Prognostic Factors for Localized Clear Cell Renal Cell Carcinoma and Their Application in Adjuvant Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Histopathological and Clinical Prognostic Factors for Localized ccRCC
2.1. Microscopical Histopathological Prognostic Factors
2.2. Macroscopical Histopathological Prognostic Factors
3. Prognostic Models for Localized RCC
4. Current Applications of Biomarkers in Localized RCC
5. Prognostic Markers and Adjuvant Therapies for Localized ccRCC
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 3, 209–249. [Google Scholar] [CrossRef]
- Leibovich, B.C.; Lohse, C.M.; Crispen, P.L.; Boorjian, S.A.; Thompson, R.H.; Blute, M.L.; Cheville, J.C. Histological subtype is an independent predictor of outcome for patients with renal cell carcinoma. J. Urol. 2010, 183, 1309–1315. [Google Scholar] [CrossRef]
- Ljungberg, B.; Bensalah, K.; Canfield, S.; Dabestani, S.; Hofmann, F.; Hora, M.; Kuczyk, M.A.; Lam, T.; Marconi, L.; Merseburger, A.S.; et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 2015, 67, 913–924. [Google Scholar] [CrossRef]
- Motzer, R.J.; Jonasch, E.; Boyle, S.; Carlo, M.I.; Manley, B.; Agarwal, N.; Alva, A.; Beckermann, K.; Choueiri, T.K.; Costello, B.A.; et al. NCCN guidelines insights: Kidney cancer, version 1.2021. J. Natl. Compr. Cancer Netw. 2020, 18, 1160–1170. [Google Scholar] [CrossRef]
- Capitanio, U.; Montorsi, F. Renal cancer. Lancet 2016, 387, 894–906. [Google Scholar] [PubMed]
- Swami, U.; Nussenzveig, R.H.; Haaland, B.; Agarwal, N. Revisiting AJCC TNM staging for renal cell carcinoma: Quest for improvement. Ann. Transl. Med. 2019, 7, S18. [Google Scholar] [CrossRef] [PubMed]
- Bierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 8th ed.; John Wiley & Sons, Inc.: Oxford, UK; Hoboken, NJ, USA, 2017. [Google Scholar]
- Kane, C.J.; Mallin, K.; Ritchey, J.; Cooperberg, M.R.; Carroll, P.R. Renal cell cancer stage migration: Analysis of the national cancer data base. Cancer 2008, 113, 78–83. [Google Scholar] [CrossRef]
- Cheaib, J.G.; Patel, H.D.; Johnson, M.H.; Gorin, M.A.; Haut, E.R.; Canner, J.K.; Allaf, M.E.; Pierorazio, P.M. Stage-specific Conditional survival in renal cell carcinoma after nephrectomy. Urol. Oncol. 2020, 38, e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, S.A.; Lasky, L.C.; Limas, C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am. J. Surg. Pathol. 1982, 6, 655–663. [Google Scholar]
- Delahunt, B.; Srigley, J.R.; Egevad, L.; Montironi, R.; International Society for Urological Pathology. International society of urological pathology grading and other prognostic factors for renal neoplasia. Eur. Urol. 2014, 66, 795–798. [Google Scholar] [CrossRef]
- Blum, K.A.; Gupta, S.; Tickoo, S.K.; Chan, T.A.; Russo, P.; Motzer, R.J.; Karam, J.A.; Hakimi, A.A. Sarcomatoid renal cell carcinoma: Biology, natural history and management. Nat. Rev. Urol. 2020, 17, 659–678. [Google Scholar] [CrossRef]
- Cheville, J.C.; Lohse, C.M.; Zincke, H.; Weaver, A.L.; Leibovich, B.C.; Frank, I.; Blute, M.L. Sarcomatoid renal cell carcinoma: An examination of underlying histologic subtype and an analysis of associations with patient outcome. Am. J. Surg. Pathol. 2004, 28, 435–441. [Google Scholar] [CrossRef]
- Trudeau, V.; Larcher, A.; Sun, M.; Boehm, K.; Dell’Oglio, P.; Sosa, J.; Tian, Z.; Fossati, N.; Briganti, A.; Shariat, S.F.; et al. Comparison of oncologic outcomes between sarcomatoid and clear cell renal cell carcinoma. World J. Urol. 2016, 34, 1429–1436. [Google Scholar] [CrossRef]
- Mian, B.M.; Bhadkamkar, N.; Slaton, J.W.; Pisters, P.W.; Daliani, D.; Swanson, D.A.; Pisters, L.L. Prognostic factors and survival of patients with sarcomatoid renal cell carcinoma. J. Urol. 2002, 167, 65–70. [Google Scholar] [CrossRef]
- Merrill, M.M.; Wood, C.G.; Tannir, N.M.; Slack, R.S.; Babaian, K.N.; Jonasch, E.; Pagliaro, L.C.; Compton, Z.; Tamboli, P.; Sircar, K.; et al. Clinically nonmetastatic renal cell carcinoma with sarcomatoid dedifferentiation: Natural history and outcomes after surgical resection with curative intent. Urol. Oncol. 2015, 33, e21–e166. [Google Scholar] [CrossRef] [Green Version]
