Comparative Gene Expression Analysis Reveals Similarities and Differences of Chronic Myeloid Leukemia Phases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Global Gene Expression Characterization of CML Samples
2.2. Differential Gene Expression Analysis of CML Phases
2.3. Alterations of Cancer-Relevant Signaling Pathways Increase with CML Phase
2.4. Global Expression Signature Distinguishes CML Phases
2.5. CML Signature-Specific Gene Regulatory Network
2.6. Similarities and Differences of Imatinib-Resistant Patients to CML Phases
3. Discussion
4. Materials and Methods
4.1. CML Gene Expression Data
4.2. Identification of Differentially Expressed Genes
4.3. Gene Annotation Analysis
4.4. Inference of Signature-Specific Gene Regulatory Networks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am. J. Hematol. 2018, 93, 442–459. [Google Scholar] [CrossRef] [Green Version]
- Höglund, M.; Sandin, F.; Simonsson, B. Epidemiology of chronic myeloid leukaemia: An update. Ann. Hematol. 2015, 94, S241–S247. [Google Scholar] [CrossRef] [PubMed]
- Chereda, B.; Melo, J.V. Natural course and biology of CML. Ann. Hematol. 2015, 94, S107–S121. [Google Scholar] [CrossRef] [PubMed]
- Druker, B.J.; Talpaz, M.; Resta, D.J.; Peng, B.; Buchdunger, E.; Ford, J.M.; Lydon, N.B.; Kantarjian, H.; Capdeville, R.; Ohno-Jones, S.; et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 2001, 344, 1031–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantarjian, H.; O’Brien, S.; Jabbour, E.; Garcia-Manero, G.; Quintas-Cardama, A.; Shan, J.; Rios, M.B.; Ravandi, F.; Faderl, S.; Kadia, T.; et al. Improved survival in chronic myeloid leukemia since the introduction of imatinib therapy: A single-institution historical experience. Blood 2012, 119, 1981–1987. [Google Scholar] [CrossRef] [PubMed]
- Hochhaus, A.; Larson, R.A.; Guilhot, F.; Radich, J.P.; Branford, S.; Hughes, T.P.; Baccarani, M.; Deininger, M.W.; Cervantes, F.; Fujihara, S.; et al. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. N. Engl. J. Med. 2017, 376, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; Hughes, T.P.; Larson, R.A.; Kim, D.W.; Issaragrisil, S.; le Coutre, P.; Etienne, G.; Boquimpani, C.; Pasquini, R.; Clark, R.E.; et al. Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia 2021, 35, 440–453. [Google Scholar] [CrossRef]
- Rabian, F.; Lengline, E.; Rea, D. Towards a Personalized Treatment of Patients with Chronic Myeloid Leukemia. Curr. Hematol. Malig. Rep. 2019, 14, 492–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vener, C.; Banzi, R.; Ambrogi, F.; Ferrero, A.; Saglio, G.; Pravettoni, G.; Sant, M. First-line imatinib vs second- and third-generation TKIs for chronic-phase CML: A systematic review and meta-analysis. Blood Adv. 2020, 4, 2723–2735. [Google Scholar] [CrossRef]
- Hughes, T.P.; Hochhaus, A.; Branford, S.; Müller, M.C.; Kaeda, J.S.; Foroni, L.; Druker, B.J.; Guilhot, F.; Larson, R.A.; O’Brien, S.G.; et al. Long-term prognostic significance of early molecular response to imatinib in newly diagnosed chronic myeloid leukemia: An analysis from the International Randomized Study of Interferon and STI571 (IRIS). Blood 2010, 116, 3758–3765. [Google Scholar] [CrossRef] [Green Version]
- Borker, A.; Yu, L.; Ode, D. Blast crisis of chronic myeloid leukemia: Diagnosis prompted by T(8;9). J. Pediatr. Hematol. Oncol. 2002, 24, 670–671. [Google Scholar] [CrossRef]
- Campiotti, L.; Grandi, A.M.; Biotti, M.G.; Ultori, C.; Solbiati, F.; Codari, R.; Venco, A. Megakaryocytic blast crisis as first presentation of chronic myeloid leukemia. Am. J. Hematol. 2007, 82, 231–233. [Google Scholar] [CrossRef]
