Study. JAMA Oncol. 2017, 3, e172411. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Shaver, L.G.; Shi, F.Y.; Wei, J.J.; Qin, T.Z.; Wang, S.Z.; Kong, Y.J. Comparative effi-cacy and safety of PD-1/PD-L1 immunotherapies for non-small cell lung cancer: A network meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 2866–2884. [Google Scholar]
- Fukuda, N.; Horita, N.; Katakura, S.; Namkoong, H.; Kaneko, A.; Somekawa, K.; Tagami, Y.; Watanabe, K.; Hara, Y.; Kobayashi, N.; et al. The best regimens for chemo-naïve incurable non-squamous non- small cell lung cancer with a programmed death-ligand 1, tumor proportion score 1–49%: A network meta-analysis. Transl. Lung Cancer Res. 2021, 10, 3550–3566. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Sorensen, S.F.; Choi, Y.-L.; Feng, Y.; Kim, T.-E.; Choi, H.; Georgsen, J.B.; Dolled-Filhart, M.; Emancipator, K.; Meldgaard, P.; et al. Programmed Death Ligand 1 Expression in Paired Non–Small Cell Lung Cancer Tumor Samples. Clin. Lung Cancer 2017, 18, e473–e479. [Google Scholar] [CrossRef] [PubMed]
- Haratake, N.; Toyokawa, G.; Tagawa, T.; Kozuma, Y.; Matsubara, T.; Takamori, S.; Akamine, T.; Yamada, Y.; Oda, Y.; Maehara, Y. Positive Conversion of PD-L1 Expression After Treatments with Chemotherapy and Nivolumab. Anticancer. Res. 2017, 37, 5713–5717. [Google Scholar] [CrossRef]
- Callea, M.; Albiges, L.; Gupta, M.; Cheng, S.-C.; Genega, E.M.; Fay, A.P.; Song, J.; Carvo, I.; Bhatt, R.S.; Atkins, M.B.; et al. Differential Expression of PD-L1 between Primary and Metastatic Sites in Clear-Cell Renal Cell Carcinoma. Cancer Immunol. Res. 2015, 3, 1158–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szekely, B.; Bossuyt, V.; Li, X.; Wali, V.; Patwardhan, G.; Frederick, C.; Silber, A.; Park, T.; Harigopal, M.; Pelekanou, V.; et al. Immunological differences between primary and metastatic breast cancer. Ann. Oncol. 2018, 29, 2232–2239. [Google Scholar] [CrossRef]
- Rozenblit, M.; Huang, R.; Danziger, N.; Hegde, P.; Alexander, B.; Ramkissoon, S.; Blenman, K.; Ross, J.S.; Rimm, D.L.; Pusztai, L. Comparison of PD-L1 protein expression between primary tumors and metastatic lesions in triple negative breast cancers. J. Immunother. Cancer 2020, 8, e001558. [Google Scholar] [CrossRef]
- Hause, R.J.; Pritchard, C.C.; Shendure, J.; Salipante, S.J. Classification and characterization of mi-crosatellite instability across 18 cancer types. Nat. Med. 2016, 22, 1342–1350. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [Green Version]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolcetti, R.; Viel, A.; Doglioni, C.; Russo, A.G.; Guidoboni, M.; Capozzi, E.; Vecchiato, N.; Macrì, E.; Fornasarig, M.; Boiocchi, M. High Prevalence of Activated Intraepithelial Cytotoxic T Lymphocytes and Increased Neoplastic Cell Apoptosis in Colorectal Carcinomas with Microsatellite Instability. Am. J. Pathol. 1999, 154, 1805–1813. [Google Scholar] [CrossRef] [Green Version]
- Lee, V.; Murphy, A.; Le, D.T.; Diaz, L.A. Mismatch Repair Deficiency and Response to Immune Checkpoint Blockade. Oncologist 2016, 21, 1200–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloan, E.A.; Ring, K.L.; Willis, B.C.; Modesitt, S.C.; Mills, A.M. PD-L1 Expression in Mismatch Repair-deficient Endometrial Carcinomas, Including Lynch Syndrome-associated and MLH1 Promoter Hypermethylated Tumors. Am. J. Surg. Pathol. 2017, 41, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Boland, C.R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 2010, 138, 2073–2087.e2073. [Google Scholar] [CrossRef] [PubMed]
- Asaoka, Y.; Ijichi, H.; Koike, K. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 373, 1979. [Google Scholar]
- Strickland, K.C.; Howitt, B.E.; Shukla, S.A.; Rodig, S.; Ritterhouse, L.L.; Liu, J.F.; Garber, J.E.; Chowdhury, D.; Wu, C.J.; D’Andrea, A.D.; et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 2016, 7, 13587–13598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.; Wang, J.; Cheng, Y.; Mok, T.; Chang, J.; Zhang, L.; Feng, J.; Tu, H.-Y.; Wu, L.; Zhang, Y.; et al. Nivolumab versus docetaxel in a predominantly Chinese patient population with previously treated advanced non-small cell lung cancer: 2-year follow-up from a randomized, open-label, phase 3 study (CheckMate 078). Lung Cancer 2021, 152, 7–14. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.-W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Ciuleanu, T.-E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef]
- Liu, J.F.; Herold, C.; Gray, K.P.; Penson, R.T.; Horowitz, N.; Konstantinopoulos, P.A.; Castro, C.M.; Hill, S.J.; Curtis, J.; Luo, W.; et al. Assessment of Combined Nivolumab and Bevacizumab in Relapsed Ovarian Cancer: A Phase 2 Clinical Trial. JAMA Oncol. 2019, 5, 1731–1738. [Google Scholar] [CrossRef]
- Ma, B.B.Y.; Lim, W.-T.; Goh, B.-C.; Hui, E.P.; Lo, K.-W.; Pettinger, A.; Foster, N.R.; Riess, J.W.; Agulnik, M.; Chang, A.Y.C.; et al. Antitumor Activity of Nivolumab in Recurrent and Metastatic Nasopharyngeal Carcinoma: An International, Multicenter Study of the Mayo Clinic Phase 2 Consortium (NCI-9742). J. Clin. Oncol. 2018, 36, 1412–1418. [Google Scholar] [CrossRef]
- Topalian, S.L.; Bhatia, S.; Amin, A.; Kudchadkar, R.R.; Sharfman, W.H.; Lebbé, C.; Delord, J.-P.; Dunn, L.A.; Shinohara, M.M.; Kulikauskas, R.; et al. Neoadjuvant Nivolumab for Patients With Resectable Merkel Cell Carcinoma in the CheckMate 358 Trial. J. Clin. Oncol. 2020, 38, 2476–2487. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Vicente, D.; Tafreshi, A.; Robinson, A.; Parra, H.S.; Mazières, J.; Hermes, B.; Cicin, I.; Medgyasszay, B.; Rodríguez-Cid, J.; et al. A Randomized, Placebo-Controlled Trial of Pembrolizumab Plus Chemotherapy in Patients With Metastatic Squamous NSCLC: Protocol-Specified Final Analysis of KEYNOTE-407. J. Thorac. Oncol. 2020, 15, 1657–1669. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.P.; et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Kojima, T.; Hochhauser, D.; Enzinger, P.; Raimbourg, J.; Hollebecque, A.; Lordick, F.; Kim, S.B.; Tajika, M.; Kim, H.T.; et al. Efficacy and Safety of Pembrolizumab for Heavily Pretreated Pa-tients With Advanced, Metastatic Adenocarcinoma or Squamous Cell Carcinoma of the Esophagus: The Phase 2 KEYNOTE-180 Study. JAMA Oncol. 2019, 5, 546–550. [Google Scholar] [CrossRef] [Green Version]