- Pichler, M.; Hutterer, G.C.; Chromecki, T.F.; Jesche, J.; Kampel-Kettner, K.; Rehak, P.; Pummer, K.; Zigeuner, R. Histologic tumor necrosis is an independent prognostic indicator for clear cell and papillary renal cell carcinoma. Am. J. Clin. Pathol. 2012, 137, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Lam, J.S.; Shvarts, O.; Said, J.W.; Pantuck, A.J.; Seligson, D.B.; Aldridge, M.E.; Bui, M.H.; Liu, X.; Horvath, S.; Figlin, R.A.; et al. Clinicopathologic and molecular correlations of necrosis in the primary tumor of patients with renal cell carcinoma. Cancer 2005, 103, 2517–2525. [Google Scholar] [CrossRef]
- Delahunt, B.; Cheville, J.C.; Martignoni, G.; Humphrey, P.A.; Magi-Galluzzi, C.; McKenney, J.; Egevad, L.; Algaba, F.; Moch, H.; Grignon, D.J.; et al. The international society of urological pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am. J. Surg. Pathol. 2013, 37, 1490–1504. [Google Scholar] [CrossRef] [Green Version]
- Khor, L.Y.; Dhakal, H.P.; Jia, X.; Reynolds, J.P.; McKenney, J.K.; Rini, B.I.; Magi-Galluzzi, C.; Przybycin, C.G. Tumor necrosis adds prognostically significant information to grade in clear cell renal cell carcinoma: A study of 842 consecutive cases from a single institution. Am. J. Surg. Pathol. 2016, 40, 1224–1231. [Google Scholar] [CrossRef]
- Sengupta, S.; Lohse, C.M.; Leibovich, B.C.; Frank, I.; Thompson, R.H.; Webster, W.S.; Zincke, H.; Blute, M.L.; Cheville, J.C.; Kwon, E.D. Histologic coagulative tumor necrosis as a prognostic indicator of renal cell carcinoma aggressiveness. Cancer 2005, 104, 511–520. [Google Scholar] [CrossRef]
- Katz, M.D.; Serrano, M.F.; Grubb, R.L.; Skolarus, T.A.; Gao, F.; Humphrey, P.A.; Kibel, A.S. Percent microscopic tumor necrosis and survival after curative surgery for renal cell carcinoma. J. Urol. 2010, 183, 909–914. [Google Scholar] [CrossRef]
- Foria, V.; Surendra, T.; Poller, D.N. Prognostic relevance of extensive necrosis in renal cell carcinoma. J. Clin. Pathol. 2005, 58, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.E.; Byun, S.S.; Oh, J.K.; Lee, S.C.; Chang, I.H.; Choe, G.; Hong, S.K. Significance of macroscopic tumor necrosis as a prognostic indicator for renal cell carcinoma. J. Urol. 2006, 176, 1332–1338. [Google Scholar] [CrossRef]
- Renshaw, A.A.; Cheville, J.C. Quantitative tumour necrosis is an independent predictor of overall survival in clear cell renal cell carcinoma. Pathology 2015, 47, 34–37. [Google Scholar] [CrossRef]
- Delahunt, B.; McKenney, J.K.; Lohse, C.M.; Leibovich, B.C.; Thompson, R.H.; Boorjian, S.A.; Cheville, J.C. A novel grading system for clear cell renal cell carcinoma incorporating tumor necrosis. Am. J. Surg. Pathol. 2013, 37, 311–322. [Google Scholar] [CrossRef]
- Moch, H.; Humphrey, P.A.; Ulbright, T.M.; Reuter, V.E. WHO Classification of Tumours of the Urinary System and Male Genital Organs. WHO Classification of Tumours, 4th ed.; International Agency for Research on Cancer: Lyon, France, 2016; Volume 8. [Google Scholar]
- Bedke, J.; Heide, J.; Ribback, S.; Rausch, S.; de Martino, M.; Scharpf, M.; Haitel, A.; Zimmermann, U.; Pechoel, M.; Alkhayyat, H.; et al. Microvascular and lymphovascular tumour invasion are associated with poor prognosis and metastatic spread in renal cell carcinoma: A validation study in clinical practice. BJU Int. 2018, 121, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Lang, H.; Lindner, V.; Letourneux, H.; Martin, M.; Saussine, C.; Jacqmin, D. Prognostic value of microscopic venous invasion in renal cell carcinoma: Long-term follow-up. Eur. Urol. 2004, 46, 331–335. [Google Scholar] [CrossRef]
- Kroeger, N.; Rampersaud, E.N.; Patard, J.J.; Klatte, T.; Birkhauser, F.D.; Shariat, S.F.; Lang, H.; Rioux-Leclerq, N.; Remzi, M.; Zomorodian, N.; et al. Prognostic value of microvascular invasion in predicting the cancer specific survival and risk of metastatic disease in renal cell carcinoma: A multicenter investigation. J. Urol. 2012, 187, 418–423. [Google Scholar] [CrossRef] [Green Version]
- Van Poppel, H. Efficacy and safety of nephron-sparing surgery. Int. J. Urol. 2010, 17, 314–326. [Google Scholar] [CrossRef] [Green Version]