- Liu, K.; Hu, J.; Wang, X.; Li, L. Chronic myeloid leukemia blast crisis presented with AML of t(9;22) and t(3;14) mimicking acute lymphocytic leukemia. J. Clin. Lab. Anal. 2019, 33, e22961. [Google Scholar] [CrossRef] [Green Version]
- Palandri, F.; Castagnetti, F.; Testoni, N.; Luatti, S.; Marzocchi, G.; Bassi, S.; Breccia, M.; Alimena, G.; Pungolino, E.; Rege-Cambrin, G.; et al. Chronic myeloid leukemia in blast crisis treated with imatinib 600 mg: Outcome of the patients alive after a 6-year follow-up. Haematologica 2008, 93, 1792–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, R.T.; Cortes, J.; Waltzman, R.; Mone, M.; Kantarjian, H. Sustained durability of responses and improved progression-free and overall survival with imatinib treatment for accelerated phase and blast crisis chronic myeloid leukemia: Long-term follow-up of the STI571 0102 and 0109 trials. Haematologica 2009, 94, 743–744. [Google Scholar] [CrossRef]
- Houshmand, M.; Simonetti, G.; Circosta, P.; Gaidano, V.; Cignetti, A.; Martinelli, G.; Saglio, G.; Gale, R.P. Chronic myeloid leukemia stem cells. Leukemia 2019, 33, 1543–1556. [Google Scholar] [CrossRef] [Green Version]
- Radich, J.P.; Dai, H.; Mao, M.; Oehler, V.; Schelter, J.; Druker, B.; Sawyers, C.; Shah, N.; Stock, W.; Willman, C.L.; et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc. Natl. Acad. Sci. USA 2006, 103, 2794–2799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Affer, M.; Dao, S.; Liu, C.; Olshen, A.B.; Mo, Q.; Viale, A.; Lambek, C.L.; Marr, T.G.; Clarkson, B.D. Gene Expression Differences between Enriched Normal and Chronic Myelogenous Leukemia Quiescent Stem/Progenitor Cells and Correlations with Biological Abnormalities. J. Oncol. 2011, 2011, 798592. [Google Scholar] [CrossRef]
- Čokić, V.P.; Mojsilović, S.; Jauković, A.; Kraguljac-Kurtović, N.; Mojsilović, S.; Šefer, D.; Mitrović Ajtić, O.; Milošević, V.; Bogdanović, A.; Dikić, D.; et al. Gene expression profile of circulating CD34(+) cells and granulocytes in chronic myeloid leukemia. Blood Cells Mol. Dis. 2015, 55, 373–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Cássia Viu Carrara, R.; Fontes, A.M.; Abraham, K.J.; Orellana, M.D.; Haddad, S.K.; Palma, P.V.B.; Panepucci, R.A.; Zago, M.A.; Covas, D.T. Expression differences of genes in the PI3K/AKT, WNT/b-catenin, SHH, NOTCH and MAPK signaling pathways in CD34+ hematopoietic cells obtained from chronic phase patients with chronic myeloid leukemia and from healthy controls. Clin. Transl. Oncol. 2018, 20, 542–549. [Google Scholar] [CrossRef]
- Ko, T.K.; Javed, A.; Lee, K.L.; Pathiraja, T.N.; Liu, X.; Malik, S.; Soh, S.X.; Heng, X.T.; Takahashi, N.; Tan, J.H.J.; et al. An integrative model of pathway convergence in genetically heterogeneous blast crisis chronic myeloid leukemia. Blood 2020, 135, 2337–2353. [Google Scholar] [CrossRef]
- Singh, N.; Tripathi, A.K.; Sahu, D.K.; Mishra, A.; Linan, M.; Argente, B.; Varkey, J.; Parida, N.; Chowdry, R.; Shyam, H.; et al. Differential genomics and transcriptomics between tyrosine kinase inhibitor-sensitive and -resistant BCR-ABL-dependent chronic myeloid leukemia. Oncotarget 2018, 9, 30385–30418. [Google Scholar] [CrossRef] [Green Version]
- Brehme, M.; Koschmieder, S.; Montazeri, M.; Copland, M.; Oehler, V.G.; Radich, J.P.; Brümmendorf, T.H.; Schuppert, A. Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia. Sci. Rep. 2016, 6, 24057. [Google Scholar] [CrossRef] [Green Version]
- Seifert, M.; Beyer, A. regNet: An R package for network-based propagation of gene expression alterations. Bioinformatics 2018, 34, 308–311. [Google Scholar] [CrossRef]
- Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Stein, T.I.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; et al. GeneCards Version 3: The human gene integrator. Database 2010, 2010, baq020. [Google Scholar] [CrossRef] [PubMed]
- O’Byrne, K.; Adams, M.; Burgess, J.; Richard, D. CDCA3 regulates the cell cycle and modulates cisplatin sensitivity in non-small cell lung cancer. J. Thorac. Oncol. 2016, 11, S65. [Google Scholar] [CrossRef]
- Kawamoto, T.; Ohira, M.; Hamano, S.; Hori, T.; Nakagawara, A. High expression of the novel endothelin-converting enzyme genes, Nbla03145/ECEL1alpha and beta, is associated with favorable prognosis in human neuroblastomas. Int. J. Oncol. 2003, 22, 815–822. [Google Scholar] [PubMed]
- Beltran, A.S.; Graves, L.M.; Blancafort, P. Novel role of Engrailed 1 as a prosurvival transcription factor in basal-like breast cancer and engineering of interference peptides block its oncogenic function. Oncogene 2014, 33, 4767–4777. [Google Scholar] [CrossRef] [Green Version]
- Callahan, M.J.; Nagymanyoki, Z.; Bonome, T.; Johnson, M.E.; Litkouhi, B.; Sullivan, E.H.; Hirsch, M.S.; Matulonis, U.A.; Liu, J.; Birrer, M.J.; et al. Increased HLA-DMB expression in the tumor epithelium is associated with increased CTL infiltration and improved prognosis in advanced-stage serous ovarian cancer. Clin. Cancer Res. 2008, 14, 7667–7673. [Google Scholar] [CrossRef] [Green Version]
- Kremer, A.N.; van der Meijden, E.D.; Honders, M.W.; Pont, M.J.; Goeman, J.J.; Falkenburg, J.H.F.; Griffioen, M. Human leukocyte antigen-DO regulates surface presentation of human leukocyte antigen class II-restricted antigens on B cell malignancies. Biol. Blood Marrow. Transplant. 2014, 20, 742–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuguchi, Y.; Isse, K.; Specht, S.; Lunz, J.G.; Corbitt, N.; Takizawa, T.; Demetris, A.J. Small proline rich protein 2a in benign and malignant liver disease. Hepatology 2014, 59, 1130–1143. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Zhang, H.R.; Zhang, Q.Y.; Lai, S.Y.; Feng, Y.Z.; Zhou, Y.; Zheng, S.R.; Shi, R.; Zhou, J.Y. High expression of TMEM40 is associated with the malignant behavior and tumorigenesis in bladder cancer. J. Transl. Med. 2018, 16, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Huang, D.; Zhang, Z.; Feng, Y.; Fu, M.; Wei, M.; Zhou, J.; Huang, Y.; Liu, S.; Shi, R. High expression of TMEM40 contributes to progressive features of tongue squamous cell carcinoma. Oncol. Rep. 2019, 41, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhou, G.; Shi, H.; Chen, B.; Sun, X.; Zhang, X. Downregulation of Transmembrane protein 40 by miR-138-5p Suppresses Cell Proliferation and Mobility in Clear Cell Renal Cell Carcinoma. Iran. J. Biotechnol. 2020, 18, e2270. [Google Scholar] [CrossRef] [PubMed]
- Bi, L.; Zhou, B.; Li, H.; He, L.; Wang, C.; Wang, Z.; Zhu, L.; Chen, M.; Gao, S. A novel miR-375-HOXB3-CDCA3/DNMT3B regulatory circuitry contributes to leukemogenesis in acute myeloid leukemia. BMC Cancer 2018, 18, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, S.; Murmu, K.C.; Biswas, M.; Chakraborty, S.; Basu, J.; Madhulika, S.; Kolapalli, S.P.; Chauhan, S.; Sengupta, A.; Prasad, P. Transcriptomic Analysis Identifies RNA Binding Proteins as Putative Regulators of Myelopoiesis and Leukemia. Front. Oncol. 2019, 9, 692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.Y.; Song, H.J.; Lim, H.J.; Shin, M.G.; Kim, J.S.; Kim, H.J.; Kim, B.Y.; Lee, S. Platelet factor-4 is an indicator of blood count recovery in acute myeloid leukemia patients in complete remission. Mol. Cell Proteomics 2008, 7, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; He, A.; Zhang, W.; Huang, C.; Yang, J.; Yang, Y.; Wang, J.; Zhang, Y. Potential biomarkers for adult acute myeloid leukemia minimal residual disease assessment searched by serum peptidome profiling. Proteome Sci. 2013, 11, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Y.; Zheng, L.; Du, Y.; Zhong, Q.; Zhu, Y.; Liu, Z.; Liu, S.; Zhang, Q. Identification of the hub genes and pathways involved in acute myeloid leukemia using bioinformatics analysis. Medicine 2020, 99, e22047. [Google Scholar] [CrossRef]