- Catenacci, D.V.T.; Kang, Y.-K.; Park, H.; Uronis, H.E.; Lee, K.-W.; Ng, M.C.H.; Enzinger, P.C.; Park, S.H.; Gold, P.J.; Lacy, J.; et al. Margetuximab plus pembrolizumab in patients with previously treated, HER2-positive gastro-oesophageal adenocarcinoma (CP-MGAH22–05): A single-arm, phase 1b–2 trial. Lancet Oncol. 2020, 21, 1066–1076. [Google Scholar] [CrossRef]
- Adams, S.; Schmid, P.; Rugo, H.S.; Winer, E.P.; Loirat, D.; Awada, A.; Cescon, D.W.; Iwata, H.; Campone, M.; Nanda, R.; et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: Cohort A of the phase II KEYNOTE-086 study. Ann. Oncol. 2019, 30, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Cortes, J.; Cescon, D.W.; Rugo, H.S.; Nowecki, Z.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 2020, 396, 1817–1828. [Google Scholar] [CrossRef]
- Loi, S.; Giobbie-Hurder, A.; Gombos, A.; Bachelot, T.; Hui, R.; Curigliano, G.; Campone, M.; Biganzoli, L.; Bonnefoi, H.; Jerusalem, G.; et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): A single-arm, multicentre, phase 1b–2 trial. Lancet Oncol. 2019, 20, 371–382. [Google Scholar] [CrossRef]
- Nishio, S.; Matsumoto, K.; Takehara, K.; Kawamura, N.; Hasegawa, K.; Takeshima, N.; Aoki, D.; Kamiura, S.; Arakawa, A.; Kondo, E.; et al. Pembrolizumab monotherapy in Japanese patients with advanced ovarian cancer: Subgroup analysis from the KEYNOTE-100. Cancer Sci. 2020, 111, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Ros, W.; Delord, J.-P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.; Xu, L.; Zeigenfuss, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2019, 37, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Yap, T.A.; Nakagawa, K.; Fujimoto, N.; Kuribayashi, K.; Guren, T.K.; Calabrò, L.; Shapira-Frommer, R.; Gao, B.; Kao, S.; Matos, I.; et al. Efficacy and safety of pembrolizumab in patients with advanced mesothelioma in the open-label, single-arm, phase 2 KEYNOTE-158 study. Lancet Respir. Med. 2021, 9, 613–621. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Piulats, J.M.; Gross-Goupil, M.; Goh, J.; Ojamaa, K.; Hoimes, C.J.; Vaishampayan, U.; Berger, R.; Sezer, A.; Alanko, T.; et al. Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study. J. Clin. Oncol. 2020, 38, 395–405. [Google Scholar] [CrossRef]
- Makker, V.; Rasco, D.; Vogelzang, N.J.; Brose, M.S.; Cohn, A.L.; Mier, J.; Di Simone, C.; Hyman, D.M.; Stepan, D.E.; Dutcus, C.W.; et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: An interim analysis of a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2019, 20, 711–718. [Google Scholar] [CrossRef]
- Maubec, E.; Boubaya, M.; Petrow, P.; Beylot-Barry, M.; Basset-Seguin, N.; Deschamps, L.; Grob, J.-J.; Dréno, B.; Scheer-Senyarich, I.; Bloch-Queyrat, C.; et al. Phase II Study of Pembrolizumab As First-Line, Single-Drug Therapy for Patients With Unresectable Cutaneous Squamous Cell Carcinomas. J. Clin. Oncol. 2020, 38, 3051–3061. [Google Scholar] [CrossRef]
- Herbst, R.S.; Arkenau, H.-T.; Santana-Davila, R.; Calvo, E.; Paz-Ares, L.; Cassier, P.A.; Bendell, J.; Penel, N.; Krebs, M.G.; Martin-Liberal, J.; et al. Ramucirumab plus pembrolizumab in patients with previously treated advanced non-small-cell lung cancer, gastro-oesophageal cancer, or urothelial carcinomas (JVDF): A multicohort, non-randomised, open-label, phase 1a/b trial. Lancet Oncol. 2019, 20, 1109–1123. [Google Scholar] [CrossRef]
- Sezer, A.; Kilickap, S.; Gümüş, M.; Bondarenko, I.; Özgüroğlu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: A multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 2021, 397, 592–604. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, J.; Wang, Z.; Fang, J.; Yu, Q.; Han, B.; Cang, S.; Chen, G.; Mei, X.; Yang, Z.; et al. Updated Overall Survival Data and Predictive Biomarkers of Sintilimab Plus Pemetrexed and Platinum as First-Line Treatment for Locally Advanced or Metastatic Nonsquamous NSCLC in the Phase 3 ORIENT-11 Study. J. Thorac. Oncol. 2021, 16, 2109–2120. [Google Scholar] [CrossRef]
- Socinski, M.A.; Nishio, M.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; et al. IMpower150 Final Overall Survival Analyses for Atezolizumab Plus Bevacizumab and Chemotherapy in First-Line Metastatic Nonsquamous NSCLC. J. Thorac. Oncol. 2021, 16, 1909–1924. [Google Scholar] [CrossRef]
- Liu, S.V.; Reck, M.; Mansfield, A.S.; Mok, T.; Scherpereel, A.; Reinmuth, N.; Garassino, M.C.; De Castro Carpeno, J.; Califano, R.; Nishio, M.; et al. Updated Overall Survival and PD-L1 Subgroup Analysis of Patients With Extensive-Stage Small-Cell Lung Cancer Treated With Atezolizumab, Carboplatin, and Etoposide (IMpower133). J. Clin. Oncol. 2021, 39, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Emens, L.A.; Adams, S.; Barrios, C.H.; Diéras, V.; Iwata, H.; Loi, S.; Rugo, H.S.; Schneeweiss, A.; Winer, E.P.; Patel, S.; et al. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Ann. Oncol. 2021, 32, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Emens, L.A.; Cruz, C.; Eder, J.P.; Braiteh, F.; Chung, C.; Tolaney, S.M.; Kuter, I.; Nanda, R.; Cas-sier, P.A.; Delord, J.P.; et al. Long-term Clinical Outcomes and Biomarker Analyses of Atezolizumab Ther-apy for Patients With Metastatic Triple-Negative Breast Cancer: A Phase 1 Study. JAMA Oncol. 2019, 5, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Emens, L.A.; Esteva, F.J.; Beresford, M.; Saura, C.; De Laurentiis, M.; Kim, S.-B.; Im, S.-A.; Wang, Y.; Salgado, R.; Mani, A.; et al. Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, HER2-positive advanced breast cancer (KATE2): A phase 2, multicentre, randomised, double-blind trial. Lancet Oncol. 2020, 21, 1283–1295. [Google Scholar] [CrossRef]