- Antic, T.; Taxy, J.B. Partial nephrectomy for renal tumors: Lack of correlation between margin status and local recurrence. Am. J. Clin. Pathol. 2015, 143, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Bansal, R.K.; Tanguay, S.; Finelli, A.; Rendon, R.; Moore, R.B.; Breau, R.H.; Lacombe, L.; Black, P.C.; Kawakami, J.; Drachenberg, D.; et al. Positive surgical margins during partial nephrectomy for renal cell carcinoma: Results from canadian kidney cancer information system (CKCis) collaborative. Can. Urol. Assoc. J. 2017, 11, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Schiavina, R.; Mari, A.; Bianchi, L.; Amparore, D.; Antonelli, A.; Artibani, W.; Brunocilla, E.; Capitanio, U.; Fiori, C.; Di Maida, F.; et al. Predicting positive surgical margins in partial nephrectomy: A prospective multicentre observational study (the RECORd 2 project). Eur. J. Surg. Oncol. 2020, 46, 1353–1359. [Google Scholar] [CrossRef]
- Wood, E.L.; Adibi, M.; Qiao, W.; Brandt, J.; Zhang, M.; Tamboli, P.; Matin, S.F.; Wood, C.G.; Karam, J.A. Local tumor bed recurrence following partial nephrectomy in patients with small renal masses. J. Urol. 2018, 199, 393–400. [Google Scholar] [CrossRef]
- Shah, P.H.; Lyon, T.D.; Lohse, C.M.; Cheville, J.C.; Leibovich, B.C.; Boorjian, S.A.; Thompson, R.H. Prognostic evaluation of perinephric fat, renal sinus fat, and renal vein invasion for patients with pathological stage T3a clear-cell renal cell carcinoma. BJU Int. 2019, 123, 270–276. [Google Scholar] [CrossRef]
- Stuhler, V.; Rausch, S.; Kroll, K.; Scharpf, M.; Stenzl, A.; Bedke, J. The prognostic value of fat invasion and tumor expansion in the hilar veins in pT3a renal cell carcinoma. World J. Urol. 2021, 39, 3367–3376. [Google Scholar] [CrossRef]
- da Costa, W.H.; Moniz, R.R.; da Cunha, I.W.; Fonseca, F.P.; Guimaraes, G.C.; de Cassio Zequi, S. Impact of renal vein invasion and fat invasion in pT3a renal cell carcinoma. BJU Int. 2012, 109, 544–548. [Google Scholar] [CrossRef]
- Baccos, A.; Brunocilla, E.; Schiavina, R.; Borghesi, M.; Rocca, G.C.; Chessa, F.; Saraceni, G.; Fiorentino, M.; Martorana, G. Differing risk of cancer death among patients with pathologic T3a renal cell carcinoma: Identification of risk categories according to fat infiltration and renal vein thrombosis. Clin. Genitourin. Cancer 2013, 11, 451–457. [Google Scholar] [CrossRef]
- Campbell, S.; Novick, A.; Bukowski, R. Treatment of locally advanced renal cell carcinoma. In Urology; Campbell, S., Walsh, P., Eds.; W. B. Saunders Co.: Philadelphia, PA, USA, 2007; pp. 1619–1622. [Google Scholar]
- Ljungberg, B.; Stenling, R.; Osterdahl, B.; Farrelly, E.; Aberg, T.; Roos, G. Vein invasion in renal cell carcinoma: Impact on Metastatic behavior and survival. J. Urol. 1995, 154, 1681–1684. [Google Scholar] [CrossRef]
- Neves, R.J.; Zincke, H. Surgical treatment of renal cancer with vena cava extension. Br. J. Urol. 1987, 59, 390–395. [Google Scholar] [CrossRef]
- Wagner, B.; Patard, J.J.; Mejean, A.; Bensalah, K.; Verhoest, G.; Zigeuner, R.; Ficarra, V.; Tostain, J.; Mulders, P.; Chautard, D.; et al. Prognostic value of renal vein and inferior vena cava involvement in renal cell carcinoma. Eur. Urol. 2009, 55, 452–459. [Google Scholar] [CrossRef]
- Tilki, D.; Nguyen, H.G.; Dall’Era, M.A.; Bertini, R.; Carballido, J.A.; Chromecki, T.; Ciancio, G.; Daneshmand, S.; Gontero, P.; Gonzalez, J.; et al. Impact of histologic subtype on cancer-specific survival in patients with renal cell carcinoma and tumor thrombus. Eur. Urol. 2014, 66, 577–583. [Google Scholar] [CrossRef]
- Shiff, B.; Breau, R.H.; Mallick, R.; Pouliot, F.; So, A.; Tanguay, S.; Kapoor, A.; Lattouf, J.B.; Lavallee, L.; Fairey, A.; et al. Prognostic significance of extent of venous tumor thrombus in patients with non-metastatic renal cell carcinoma: Results from a Canadian multi-institutional collaborative. Urol. Oncol. 2021, 39, 836.e19–836.e27. [Google Scholar] [CrossRef]