- Gatta, G.D.; Palomero, T.; Perez-Garcia, A.; Ambesi-Impiombato, A.; Bansal, M.; Carpenter, Z.W.; De Keersmaecker, K.; Sole, X.; Xu, L.; Paietta, E.; et al. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat. Med. 2012, 18, 436–440. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Ikezoe, T.; Nishioka, C.; Udaka, K.; Yokoyama, A. Bcr-Abl activates AURKA and AURKB in chronic myeloid leukemia cells via AKT signaling. Int. J. Cancer 2014, 134, 1183–1194. [Google Scholar] [CrossRef] [PubMed]
- Yong, A.S.M.; Szydlo, R.M.; Goldman, J.M.; Apperley, J.F.; Melo, J.V. Molecular profiling of CD34+ cells identifies low expression of CD7, along with high expression of proteinase 3 or elastase, as predictors of longer survival in patients with CML. Blood 2006, 107, 205–212. [Google Scholar] [CrossRef]
- Cha, K.; Li, Y.; Yi, G.S. Discovering gene expression signatures responding to tyrosine kinase inhibitor treatment in chronic myeloid leukemia. BMC Med. Genomics 2016, 9, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Carvalho, D.L.; Barbosa, C.D.; de Carvalho, A.L.; Beck, S.T. Association of HLA antigens and BCR-ABL transcripts in leukemia patients with the Philadelphia chromosome. Rev. Bras. Hematol. Hemoter 2012, 34, 280–284. [Google Scholar] [CrossRef]
- Ryo, R.; Adachi, M.; Sugano, W.; Yasunaga, M.; Yoshida, A.; Jikai, J.; Saigo, K.; Yamaguchi, N.; Akita, H.; Yokoyama, M.; et al. Platelet factor 4 mRNA expression in cells from a patient with megakaryoblastic crisis of chronic myelogenous leukemia. Cancer 1991, 67, 960–964. [Google Scholar] [CrossRef]
- Rizeq, B.; Zakaria, Z.; Ouhtit, A. Towards understanding the mechanisms of actions of carcinoembryonic antigen-related cell adhesion molecule 6 in cancer progression. Cancer Sci. 2018, 109, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Shen, J. Adducin in tumorigenesis and metastasis. Oncotarget 2017, 8, 48453–48459. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Sui, Z.; Xu, T.; Liu, W.; Wang, X.; Zeng, X. Lipid raft-associated β-adducin participates in neutrophil migration. Mol. Med. Rep. 2018, 18, 1353–1360. [Google Scholar] [CrossRef] [Green Version]
- Uchida, F.; Uzawa, K.; Kasamatsu, A.; Takatori, H.; Sakamoto, Y.; Ogawara, K.; Shiiba, M.; Tanzawa, H.; Bukawa, H. Overexpression of cell cycle regulator CDCA3 promotes oral cancer progression by enhancing cell proliferation with prevention of G1 phase arrest. BMC Cancer 2012, 12, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bose, A.; Sudevan, S.; Rao, V.J.; Shima, H.; Trivedi, A.K.; Igarashi, K.; Kundu, T.K. Haploinsufficient tumor suppressor Tip60 negatively regulates oncogenic Aurora B kinase. J. Biosci. 2019, 44, 147. [Google Scholar] [CrossRef]
- Ying, H.; Yue, B.Y.J.T. Cellular and molecular biology of optineurin. Int. Rev. Cell Mol. Biol. 2012, 294, 223–258. [Google Scholar] [CrossRef] [Green Version]
- Flis, K.; Irvine, D.; Copland, M.; Bhatia, R.; Skorski, T. Chronic myeloid leukemia stem cells display alterations in expression of genes involved in oxidative phosphorylation. Leuk Lymphoma 2012, 53, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Peluffo, G.; Subedee, A.; Harper, N.W.; Kingston, N.; Jovanovic, B.; Flores, F.; Stevens, L.E.; Beca, F.; Trinh, A.; Chilamakuri, C.S.R.; et al. EN1 is a transcriptional dependency in triple-negative breast cancer associated with brain metastasis. Cancer Res. 2019, 79, 4173–4183. [Google Scholar] [CrossRef] [Green Version]