- Lee, M.S.; Ryoo, B.-Y.; Hsu, C.-H.; Numata, K.; Stein, S.; Verret, W.; Hack, S.P.; Spahn, J.; Liu, B.; Abdullah, H.; et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): An open-label, multicentre, phase 1b study. Lancet Oncol. 2020, 21, 808–820. [Google Scholar] [CrossRef]
- Bellmunt, J.; Hussain, M.; Gschwend, J.E.; Albers, P.; Oudard, S.; Castellano, D.; Daneshmand, S.; Nishiyama, H.; Majchrowicz, M.; Degaonkar, V.; et al. Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 525–537. [Google Scholar] [CrossRef]
- Barlesi, F.; Vansteenkiste, J.; Spigel, D.; Ishii, H.; Garassino, M.; de Marinis, F.; Özgüroglu, M.; Szczesna, A.; Polychronis, A.; Uslu, R.; et al. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN Lung 200): An open-label, randomised, phase 3 study. Lancet Oncol. 2018, 19, 1468–1479. [Google Scholar] [CrossRef]
- Patel, M.R.; Ellerton, J.; Infante, J.R.; Agrawal, M.; Gordon, M.; Aljumaily, R.; Britten, C.D.; Dirix, L.; Lee, K.-W.; Taylor, M.; et al. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): Pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol. 2018, 19, 51–64. [Google Scholar] [CrossRef]
- Powles, T.; Park, S.H.; Voog, E.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Kalofonos, H.; Radulović, S.; Demey, W.; Ullén, A.; et al. Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2020, 383, 1218–1230. [Google Scholar] [CrossRef]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef]
- Kaufman, H.L.; Russell, J.S.; Hamid, O.; Bhatia, S.; Terheyden, P.; D’Angelo, S.P.; Shih, K.C.; Lebbe, C.; Milella, M.; Brownell, I.; et al. Updated efficacy of avelumab in patients with previously treated metastatic Merkel cell carcinoma after ≥1 year of follow-up: JAVELIN Merkel 200, a phase 2 clinical trial. J. Immunother. Cancer 2018, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, N.A.; Cho, B.C.; Reinmuth, N.; Lee, K.H.; Luft, A.; Ahn, M.J.; van den Heuvel, M.M.; Cobo, M.; Vicente, D.; Smolin, A.; et al. Durvalumab With or Without Tremelimumab vs Standard Chemotherapy in First-line Treatment of Metastatic Non-Small Cell Lung Cancer: The MYSTIC Phase 3 Randomized Clin-ical Trial. JAMA Oncol. 2020, 6, 661–674. [Google Scholar] [CrossRef] [Green Version]
- Paz-Ares, L.; Spira, A.; Raben, D.; Planchard, D.; Cho, B.; Özgüroglu, M.; Daniel, D.; Villegas, A.; Vicente, D.; Hui, R.; et al. Outcomes with durvalumab by tumour PD-L1 expression in unresectable, stage III non-small-cell lung cancer in the PACIFIC trial. Ann. Oncol. 2020, 31, 798–806. [Google Scholar] [CrossRef]
- Bachelot, T.; Filleron, T.; Bieche, I.; Arnedos, M.; Campone, M.; Dalenc, F.; Coussy, F.; Sablin, M.-P.; Debled, M.; Lefeuvre-Plesse, C.; et al. Durvalumab compared to maintenance chemotherapy in metastatic breast cancer: The randomized phase II SAFIR02-BREAST IMMUNO trial. Nat. Med. 2021, 27, 250–255. [Google Scholar] [CrossRef]
- Domchek, S.M.; Postel-Vinay, S.; Im, S.-A.; Park, Y.H.; Delord, J.-P.; Italiano, A.; Alexandre, J.; You, B.; Bastian, S.; Krebs, M.G.; et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): An open-label, multicentre, phase 1/2, basket study. Lancet Oncol. 2020, 21, 1155–1164. [Google Scholar] [CrossRef]
- Massard, C.; Gordon, M.S.; Sharma, S.; Rafii, S.; Wainberg, Z.A.; Luke, J.; Curiel, T.J.; Colon-Otero, G.; Hamid, O.; Sanborn, R.E.; et al. Safety and Efficacy of Durvalumab (MEDI4736), an Anti–Programmed Cell Death Ligand-1 Immune Checkpoint Inhibitor, in Patients With Advanced Urothelial Bladder Cancer. J. Clin. Oncol. 2016, 34, 3119–3125. [Google Scholar] [CrossRef]
- Calabrò, L.; Morra, A.; Giannarelli, D.; Amato, G.; D’Incecco, A.; Covre, A.; Lewis, A.; Rebelatto, M.C.; Danielli, R.; Altomonte, M.; et al. Tremelimumab combined with durvalumab in patients with mesothelioma (NIBIT-MESO-1): An open-label, non-randomised, phase 2 study. Lancet Respir. Med. 2018, 6, 451–460. [Google Scholar] [CrossRef]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Büttner, R.; Longshore, J.W.; López-Ríos, F.; Merkelbach-Bruse, S.; Normanno, N.; Rouleau, E.; Penault-Llorca, F. Implementing TMB measurement in clinical practice: Considerations on assay requirements. ESMO Open 2019, 4, e000442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Zhang, Y.; Lv, J.-W.; Li, Y.-Q.; Wang, Y.-Q.; He, Q.-M.; Yang, X.-J.; Sun, Y.; Mao, Y.-P.; Yun, J.-P.; et al. Genomic Analysis of Tumor Microenvironment Immune Types across 14 Solid Cancer Types: Immunotherapeutic Implications. Theranostics 2017, 7, 3585–3594. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Borresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrail, D.; Pilié, P.; Rashid, N.; Voorwerk, L.; Slagter, M.; Kok, M.; Jonasch, E.; Khasraw, M.; Heimberger, A.; Lim, B.; et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann. Oncol. 2021, 32, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Soria, J.-C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jassem, J.; de Marinis, F.; Giaccone, G.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Oprean, C.; Kim, Y.-C.; Andric, Z.; et al. Updated Overall Survival Analysis From IMpower110: Atezolizumab Versus Platinum-Based Chemotherapy in Treatment-Naive Programmed Death-Ligand 1–Selected NSCLC. J. Thorac. Oncol. 2021, 16, 1872–1882. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Garon, E.B.; Kim, D.-W.; Cho, B.C.; Gervais, R.; Perez-Gracia, J.L.; Han, J.-Y.; Majem, M.; Forster, M.D.; Monnet, I.; et al. Five Year Survival Update From KEYNOTE-010: Pembrolizumab Versus Docetaxel for Previously Treated, Programmed Death-Ligand 1–Positive Advanced NSCLC. J. Thorac. Oncol. 2021, 16, 1718–1732. [Google Scholar] [CrossRef]