- Marchioni, M.; Bandini, M.; Pompe, R.S.; Martel, T.; Tian, Z.; Shariat, S.F.; Kapoor, A.; Cindolo, L.; Briganti, A.; Schips, L.; et al. The impact of lymph node dissection and positive lymph nodes on cancer-specific mortality in contemporary pT2-3 non-metastatic renal cell carcinoma treated with radical nephrectomy. BJU Int. 2018, 121, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Bianchi, M.; Hansen, J.; Abdollah, F.; Trinh, Q.D.; Lughezzani, G.; Shariat, S.F.; Montorsi, F.; Perrotte, P.; Karakiewicz, P.I. Nodal involvement at nephrectomy is associated with worse survival: A stage-for-stage and grade-for-grade analysis. Int. J. Urol. 2013, 20, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Rivera-Nunez, Z.; Kim, S.; Sterling, J.; Farber, N.J.; Radadia, K.D.; Patel, H.V.; Modi, P.K.; Goyal, S.; Parikh, R.; et al. Impact of pathologic lymph node-positive renal cell carcinoma on survival in patients without metastasis: Evidence in support of expanding the definition of stage IV kidney cancer. Cancer 2020, 126, 2991–3001. [Google Scholar] [CrossRef]
- Kattan, M.W.; Reuter, V.; Motzer, R.J.; Katz, J.; Russo, P. A postoperative prognostic nomogram for renal cell carcinoma. J. Urol. 2001, 166, 63–67. [Google Scholar] [CrossRef]
- Zisman, A.; Pantuck, A.J.; Dorey, F.; Said, J.W.; Shvarts, O.; Quintana, D.; Gitlitz, B.J.; deKernion, J.B.; Figlin, R.A.; Belldegrun, A.S. Improved prognostication of renal cell carcinoma using an integrated staging system. J. Clin. Oncol. 2001, 19, 1649–1657. [Google Scholar] [CrossRef]
- Parker, W.P.; Cheville, J.C.; Frank, I.; Zaid, H.B.; Lohse, C.M.; Boorjian, S.A.; Leibovich, B.C.; Thompson, R.H. Application of the stage, size, grade, and necrosis (SSIGN) score for clear cell renal cell carcinoma in contemporary patients. Eur. Urol. 2017, 71, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Cindolo, L.; de la Taille, A.; Messina, G.; Romis, L.; Abbou, C.C.; Altieri, V.; Rodriguez, A.; Patard, J.J. A preoperative clinical prognostic model for non-metastatic renal cell carcinoma. BJU Int. 2003, 92, 901–905. [Google Scholar] [CrossRef]
- Leibovich, B.C.; Blute, M.L.; Cheville, J.C.; Lohse, C.M.; Frank, I.; Kwon, E.D.; Weaver, A.L.; Parker, A.S.; Zincke, H. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: A stratification tool for prospective clinical trials. Cancer 2003, 97, 1663–1671. [Google Scholar] [CrossRef]
- Sorbellini, M.; Kattan, M.W.; Snyder, M.E.; Reuter, V.; Motzer, R.; Goetzl, M.; McKiernan, J.; Russo, P. A postoperative prognostic nomogram predicting recurrence for patients with conventional clear cell renal cell carcinoma. J. Urol. 2005, 173, 48–51. [Google Scholar] [CrossRef] [Green Version]
- Karakiewicz, P.I.; Suardi, N.; Capitanio, U.; Jeldres, C.; Ficarra, V.; Cindolo, L.; de la Taille, A.; Tostain, J.; Mulders, P.F.A.; Bensalah, K.; et al. A preoperative prognostic model for patients treated with nephrectomy for renal cell carcinoma. Eur. Urol. 2009, 55, 287–295. [Google Scholar] [CrossRef]
- Leibovich, B.C.; Lohse, C.M.; Cheville, J.C.; Zaid, H.B.; Boorjian, S.A.; Frank, I.; Thompson, R.H.; Parker, W.P. Predicting oncologic outcomes in renal cell carcinoma after surgery. Eur. Urol. 2018, 73, 772–780. [Google Scholar] [CrossRef]
- Mattila, K.E.; Laajala, T.D.; Tornberg, S.V.; Kilpelainen, T.P.; Vainio, P.; Ettala, O.; Bostrom, P.J.; Nisen, H.; Elo, L.L.; Jaakkola, P.M. A three-feature prediction model for metastasis-free survival after surgery of localized clear cell renal cell carcinoma. Sci. Rep. 2021, 11, 8650–8659. [Google Scholar] [CrossRef]
- Correa, A.F.; Jegede, O.A.; Haas, N.B.; Flaherty, K.T.; Pins, M.R.; Adeniran, A.; Messing, E.M.; Manola, J.; Wood, C.G.; Kane, C.J.; et al. Predicting disease recurrence, early progression, and overall survival following surgical resection for high-risk localized and locally advanced renal cell carcinoma. Eur. Urol. 2021, 80, 20–31. [Google Scholar] [CrossRef]
- Park, Y.H.; Baik, K.D.; Lee, Y.J.; Ku, J.H.; Kim, H.H.; Kwak, C. Late recurrence of renal cell carcinoma >5 years after surgery: Clinicopathological characteristics and prognosis. BJU Int. 2012, 110, 553. [Google Scholar] [CrossRef]
- Pugh, C.W.; Ratcliffe, P.J. The von hippel-lindau tumor suppressor, hypoxia-inducible factor-1 (HIF-1) degradation, and cancer pathogenesis. Semin. Cancer Biol. 2003, 13, 83–89. [Google Scholar] [CrossRef]
- Gordan, J.D.; Bertout, J.A.; Hu, C.J.; Diehl, J.A.; Simon, M.C. HIF-2alpha promotes hypoxic cell proliferation by enhancing C-Myc transcriptional activity. Cancer Cell 2007, 11, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Miikkulainen, P.; Hogel, H.; Seyednasrollah, F.; Rantanen, K.; Elo, L.L.; Jaakkola, P.M. Hypoxia-inducible factor (HIF)-prolyl hydroxylase 3 (PHD3) maintains high HIF2A mRNA levels in clear cell renal cell carcinoma. J. Biol. Chem. 2019, 294, 3760–3771. [Google Scholar] [CrossRef] [Green Version]
- Kaelin, W.G. The von hippel-lindau tumor suppressor protein and clear cell renal carcinoma. Clin. Cancer Res. 2007, 13, 680s–684s. [Google Scholar] [CrossRef] [Green Version]
- Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012, 366, 883–892. [Google Scholar] [CrossRef] [Green Version]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013, 499, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Hakimi, A.A.; Pham, C.G.; Hsieh, J.J. A clear picture of renal cell carcinoma. Nat. Genet. 2013, 45, 849–850. [Google Scholar] [CrossRef]
- Joseph, R.W.; Kapur, P.; Serie, D.J.; Parasramka, M.; Ho, T.H.; Cheville, J.C.; Frenkel, E.; Parker, A.S.; Brugarolas, J. Clear cell renal cell carcinoma subtypes identified by BAP1 and PBRM1 expression. J. Urol. 2016, 195, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Carril-Ajuria, L.; Santos, M.; Roldan-Romero, J.M.; Rodriguez-Antona, C.; de Velasco, G. Prognostic and predictive value of PBRM1 in clear cell renal cell carcinoma. Cancers 2019, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Rini, B.; Goddard, A.; Knezevic, D.; Maddala, T.; Zhou, M.; Aydin, H.; Campbell, S.; Elson, P.; Koscielny, S.; Lopatin, M.; et al. A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: Development and validation studies. Lancet Oncol. 2015, 16, 676–685. [Google Scholar] [CrossRef]
- Rini, B.I.; Escudier, B.; Martini, J.F.; Magheli, A.; Svedman, C.; Lopatin, M.; Knezevic, D.; Goddard, A.D.; Febbo, P.G.; Li, R.; et al. Validation of the 16-gene recurrence score in patients with locoregional, high-risk renal cell carcinoma from a phase III trial of adjuvant sunitinib. Clin. Cancer Res. 2018, 24, 4407–4415. [Google Scholar] [CrossRef] [Green Version]
- Ghatalia, P.; Rathmell, W.K. Systematic review: ClearCode 34—A validated prognostic signature in clear cell renal cell carcinoma (ccRCC). Kidney Cancer 2018, 2, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Morgan, T.M.; Mehra, R.; Tiemeny, P.; Wolf, J.S.; Wu, S.; Sangale, Z.; Brawer, M.; Stone, S.; Wu, C.L.; Feldman, A.S. A multigene signature based on cell cycle proliferation improves prediction of mortality within 5 yr of radical nephrectomy for renal cell carcinoma. Eur. Urol. 2018, 73, 763–769. [Google Scholar] [CrossRef]
- Busser, B.; Lupo, J.; Sancey, L.; Mouret, S.; Faure, P.; Plumas, J.; Chaperot, L.; Leccia, M.T.; Coll, J.L.; Hurbin, A.; et al. Plasma circulating tumor DNA levels for the monitoring of melanoma patients: Landscape of available technologies and clinical applications. Biomed. Res. Int. 2017, 2017, 5986129. [Google Scholar] [CrossRef]
- Lee, R.J.; Gremel, G.; Marshall, A.; Myers, K.A.; Fisher, N.; Dunn, J.A.; Dhomen, N.; Corrie, P.G.; Middleton, M.R.; Lorigan, P.; et al. Circulating tumor DNA predicts survival in patients with resected high-risk stage II/III melanoma. Ann. Oncol. 2018, 29, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Sandhu, S.; Lee, R.J.; Li, J.; Callahan, J.; Ftouni, S.; Dhomen, N.; Middlehurst, P.; Wallace, A.; Raleigh, J.; et al. Prediction and monitoring of relapse in stage III melanoma using circulating tumor DNA. Ann. Oncol. 2019, 30, 804–814. [Google Scholar] [CrossRef]
- Lee, C.S.; Kim, H.S.; Schageman, J.; Lee, I.K.; Kim, M.; Kim, Y. Postoperative circulating tumor DNA can predict high risk patients with colorectal cancer based on next-generation sequencing. Cancers 2021, 13, 4190. [Google Scholar] [CrossRef]
- Tarazona, N.; Gimeno-Valiente, F.; Gambardella, V.; Zuniga, S.; Rentero-Garrido, P.; Huerta, M.; Rosello, S.; Martinez-Ciarpaglini, C.; Carbonell-Asins, J.A.; Carrasco, F.; et al. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann. Oncol. 2019, 30, 1804–1812. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.; Huang, Q.; Yin, W.; Tan, S.; Chen, C.; Liu, W.; Tang, J.; Wang, X.; Zhang, B.; Zou, M.; et al. Circulating tumor DNA as a prognostic biomarker in localized non-small cell lung cancer. Front. Oncol. 2020, 10, 561598. [Google Scholar] [CrossRef]