- Roszik, J.; Haydu, L.E.; Hess, K.R.; Oba, J.; Joon, A.; Siroy, A.E.; Karpinets, T.V.; Stingo, F.C.; Baladandayuthapani, V.; Tetzlaff, M.T.; et al. Novel algorithmic approach predicts tumor mutation load and correlates with immunotherapy clinical outcomes using a defined gene mutation set. BMC Med. 2016, 14, 168. [Google Scholar] [CrossRef] [Green Version]
- McGranahan, N.; Furness, A.J.S.; Rosenthal, R.; Ramskov, S.; Lyngaa, R.; Saini, S.K.; Jamal-Hanjani, M.; Wilson, G.A.; Birkbak, N.J.; Hiley, C.T.; et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016, 351, 1463–1469. [Google Scholar] [CrossRef] [Green Version]
- Doi, T.; Piha-Paul, S.; Jalal, S.I.; Saraf, S.; Lunceford, J.; Koshiji, M.; Bennouna, J. Safety and Antitumor Activity of the Anti–Programmed Death-1 Antibody Pembrolizumab in Patients with Advanced Esophageal Carcinoma. J. Clin. Oncol. 2018, 36, 61–67. [Google Scholar] [CrossRef]
- Faivre-Finn, C.; Vicente, D.; Kurata, T.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Spigel, D.R.; Garassino, M.C.; Reck, M.; Senan, S.; et al. Four-Year Survival With Durvalumab After Chemoradiotherapy in Stage III NSCLC—An Update From the PACIFIC Trial. J. Thorac. Oncol. 2021, 16, 860–867. [Google Scholar] [CrossRef]
- Zaretsky, J.M.; Garcia-Diaz, A.; Shin, D.S.; Escuin-Ordinas, H.; Hugo, W.; Hu-Lieskovan, S.; Torrejon, D.Y.; Abril-Rodriguez, G.; Sandoval, S.; Barthly, L.; et al. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N. Engl. J. Med. 2016, 375, 819–829. [Google Scholar] [CrossRef]
- Shin, D.S.; Zaretsky, J.M.; Escuin-Ordinas, H.; Garcia-Diaz, A.; Hu-Lieskovan, S.; Kalbasi, A.; Grasso, C.S.; Hugo, W.; Sandoval, S.; Torrejon, D.Y.; et al. Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. Cancer Discov. 2017, 7, 188–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, S.; Miao, D.; Demetri, G.D.; Adeegbe, D.; Rodig, S.J.; Shukla, S.; Lipschitz, M.; Amin-Mansour, A.; Raut, C.P.; Carter, S.L.; et al. Loss of PTEN Is Associated with Resistance to Anti-PD-1 Checkpoint Blockade Therapy in Metastatic Uterine Leiomyosarcoma. Immunity 2017, 46, 197–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, J.; Wang, C.; Lee, P.P.; Chu, P.; Fakih, M. Response to PD-1 Blockade in Microsatellite Stable Metastatic Colorectal Cancer Harboring a POLE Mutation. J. Natl. Compr. Canc. Netw. 2017, 15, 142–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehnert, J.M.; Panda, A.; Zhong, J.; Hirshfield, K.; Damare, S.; Lane, K.; Sokol, L.; Stein, M.N.; Rodriguez-Rodriquez, L.; Kaufman, H.L.; et al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J. Clin. Investig. 2016, 126, 2334–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duruisseaux, M.; Martínez-Cardús, A.; Calleja-Cervantes, M.E.; Moran, S.; de Moura, M.C.; Davalos, V.; Piñeyro, D.; Sanchez-Cespedes, M.; Girard, N.; Brevet, M.; et al. Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: A multicentre, retrospective analysis. Lancet Respir. Med. 2018, 6, 771–781. [Google Scholar] [CrossRef]
- Miao, D.; Margolis, C.A.; Vokes, N.I.; Liu, D.; Taylor-Weiner, A.; Wankowicz, S.; Adeegbe, D.; Keliher, D.; Schilling, B.; Tracy, A.; et al. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat. Genet. 2018, 50, 1271–1281. [Google Scholar] [CrossRef]
- Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.M.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568–571. [Google Scholar] [CrossRef]
- Vilain, R.E.; Menzies, A.; Wilmott, J.S.; Kakavand, H.; Madore, J.; Guminski, A.; Liniker, E.; Kong, B.Y.; Cooper, A.J.; Howle, J.R.; et al. Dynamic Changes in PD-L1 Expression and Immune Infiltrates Early During Treatment Predict Response to PD-1 Blockade in Melanoma. Clin. Cancer Res. 2017, 23, 5024–5033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowell, D.; Morris, L.G.T.; Grigg, C.M.; Weber, J.K.; Samstein, R.M.; Makarov, V.; Kuo, F.; Kendall, S.M.; Requena, D.; Riaz, N.; et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018, 359, 582–587. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, N.; Kiyohara, Y.; Uhara, H.; Iizuka, H.; Uehara, J.; Otsuka, F.; Fujisawa, Y.; Takenouchi, T.; Isei, T.; Iwatsuki, K.; et al. Cytokine biomarkers to predict antitumor responses to nivolumab suggested in a phase 2 study for advanced melanoma. Cancer Sci. 2017, 108, 1022–1031. [Google Scholar] [CrossRef] [Green Version]
- Weide, B.; Martens, A.; Hassel, J.C.; Berking, C.; Postow, M.A.; Bisschop, K.; Simeone, E.; Mangana, J.; Schilling, B.; Di Giacomo, A.M.; et al. Baseline Biomarkers for Outcome of Melanoma Patients Treated with Pembrolizumab. Clin. Cancer Res. 2016, 22, 5487–5496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diem, S.; Schmid, S.; Krapf, M.; Flatz, L.; Born, D.; Jochum, W.; Templeton, A.J.; Früh, M. Neutrophil-to-Lymphocyte ratio (NLR) and Platelet-to-Lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. Lung Cancer 2017, 111, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Bagley, S.J.; Kothari, S.; Aggarwal, C.; Bauml, J.M.; Alley, E.W.; Evans, T.L.; Kosteva, J.A.; Ciunci, C.A.; Gabriel, P.E.; Thompson, J.C.; et al. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer 2017, 106, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nakao, M.; Muramatsu, H.; Kagawa, Y.; Suzuki, Y.; Sakai, Y.; Kurokawa, R.; Fujita, K.; Sato, H. Immunological Status May Predict Response to Nivolumab in Non-small Cell Lung Cancer without Driver Mutations. Anticancer. Res. 2017, 37, 3781–3786. [Google Scholar] [CrossRef]