- Chaudhuri, A.A.; Chabon, J.J.; Lovejoy, A.F.; Newman, A.M.; Stehr, H.; Azad, T.D.; Khodadoust, M.S.; Esfahani, M.S.; Liu, C.L.; Zhou, L.; et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov. 2017, 7, 1394–1403. [Google Scholar] [CrossRef] [Green Version]
- Powles, T.; Assaf, Z.J.; Davarpanah, N.; Banchereau, R.; Szabados, B.E.; Yuen, K.C.; Grivas, P.; Hussain, M.; Oudard, S.; Gschwend, J.E.; et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 2021, 595, 432–437. [Google Scholar] [CrossRef]
- Wan, J.; Zhu, L.; Jiang, Z.; Cheng, K. Monitoring of plasma cell-free DNA in predicting postoperative recurrence of clear cell renal cell carcinoma. Urol. Int. 2013, 91, 273–278. [Google Scholar] [CrossRef]
- Smith, C.G.; Moser, T.; Mouliere, F.; Field-Rayner, J.; Eldridge, M.; Riediger, A.L.; Chandrananda, D.; Heider, K.; Wan, J.C.M.; Warren, A.Y.; et al. Comprehensive characterization of cell-free tumor DNA in plasma and urine of patients with renal tumors. Genome Med. 2020, 12, 23–28. [Google Scholar] [CrossRef]
- Pal, S.K.; Sonpavde, G.; Agarwal, N.; Vogelzang, N.J.; Srinivas, S.; Haas, N.B.; Signoretti, S.; McGregor, B.A.; Jones, J.; Lanman, R.B.; et al. Evolution of circulating tumor DNA profile from first-line to subsequent therapy in metastatic renal cell carcinoma. Eur. Urol. 2017, 72, 557–564. [Google Scholar] [CrossRef]
- Maia, M.C.; Bergerot, P.G.; Dizman, N.; Hsu, J.; Jones, J.; Lanman, R.B.; Banks, K.C.; Pal, S.K. Association of circulating tumor DNA (ctDNA) detection in metastatic renal cell carcinoma (mRCC) with tumor burden. Kidney Cancer 2017, 1, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Blank, C.; Gajewski, T.F.; Mackensen, A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: Implications for tumor immunotherapy. Cancer Immunol. Immunother. 2005, 54, 307–314. [Google Scholar] [CrossRef]
- Carlsson, J.; Sundqvist, P.; Kosuta, V.; Falt, A.; Giunchi, F.; Fiorentino, M.; Davidsson, S. PD-L1 Expression is associated with poor prognosis in renal cell carcinoma. Appl. Immunohistochem. Mol. Morphol. 2020, 28, 213–220. [Google Scholar] [CrossRef]
- Thompson, R.H.; Kuntz, S.M.; Leibovich, B.C.; Dong, H.; Lohse, C.M.; Webster, W.S.; Sengupta, S.; Frank, I.; Parker, A.S.; Zincke, H.; et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006, 66, 3381–3385. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Steffens, S.; Bellut, M.; Eggers, H.; Grosshennig, A.; Becker, J.U.; Wegener, G.; Schrader, A.J.; Grunwald, V.; Ivanyi, P. Intratumoral expression of programmed death ligand 1 (PD-L1) in patients with clear cell renal cell carcinoma (ccRCC). Med. Oncol. 2016, 33, 80. [Google Scholar] [CrossRef]
- Gupta, S.; Cheville, J.C.; Jungbluth, A.A.; Zhang, Y.; Zhang, L.; Chen, Y.B.; Tickoo, S.K.; Fine, S.W.; Gopalan, A.; Al-Ahmadie, H.A.; et al. JAK2/PD-L1/PD-L2 (9p24.1) amplifications in renal cell carcinomas with sarcomatoid transformation: Implications for clinical management. Mod. Pathol. 2019, 32, 1344–1358. [Google Scholar] [CrossRef]
- Rini, B.I.; Motzer, R.J.; Powles, T.; McDermott, D.F.; Escudier, B.; Donskov, F.; Hawkins, R.; Bracarda, S.; Bedke, J.; De Giorgi, U.; et al. Atezolizumab plus bevacizumab versus sunitinib for patients with untreated metastatic renal cell carcinoma and sarcomatoid features: A prespecified subgroup analysis of the IMmotion151 clinical trial. Eur. Urol. 2021, 79, 659–662. [Google Scholar] [CrossRef]
- Rini, B.I.; Powles, T.; Atkins, M.B.; Escudier, B.; McDermott, D.F.; Suarez, C.; Bracarda, S.; Stadler, W.M.; Donskov, F.; Lee, J.L.; et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): A multicentre, open-label, phase 3, randomised controlled trial. Lancet 2019, 393, 2404–2415. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Aren Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthelemy, P.; Porta, C.; George, S.; et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef]