- Sanmamed, M.F.; Perez-Gracia, J.L.; Schalper, K.A.; Fusco, J.P.; Gonzalez, A.; Rodriguez-Ruiz, M.E.; Oñate, C.; Perez, G.; Alfaro, C.; Martín-Algarra, S.; et al. Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Ann. Oncol. 2017, 28, 1988–1995. [Google Scholar] [CrossRef]
- Tanaka, R.; Okiyama, N.; Okune, M.; Ishitsuka, Y.; Watanabe, R.; Furuta, J.; Ohtsuka, M.; Otsuka, A.; Maruyama, H.; Fujisawa, Y.; et al. Serum level of interleukin-6 is increased in nivolumab-associated psoriasiform dermatitis and tumor necrosis factor-α is a biomarker of nivolumab recativity. J. Dermatol. Sci. 2017, 86, 71–73. [Google Scholar] [CrossRef]
- Nonomura, Y.; Otsuka, A.; Nakashima, C.; Seidel, J.; Kitoh, A.; Dainichi, T.; Nakajima, S.; Sawada, Y.; Matsushita, S.; Aoki, M.; et al. Peripheral blood Th9 cells are a possible pharmacodynamic biomarker of nivolumab treatment efficacy in metastatic melanoma patients. OncoImmunology 2016, 5, e1248327. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Kitano, S.; Takahashi, A.; Tsutsumida, A.; Namikawa, K.; Tanese, K.; Abe, T.; Funakoshi, T.; Yamamoto, N.; Amagai, M.; et al. Nivolumab for advanced melanoma: Pretreatment prognostic factors and early outcome markers during therapy. Oncotarget 2016, 7, 77404–77415. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gumus, M.; Mazieres, J.; Hermes, B.; Cay Senler, F.; Csoszi, T.; Fulop, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- Andrews, M.C.; Duong, C.P.M.; Gopalakrishnan, V.; Iebba, V.; Chen, W.-S.; Derosa, L.; Khan, A.W.; Cogdill, A.P.; White, M.G.; Wong, M.C.; et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 2021, 27, 1432–1441. [Google Scholar] [CrossRef]
- Routy, B.; Le Chatelier, E.; DeRosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortellini, A.; Ricciuti, B.; Facchinetti, F.; Alessi, J.; Venkatraman, D.; Dall’Olio, F.; Cravero, P.; Vaz, V.; Ottaviani, D.; Majem, M.; et al. Antibiotic-exposed patients with non-small-cell lung cancer preserve efficacy outcomes following first-line chemo-immunotherapy. Ann. Oncol. 2021, 32, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Chalabi, M.; Cardona, A.; Nagarkar, D.; Scala, A.D.; Gandara, D.; Rittmeyer, A.; Albert, M.; Powles, T.; Kok, M.; Herrera, F. Efficacy of chemotherapy and atezolizumab in patients with non-small-cell lung cancer receiving antibiotics and proton pump inhibitors: Pooled post hoc analyses of the OAK and POPLAR trials. Ann. Oncol. 2020, 31, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbour, K.C.; Mezquita, L.; Long, N.; Rizvi, H.; Auclin, E.; Ni, A.; Martínez-Bernal, G.; Ferrara, R.; Lai, W.V.; Hendriks, L.E.L.; et al. Impact of Baseline Steroids on Efficacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients With Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 2872–2878. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Cristescu, R.; Bass, A.J.; Kim, K.-M.; Odegaard, J.I.; Kim, K.; Liu, X.Q.; Sher, X.; Jung, H.; Lee, M.; et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 2018, 24, 1449–1458. [Google Scholar] [CrossRef]
- Wang, J.; Sun, H.; Zeng, Q.; Guo, X.-J.; Wang, H.; Liu, H.-H.; Dong, Z.-Y. HPV-positive status associated with inflamed immune microenvironment and improved response to anti-PD-1 therapy in head and neck squamous cell carcinoma. Sci. Rep. 2019, 9, 13404. [Google Scholar] [CrossRef] [Green Version]
- Shaverdian, N.; Lisberg, A.E.; Bornazyan, K.; Veruttipong, D.; Goldman, J.W.; Formenti, S.C.; Garon, E.B.; Lee, P. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017, 18, 895–903. [Google Scholar] [CrossRef]
- Kobayashi, H.; Omori, S.; Nakashima, K.; Wakuda, K.; Ono, A.; Kenmotsu, H.; Naito, T.; Murakami, H.; Endo, M.; Takahashi, T. Response to the treatment immediately before nivolumab monotherapy may predict clinical response to nivolumab in patients with non-small cell lung cancer. Int. J. Clin. Oncol. 2017, 18, 2095–2697. [Google Scholar] [CrossRef]
- Heidelberger, V.; Kramkimel, N.; Jouinot, A.; Franck, N.; Arrondeau, J.; Mansuet-Lupo, A.; Alexandre, J.; Aractingi, S.; Avril, M.-F.; Goldwasser, F.; et al. Clinical parameters associated with anti-programmed death-1 (PD-1) inhibitors-induced tumor response in melanoma patients. Investig. New Drugs 2017, 35, 842–847. [Google Scholar] [CrossRef]
- Teraoka, S.; Fujimoto, D.; Morimoto, T.; Kawachi, H.; Ito, M.; Sato, Y.; Nagata, K.; Nakagawa, A.; Otsuka, K.; Uehara, K.; et al. Early Immune-Related Adverse Events and Association with Outcome in Advanced Non–Small Cell Lung Cancer Patients Treated with Nivolumab: A Prospective Cohort Study. J. Thorac. Oncol. 2017, 12, 1798–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, C.; Boussemart, L.; Mateus, C.; Routier, E.; Boutros, C.; Cazenave, H.; Viollet, R.; Thomas, M.; Roy, S.; Benannoune, N.; et al. Association of Vitiligo With Tumor Response in Patients With Metastatic Melanoma Treated With Pembrolizumab. JAMA Dermatol. 2016, 152, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Judd, J.; Zibelman, M.; Handorf, E.; O’Neill, J.; Ramamurthy, C.; Bentota, S.; Doyle, J.; Uzzo, R.G.; Bauman, J.; Borghaei, H.; et al. Immune-Related Adverse Events as a Biomarker in Non-Melanoma Patients Treated with Programmed Cell Death 1 Inhibitors. Oncologist 2017, 22, 1232–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman-Keller, M.; Kim, Y.; Cronin, H.; Richards, A.; Gibney, G.T.; Weber, J. Nivolumab in Resected and Unresectable Metastatic Melanoma: Characteristics of Immune-Related Adverse Events and Association with Outcomes. Clin. Cancer Res. 2016, 22, 886–894. [Google Scholar] [CrossRef] [Green Version]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Perez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; De Wit, M.; et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar] [CrossRef]
- Lau, S.C.; Fares, A.F.; Le, L.W.; Mackay, K.M.; Soberano, S.; Chan, S.W.; Smith, E.; Ryan, M.; Tsao, M.S.; Bradbury, P.A.; et al. Subtypes of EGFR- and HER2-Mutant Metastatic NSCLC Influence Response to Immune Checkpoint Inhibitors. Clin. Lung Cancer 2021, 22, 253–259. [Google Scholar] [CrossRef]
- Hastings, K.; Yu, H.; Wei, W.; Sanchez-Vega, F.; DeVeaux, M.; Choi, J.; Rizvi, H.; Lisberg, A.; Truini, A.; Lydon, C.; et al. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Ann. Oncol. 2019, 30, 1311–1320. [Google Scholar] [CrossRef] [Green Version]
- Haratani, K.; Hayashi, H.; Tanaka, T.; Kaneda, H.; Togashi, Y.; Sakai, K.; Hayashi, K.; Tomida, S.; Chiba, Y.; Yonesaka, K.; et al. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann. Oncol. 2017, 28, 1532–1539. [Google Scholar] [CrossRef]
- Yamada, T.; Hirai, S.; Katayama, Y.; Yoshimura, A.; Shiotsu, S.; Watanabe, S.; Kikuchi, T.; Hirose, K.; Kubota, Y.; Chihara, Y.; et al. Retrospective efficacy analysis of immune checkpoint inhibitors in patients with EGFR-mutated non-small cell lung cancer. Cancer Med. 2019, 8, 1521–1529. [Google Scholar] [CrossRef]
- Garassino, M.C.; Cho, B.-C.; Kim, J.-H.; Mazières, J.; Vansteenkiste, J.; Lena, H.; Jaime, J.C.; Gray, J.E.; Powderly, J.; Chouaid, C.; et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): An open-label, single-arm, phase 2 study. Lancet Oncol. 2018, 19, 521–536. [Google Scholar] [CrossRef]
- Reck, M.; Mok, T.; Nishio, M.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): Key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir. Med. 2019, 7, 387–401. [Google Scholar] [CrossRef]
- Skoulidis, F.; Heymach, J.V. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat. Rev. Cancer 2019, 19, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.A.; Wolchok, J.D.; Snyder, A. Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. N. Engl. J. Med. 2015, 373, 1984. [Google Scholar] [CrossRef] [Green Version]
- Łuksza, M.; Riaz, N.; Makarov, V.; Balachandran, V.P.; Hellmann, M.D.; Solovyov, A.; Rizvi, N.A.; Merghoub, T.; Levine, A.J.; Chan, T.A.; et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nat. Cell Biol. 2017, 551, 517–520. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, J. The Role of Neoantigens in Cancer Immunotherapy. Front. Oncol. 2021, 11, 682325. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Y.; Li, Q.; Cao, L.; Sun, Z.; Jin, J.; Fang, H.; Zhu, A.; Li, Y.; Zhang, W.; et al. Intratumor heterogeneity predicts metastasis of triple-negative breast cancer. Carcinogenesis 2017, 38, 900–909. [Google Scholar] [CrossRef]
- Yang, F.; Cao, L.; Sun, Z.; Jin, J.; Fang, H.; Zhang, W.; Guan, X. Evaluation of Breast Cancer Stem Cells and Intratumor Stemness Heterogeneity in Triple-negative Breast Cancer as Prognostic Factors. Int. J. Biol. Sci. 2016, 12, 1568–1577. [Google Scholar] [CrossRef] [Green Version]
- Wolf, Y.; Bartok, O.; Patkar, S.; Eli, G.B.; Cohen, S.; Litchfield, K.; Levy, R.; Jimenez-Sanchez, A.; Trabish, S.; Lee, J.S.; et al. UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma. Cell 2019, 179, 219–235.e221. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.A.; Ramos, M.F.K.P.; Dias, A.R.; Ribeiro, R.; Cardili, L.; Zilberstein, B.; Cecconello, I.; Ribeiro, U.; de Mello, E.S.; de Castria, T.B. Scoring systems for PD-L1 expression and their prognostic impact in patients with resectable gastric cancer. Virchows Archiv 2021, 478, 1039–1048. [Google Scholar] [CrossRef]
- Chin, C.D.; Fares, C.M.; Campos, M.; Chen, H.W.; Shintaku, I.P.; Konecny, G.E.; Rao, J. Association of PD-L1 expression by immunohistochemistry and gene microarray with molecular subtypes of ovarian tumors. Mod. Pathol. 2020, 33, 2001–2010. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Liang, Y.; Anders, R.A.; Taube, J.M.; Qiu, X.; Mulgaonkar, A.; Liu, X.; Harrington, S.M.; Guo, J.; Xin, Y.; et al. PD-L1 on host cells is essential for PD-L1 blockade–mediated tumor regression. J. Clin. Investig. 2018, 128, 580–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Wei, S.; Hurt, E.M.; Green, M.D.; Zhao, L.; Vatan, L.; Szeliga, W.; Herbst, R.; Harms, P.; Fecher, L.A.; et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade–mediated tumor regression. J. Clin. Investig. 2018, 128, 805–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Marchi, P.; Leal, L.F.; Duval da Silva, V.; da Silva, E.C.A.; Cordeiro de Lima, V.C.; Reis, R.M. PD-L1 expression by Tumor Proportion Score (TPS) and Combined Positive Score (CPS) are similar in non-small cell lung cancer (NSCLC). J. Clin. Pathol. 2021, 74, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Gibney, G.T.; Weiner, L.M.; Atkins, M.B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016, 17, e542–e551. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.E.; Busam, K.J.; From, L.; Kricker, A.; Armstrong, B.K.; Anton-Culver, H.; Gruber, S.B.; Gallagher, R.P.; Zanetti, R.; Rosso, S.; et al. Tumor-Infiltrating Lymphocyte Grade in Primary Melanomas Is Independently Associated With Melanoma-Specific Survival in the Population-Based Genes, Environment and Melanoma Study. J. Clin. Oncol. 2013, 31, 4252–4259. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, M.; Sasano, H.; Tamaki, K.; Hirakawa, H.; Takahashi, Y.; Nakagawa, S.; Watanabe, G.; Tada, H.; Suzuki, A.; Ohuchi, N.; et al. Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: A retrospective multicenter study. Breast Cancer Res. 2015, 17, 124. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, T.; Muramatsu, R.; Fujita, T.; Nagumo, H.; Sakurai, T.; Noji, S.; Takahata, E.; Yaguchi, T.; Tsukamoto, N.; Kudo-Saito, C.; et al. Prognostic value of tumor-infiltrating lymphocytes differs depending on histological type and smoking habit in completely resected non-small-cell lung cancer. Ann. Oncol. 2016, 27, 2117–2123. [Google Scholar] [CrossRef]