- Nuzzo, P.V.; Berchuck, J.E.; Korthauer, K.; Spisak, S.; Nassar, A.H.; Abou Alaiwi, S.; Chakravarthy, A.; Shen, S.Y.; Bakouny, Z.; Boccardo, F.; et al. Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes. Nat. Med. 2020, 26, 1041–1043. [Google Scholar] [CrossRef]
- Escudier, B.; Porta, C.; Schmidinger, M.; Rioux-Leclercq, N.; Bex, A.; Khoo, V.; Grunwald, V.; Gillessen, S.; Horwich, A.; ESMO Guidelines Committee. Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-updagger. Ann. Oncol. 2019, 30, 706–720. [Google Scholar] [CrossRef] [Green Version]
- Janowitz, T.; Welsh, S.J.; Zaki, K.; Mulders, P.; Eisen, T. Adjuvant therapy in renal cell carcinoma-past, present, and future. Semin. Oncol. 2013, 40, 482–491. [Google Scholar] [CrossRef] [Green Version]
- Pizzocaro, G.; Piva, L.; Colavita, M.; Ferri, S.; Artusi, R.; Boracchi, P.; Parmiani, G.; Marubini, E. Interferon adjuvant to radical nephrectomy in robson stages II and III renal cell carcinoma: A multicentric randomized study. J. Clin. Oncol. 2001, 19, 425–431. [Google Scholar] [CrossRef]
- Messing, E.M.; Manola, J.; Wilding, G.; Propert, K.; Fleischmann, J.; Crawford, E.D.; Pontes, J.E.; Hahn, R.; Trump, D.; Eastern Cooperative Oncology Group/Intergroup Trial. Phase III study of interferon Alfa-NL as adjuvant treatment for resectable renal cell carcinoma: An eastern cooperative oncology group/intergroup trial. J. Clin. Oncol. 2003, 21, 1214–1222. [Google Scholar] [CrossRef]
- Clark, J.I.; Atkins, M.B.; Urba, W.J.; Creech, S.; Figlin, R.A.; Dutcher, J.P.; Flaherty, L.; Sosman, J.A.; Logan, T.F.; White, R.; et al. Adjuvant high-dose bolus interleukin-2 for patients with high-risk renal cell carcinoma: A cytokine working group randomized trial. J. Clin. Oncol. 2003, 21, 3133–3140. [Google Scholar] [CrossRef] [Green Version]
- Ravaud, A.; Motzer, R.J.; Pandha, H.S.; George, D.J.; Pantuck, A.J.; Patel, A.; Chang, Y.H.; Escudier, B.; Donskov, F.; Magheli, A.; et al. Adjuvant sunitinib in high-risk renal-cell carcinoma after nephrectomy. N. Engl. J. Med. 2016, 375, 2246–2254. [Google Scholar] [CrossRef]
- Haas, N.B.; Manola, J.; Uzzo, R.G.; Flaherty, K.T.; Wood, C.G.; Kane, C.; Jewett, M.; Dutcher, J.P.; Atkins, M.B.; Pins, M.; et al. Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): A double-blind, placebo-controlled, randomised, phase 3 trial. Lancet 2016, 387, 2008–2016. [Google Scholar] [CrossRef] [Green Version]
- Motzer, R.J.; Haas, N.B.; Donskov, F.; Gross-Goupil, M.; Varlamov, S.; Kopyltsov, E.; Lee, J.L.; Melichar, B.; Rini, B.I.; Choueiri, T.K.; et al. Randomized phase III trial of adjuvant pazopanib versus placebo after nephrectomy in patients with localized or locally advanced renal cell carcinoma. J. Clin. Oncol. 2017, 35, 3916–3923. [Google Scholar] [CrossRef]
- Gross-Goupil, M.; Kwon, T.G.; Eto, M.; Ye, D.; Miyake, H.; Seo, S.I.; Byun, S.S.; Lee, J.L.; Master, V.; Jin, J.; et al. Axitinib versus placebo as an adjuvant treatment of renal cell carcinoma: Results from the phase III, randomized ATLAS trial. Ann. Oncol. 2018, 29, 2371–2378. [Google Scholar] [CrossRef]
- Eisen, T.; Frangou, E.; Oza, B.; Ritchie, A.W.S.; Smith, B.; Kaplan, R.; Davis, I.D.; Stockler, M.R.; Albiges, L.; Escudier, B.; et al. Adjuvant sorafenib for renal cell carcinoma at intermediate or high risk of relapse: Results from the SORCE randomized phase III intergroup trial. J. Clin. Oncol. 2020, 38, 4064–4075. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Chang, Y.H.; Hajek, J.; Symeonides, S.N.; Lee, J.L.; Sarwar, N.; et al. Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma. N. Engl. J. Med. 2021, 385, 683–694. [Google Scholar] [CrossRef]
- George, D.J.; Martini, J.F.; Staehler, M.; Motzer, R.J.; Magheli, A.; Escudier, B.; Gerletti, P.; Li, S.; Casey, M.; Laguerre, B.; et al. Immune biomarkers predictive for disease-free survival with adjuvant sunitinib in high-risk locoregional renal cell carcinoma: From randomized phase III S-TRAC study. Clin. Cancer Res. 2018, 24, 1554–1561. [Google Scholar] [CrossRef] [Green Version]
- Massari, F.; Di Nunno, V.; Mollica, V.; Graham, J.; Gatto, L.; Heng, D. Adjuvant tyrosine kinase inhibitors in treatment of renal cell carcinoma: A meta-analysis of available clinical trials. Clin. Genitourin. Cancer 2019, 17, e339–e344. [Google Scholar] [CrossRef]