- Hamid, O.; Schmidt, H.; Nissan, A.; Ridolfi, L.; Aamdal, S.; Hansson, J.; Guida, M.; Hyams, D.M.; Gómez, H.; Bastholt, L.; et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J. Transl. Med. 2011, 9, 204. [Google Scholar] [CrossRef] [Green Version]
- Uryvaev, A.; Passhak, M.; Hershkovits, D.; Sabo, E.; Bar-Sela, G. The role of tumor-infiltrating lymphocytes (TILs) as a predictive biomarker of response to anti-PD1 therapy in patients with metastatic non-small cell lung cancer or metastatic melanoma. Med. Oncol. 2018, 35, 25. [Google Scholar] [CrossRef]
- Loi, S.; Michiels, S.; Adams, S.; Loibl, S.; Budczies, J.; Denkert, C.; Salgado, R. The journey of tumor-infiltrating lymphocytes as a biomarker in breast cancer: Clinical utility in an era of checkpoint inhibition. Ann. Oncol. 2021, 32, 1236–1244. [Google Scholar] [CrossRef] [PubMed]
- Gettinger, S.; Choi, J.; Hastings, K.; Truini, A.; Datar, I.; Sowell, R.; Wurtz, A.; Dong, W.; Cai, G.; Melnick, M.A.; et al. Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer. Cancer Discov. 2017, 7, 1420–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulson, K.G.; Voillet, V.; McAfee, M.S.; Hunter, D.S.; Wagener, F.D.; Perdicchio, M.; Valente, W.J.; Koelle, S.J.; Church, C.D.; Vandeven, N.; et al. Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA. Nat. Commun. 2018, 9, 3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montesion, M.; Murugesan, K.; Jin, D.X.; Sharaf, R.; Sanchez, N.; Guria, A.; Minker, M.; Li, G.; Fisher, V.; Sokol, E.S.; et al. Somatic HLA Class I Loss Is a Widespread Mechanism of Immune Evasion Which Refines the Use of Tumor Mutational Burden as a Biomarker of Checkpoint Inhibitor Response. Cancer Discov. 2021, 11, 282–292. [Google Scholar] [CrossRef] [PubMed]
- McGranahan, N.; Rosenthal, R.; Hiley, C.T.; Rowan, A.J.; Watkins, T.B.K.; Wilson, G.A.; Birkbak, N.J.; Veeriah, S.; Van Loo, P.; Herrero, J.; et al. Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell 2017, 171, 1259–1271.e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrao, M.; Lam, V.K.; Reuben, A.; Rubin, M.L.; Landry, L.L.; Roarty, E.B.; Rinsurongkawong, W.; Lewis, J.; Roth, J.A.; Swisher, S.G.; et al. PD-L1 Expression, Tumor Mutational Burden, and Cancer Gene Mutations Are Stronger Predictors of Benefit from Immune Checkpoint Blockade than HLA Class I Genotype in Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2019, 14, 1021–1031. [Google Scholar] [CrossRef]
- Shim, J.H.; Kim, H.; Cha, H.; Kim, S.; Kim, T.; Anagnostou, V.; Choi, Y.-L.; Jung, H.; Sun, J.-M.; Ahn, J.; et al. HLA-corrected tumor mutation burden and homologous recombination deficiency for the prediction of response to PD-(L)1 blockade in advanced non-small-cell lung cancer patients. Ann. Oncol. 2020, 31, 902–911. [Google Scholar] [CrossRef]
- De Waele, J.; Marcq, E.; Van Audenaerde, J.R.; Van Loenhout, J.; Deben, C.; Zwaenepoel, K.; Van De Kelft, E.; Van Der Planken, D.; Menovsky, T.; Bergh, J.M.V.D.; et al. Poly(I:C) primes primary human glioblastoma cells for an immune response invigorated by PD-L1 blockade. OncoImmunology 2017, 7, e1407899. [Google Scholar] [CrossRef]
- Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef]
- Sánchez-Gastaldo, A.; Muñoz-Fuentes, M.A.; Molina-Pinelo, S.; Alonso-García, M.; Boyero, L.; Bernabé-Caro, R. Correlation of peripheral blood biomarkers with clinical outcomes in NSCLC patients with high PD-L1 expression treated with pembrolizumab. Transl. Lung Cancer Res. 2021, 10, 2509–2522. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Y.; Nowakowski, G.S.; Wang, M.; Chintakuntlawar, A.V.; Halfdanarson, T.; Pagliaro, L.C.; Wei, J.; Liu, B.; Molina, J.R.; et al. Association of sex, age and ECOG performance status with cancer immunotherapy efficacy in randomized controlled trials. J. Clin. Oncol. 2019, 37, 6592. [Google Scholar] [CrossRef]
- Rodríguez-Abreu, D.; Powell, S.; Hochmair, M.; Gadgeel, S.; Esteban, E.; Felip, E.; Speranza, G.; De Angelis, F.; Dómine, M.; Cheng, S.; et al. Pemetrexed plus platinum with or without pembrolizumab in patients with previously untreated metastatic nonsquamous NSCLC: Protocol-specified final analysis from KEYNOTE-189. Ann. Oncol. 2021, 32, 881–895. [Google Scholar] [CrossRef] [PubMed]
- Nosrati, A.; Tsai, K.K.; Goldinger, S.M.; Tumeh, P.; Grimes, B.; Loo, K.; Algazi, A.P.; Nguyen-Kim, T.D.L.; Levesque, M.; Dummer, R.; et al. Evaluation of clinicopathological factors in PD-1 response: Derivation and validation of a prediction scale for response to PD-1 monotherapy. Br. J. Cancer 2017, 116, 1141–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vétizou, M.; Pitt, J.M.; Daillère, R.; Lepage, P.; Waldschmitt, N.; Flament, C.; Rusakiewicz, S.; Routy, B.; Roberti, M.P.; Duong, C.P.M.; et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015, 350, 1079–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.; Alegre, M.-L.; et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015, 350, 1084–1089. [Google Scholar] [CrossRef] [Green Version]
- Griffin, M.E.; Espinosa, J.; Becker, J.L.; Luo, J.-D.; Carroll, T.S.; Jha, J.K.; Fanger, G.R.; Hang, H.C. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy. Science 2021, 373, 1040–1046. [Google Scholar] [CrossRef]
- Baruch, E.N.; Youngster, I.; Ben-Betzalel, G.; Ortenberg, R.; Lahat, A.; Katz, L.; Adler, K.; Dick-Necula, D.; Raskin, S.; Bloch, N.; et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021, 371, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Davar, D.; Dzutsev, A.K.; McCulloch, J.A.; Rodrigues, R.R.; Chauvin, J.-M.; Morrison, R.M.; Deblasio, R.N.; Menna, C.; Ding, Q.; Pagliano, O.; et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science 2021, 371, 595–602. [Google Scholar] [CrossRef]
- Lurienne, L.; Cervesi, J.; Duhalde, L.; de Gunzburg, J.; Andremont, A.; Zalcman, G.; Buffet, R.; Bandinelli, P.-A. NSCLC Immunotherapy Efficacy and Antibiotic Use: A Systematic Review and Meta-Analysis. J. Thorac. Oncol. 2020, 15, 1147–1159. [Google Scholar] [CrossRef]
- Pederzoli, F.; Bandini, M.; Raggi, D.; Marandino, L.; Basile, G.; Alfano, M.; Colombo, R.; Salonia, A.; Briganti, A.; Gallina, A.; et al. Is There a Detrimental Effect of Antibiotic Therapy in Patients with Muscle-invasive Bladder Cancer Treated with Neoadjuvant Pembrolizumab? Eur. Urol. 2021, 80, 319–322. [Google Scholar] [CrossRef]
- Hopkins, A.M.; Kichenadasse, G.; Karapetis, C.S.; Rowland, A.; Sorich, M. Concomitant Antibiotic Use and Survival in Urothelial Carcinoma Treated with Atezolizumab. Eur. Urol. 2020, 78, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, N.; Zhou, C.; Tan, G.; Rack, S.; Lorigan, P.; Blackhall, F.; Krebs, M.; Carter, L.; Thistlethwaite, F.; Graham, D.; et al. Cumulative Antibiotic Use Significantly Decreases Efficacy of Checkpoint Inhibitors in Patients with Advanced Cancer. Oncologist 2020, 25, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derks, S.; Liao, X.; Chiaravalli, A.M.; Xu, X.; Camargo, M.C.; Solcia, E.; Sessa, F.; Fleitas, T.; Freeman, G.J.; Rodig, S.J.; et al. Abundant PD-L1 expression in Epstein-Barr Virus-infected gastric cancers. Oncotarget 2016, 7, 32925–32932. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.-H.; Wei, X.-L.; Feng, J.; Li, Q.; Xu, N.; Hu, X.-C.; Liao, W.; Jiang, Y.; Lin, X.-Y.; Zhang, Q.-Y.; et al. Efficacy, Safety, and Correlative Biomarkers of Toripalimab in Previously Treated Recurrent or Metastatic Nasopharyngeal Carcinoma: A Phase II Clinical Trial (POLARIS-02). J. Clin. Oncol. 2021, 39, 704–712. [Google Scholar] [CrossRef]
- Iorgulescu, J.B.; Gokhale, P.C.; Speranza, M.C.; Eschle, B.K.; Poitras, M.J.; Wilkens, M.K.; Soroko, K.M.; Chhoeu, C.; Knott, A.; Gao, Y.; et al. Concurrent Dexamethasone Limits the Clinical Benefit of Immune Checkpoint Blockade in Glioblastoma. Clin. Cancer Res. 2021, 27, 276–287. [Google Scholar] [CrossRef]
- Ricciuti, B.; Dahlberg, S.E.; Adeni, A.; Sholl, L.M.; Nishino, M.; Awad, M.M. Immune Checkpoint Inhibitor Outcomes for Patients With Non–Small-Cell Lung Cancer Receiving Baseline Corticosteroids for Palliative Versus Nonpalliative Indications. J. Clin. Oncol. 2019, 37, 1927–1934. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Kong, L.; Shi, F.; Zhu, H.; Yu, J. Abscopal effect of radiotherapy combined with immune checkpoint inhibitors. J. Hematol. Oncol. 2018, 11, 104. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, Y.; Ebi, N.; Fujimoto, D.; Hara, S.; Hirano, K.; Narabayashi, T.; Tanaka, T.; Tomii, K.; Yoshioka, H. Prior radiotherapy does not predict nivolumab response in non-small-cell lung cancer: A retrospective cohort study. Ann. Oncol. 2017, 28, 1402. [Google Scholar] [CrossRef]
- Lim, J.U.; Kim, S.H.; Kang, H.S.; Kim, S.K.; Kim, J.S.; Kim, J.W.; Kim, S.J.; Yeo, C.D.; Choi, C.M. Predictive Role of Prior Radiotherapy and Immunotherapy-Related Adverse Effects in Advanced NSCLC Patients Receiving Anti-PD-1/L1 Therapy. J. Clin. Med. 2021, 10, 3719. [Google Scholar] [CrossRef]
- Hradska, K.; Hajek, R.; Jelinek, T. Toxicity of Immune-Checkpoint Inhibitors in Hematological Malignancies. Front. Pharmacol. 2021, 12, 733890. [Google Scholar] [CrossRef]
- Yamazaki, N.; Kiyohara, Y.; Uhara, H.; Uehara, J.; Fujimoto, M.; Takenouchi, T.; Otsuka, M.; Uchi, H.; Ihn, H.; Minami, H. Efficacy and safety of nivolumab in Japanese patients with previously untreated advanced melanoma: A phase II study. Cancer Sci. 2017, 108, 1223–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, C.; Hwu, W.-J.; Hamid, O.; Ribas, A.; Weber, J.S.; Daud, A.I.; Hodi, F.S.; Wolchok, J.D.; Mitchell, T.C.; Hersey, P.; et al. Long-term safety of pembrolizumab monotherapy and relationship with clinical outcome: A landmark analysis in patients with advanced melanoma. Eur. J. Cancer 2021, 144, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Cabel, L.; Riva, F.; Servois, V.; Livartowski, A.; Daniel, C.; Rampanou, A.; Lantz, O.; Romano, E.; Milder, M.; Buecher, B.; et al. Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: A proof-of-concept study. Ann. Oncol. 2017, 28, 1996–2001. [Google Scholar] [CrossRef] [Green Version]
- Iijima, Y.; Hirotsu, Y.; Amemiya, K.; Ooka, Y.; Mochizuki, H.; Oyama, T.; Nakagomi, T.; Uchida, Y.; Kobayashi, Y.; Tsutsui, T.; et al. Very early response of circulating tumour-derived DNA in plasma predicts efficacy of nivolumab treatment in patients with non-small cell lung cancer. Eur. J. Cancer 2017, 86, 349–357. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Wang, J.F.; Wang, Y.; Liu, B.; Molina, J.R. Comparative Analysis of Predictive Biomarkers for PD-1/PD-L1 Inhibitors in Cancers: Developments and Challenges. Cancers 2022, 14, 109. https://doi.org/10.3390/cancers14010109
Yang F, Wang JF, Wang Y, Liu B, Molina JR. Comparative Analysis of Predictive Biomarkers for PD-1/PD-L1 Inhibitors in Cancers: Developments and Challenges. Cancers. 2022; 14(1):109. https://doi.org/10.3390/cancers14010109
Chicago/Turabian StyleYang, Fang, Jacqueline F. Wang, Yucai Wang, Baorui Liu, and Julian R. Molina. 2022. "Comparative Analysis of Predictive Biomarkers for PD-1/PD-L1 Inhibitors in Cancers: Developments and Challenges" Cancers 14, no. 1: 109. https://doi.org/10.3390/cancers14010109
APA StyleYang, F., Wang, J. F., Wang, Y., Liu, B., & Molina, J. R. (2022). Comparative Analysis of Predictive Biomarkers for PD-1/PD-L1 Inhibitors in Cancers: Developments and Challenges. Cancers, 14(1), 109. https://doi.org/10.3390/cancers14010109