Reference | RCC Subtype | Prediction Outcome | Number of Risk Groups | Prediction Features | Number of Patients |
---|---|---|---|---|---|
Kattan (2001) [49] | Clear Cell, Papillary, and Chromophobe RCC | Recurrence-Free Survival | Not Defined | Symptoms (Incidental, Local, Systemic), Histology, Tumor Size, 1997 T Stage | 612 |
UISS (2001) [50] | Clear Cell, Papillary, and Chromophobe RCC | Overall Survival | 5 | 1997 TNM Stage, Fuhrman Grade, ECOG Performance Status | 661 |
SSIGN (2002) [51] | Clear Cell RCC | Cancer-Specific Survival | 10 | 1997 TNM Stage, Tumor Size (<5 cm, ≥5 cm), Tumor Grade, Necrosis | 1801 |
Cindolo (2003) [52] | Clear Cell, Papillary, and Chromophobe RCC | Recurrence-Free Survival | Not Defined | Symptoms (Asymptomatic, Symptomatic), Tumor Size | 660 |
Leibovich (2003) [53] | Clear Cell RCC | Metastasis-Free Survival | 8 (0–2 low, 3–5 Intermediate, ≥6 High) | 2002 TNM Stage, Regional Lymph Node Involvement | 479 |
Sorbellini MSKCC (2005) [54] | Clear Cell RCC | Recurrence-Free Survival | Not Defined | Tumor Size, 2002 TNM Stage, Fuhrman Grade, Necrosis, Microvascular Invasion, Presentation (Incidental, Local Symptoms, Systemic Symptoms) | 701 + Validation Cohort 200 |
Karakiewicz (2007) [55] | Clear Cell, Papillary, and Chromophobe RCC | Cancer-Specific Survival | Not Defined | 2002 TNM Stage, Tumor Size, Fuhrman Grade, Symptoms (Non, Local, Systemic) | 2530 + Validation Cohort 1377 |
Leibovich (2018) [56] | Clear Cell, Papillary, and Chromophobe RCC | Progression-Free and Cancer-Specific Survival | 19 | Constitutional Symptoms (Yes, No), Tumor Grade, Coagulative Necrosis, Sarcomatoid Differentiation, Tumor Size, Perinephric or Renal Sinus Fat Invasion, Tumor Thrombus Level, Extension Beyond Kidney, and Nodal Involvement | 3633 |
Mattila (2021) [57] | Clear Cell RCC | Metastasis-Free Survival | 3 (Low, Intermediate, High) | Tumor Size, Fuhrman Grade, Microvascular Invasion | 196 + Validation Cohort 714 |
Trial | Treatment | Inclusion Criteria | Median DFS/HR of Disease Recurrence or Death | Discontinuation Rate Due to AE/(AE + Patient Withdrawal) # |
---|---|---|---|---|
S-TRAC [99] | Sunitinib vs. Placebo 12 Months | ≥T3N0 (gr ≥ 2, ECOG ≥ 1) or TanyN1 | 6.8 Years, HR 0.76 (0.59–0.98) vs. 5.6 Years | 28% vs. 6% |
ASSURE [100] | Sunitinib vs. Sorafenib vs. Placebo 12 Months | ≥T1b (gr 3–4) N0 or TanyN1 | 5.8 Years, HR 1.17 (0.90–1.52) vs. 6.1 Years, HR 0.97 (0.75–1.28) vs. 6.6. Years | 44% # vs. 45% # vs. 11% # |
PROTECT [101] | Pazopanib vs. Placebo 12 Months | T2 (gr 3–4) N0, T3–4N0, or TanyN1 | HR 0.86 (0.70–1.06) | 35% vs. 5% |
ATLAS [102] | Axitinib vs. Placebo 12–36 Months | ≥T2N0 or TanyN1 | HR 0.87 (0.660–1.147) | 23% vs. 11% |
SORCE [103] | Sorafenib 12 Months vs. Sorafenib 36 Months vs. Placebo | Intermediate Risk (Score 3–5) or High Risk (Score ≥ 6) According to Leibovich (2003) | HR 0.94 (0.77–1.14) Sorafenib 12 Months vs. Placebo HR 1.01 (0.82–1.23) Sorafenib 36 Months vs. Placebo | 44% # vs. 49% # vs. 12% |
KEYNOTE-564 [104] | Pembrolizumab vs. Placebo 12 Months | T2 (gr 3–4 or Sarcomatoid) N0, T3–4N0, TanyN1, or Resected M1 | HR 0.68 (0.53–0.87) | 21% vs. 2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattila, K.E.; Vainio, P.; Jaakkola, P.M. Prognostic Factors for Localized Clear Cell Renal Cell Carcinoma and Their Application in Adjuvant Therapy. Cancers 2022, 14, 239. https://doi.org/10.3390/cancers14010239
Mattila KE, Vainio P, Jaakkola PM. Prognostic Factors for Localized Clear Cell Renal Cell Carcinoma and Their Application in Adjuvant Therapy. Cancers. 2022; 14(1):239. https://doi.org/10.3390/cancers14010239
Chicago/Turabian StyleMattila, Kalle E., Paula Vainio, and Panu M. Jaakkola. 2022. "Prognostic Factors for Localized Clear Cell Renal Cell Carcinoma and Their Application in Adjuvant Therapy" Cancers 14, no. 1: 239. https://doi.org/10.3390/cancers14010239
APA StyleMattila, K. E., Vainio, P., & Jaakkola, P. M. (2022). Prognostic Factors for Localized Clear Cell Renal Cell Carcinoma and Their Application in Adjuvant Therapy. Cancers, 14(1), 239. https://doi.org/10.3390/cancers14010239