- Cha, H.J.; Song, K.S. Effect of MUC8 on Airway Inflammation: A Friend or a Foe? J. Clin. Med. 2018, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Bergbold, N.; Lemberg, M.K. Emerging role of rhomboid family proteins in mammalian biology and disease. Biochim. Biophys. Acta 2013, 1828, 2840–2848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Lu, M.; Lin, S.; Qin, W. The nuclear gene rpl18 regulates erythroid maturation via JAK2-STAT3 signaling in zebrafish model of Diamond–Blackfan anemia. Cell Death Dis. 2020, 11, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruns, I.; Lucas, D.; Pinho, S.; Ahmed, J.; Lambert, M.P.; Kunisaki, Y.; Scheiermann, C.; Schiff, L.; Poncz, M.; Bergman, A.; et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat. Med. 2014, 20, 1315–1320. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, A.; Park, L.; Shah, M.; Drotar, M.; Calaminus, S.; Hopcroft, L.E.M.; Kinstrie, R.; Guitart, A.V.; Dunn, K.; Abraham, S.A.; et al. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood 2016, 128, 371–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cilloni, D.; Saglio, G. Molecular Pathways: BCR-ABL. Clin. Cancer Res. 2012, 18, 930–937. [Google Scholar] [CrossRef] [Green Version]
- Aljedai, A.; Buckle, A.M.; Hiwarkar, P.; Syed, F. Potential role of Notch signalling in CD34+ chronic myeloid leukaemia cells: Cross-talk between Notch and BCR-ABL. PLoS ONE 2015, 10, e0123016. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, A.; Banerjee, D.; Chandra, S.; Banerji, S.K.; Ghosh, R.; Roy, R.; Banerjee, S. Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia 2007, 21, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Scheffold, A.; Jebaraj, B.M.C.; Stilgenbauer, S. Venetoclax: Targeting BCL2 in Hematological Cancers. Recent Results Cancer Res. 2018, 212, 215–242. [Google Scholar] [CrossRef] [PubMed]
- Maiti, A.; Franquiz, M.J.; Ravandi, F.; Cortes, J.E.; Jabbour, E.J.; Sasaki, K.; Marx, K.; Daver, N.G.; Kadia, T.M.; Konopleva, M.Y.; et al. Venetoclax and BCR-ABL Tyrosine Kinase Inhibitor Combinations: Outcome in Patients with Philadelphia Chromosome-Positive Advanced Myeloid Leukemias. Acta Haematol. 2020, 143, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Bolstad, B.M.; Irizarry, R.A.; Astrand, m.; Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Storey, J.D. A direct approach to false discovery rates. J. R. Stat. Soc. Series B 2002, 64, 479–498. [Google Scholar] [CrossRef] [Green Version]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Seifert, M.; Friedrich, B.; Beyer, A. Importance of rare gene copy number alterations for personalized tumor characterization and survival analysis. Genome Biol. 2016, 17, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Lockhart, R.; Taylor, J.; Tibshirani, R.J.; Tibshirani, R. A significance test for the lasso. Ann. Stat. 2014, 42, 413–468. [Google Scholar] [CrossRef] [Green Version]
- Lauber, C.; Correia, N.; Trumpp, A.; Rieger, M.A.; Dolnik, A.; Bullinger, L.; Roeder, I.; Seifert, M. Survival differences and associated molecular signatures of DNMT3A-mutant acute myeloid leukemia patients. Sci. Rep. 2020, 10, 12761. [Google Scholar] [CrossRef] [PubMed]
Gene | AP vs. CP | BC vs. AP | BC vs. CP | Selected Functional Annotations | References |
---|---|---|---|---|---|
ADD2 | = | = | - | migration, proliferation | [47,48] |
CDCA3 | = | = | - | proliferation, cisplatin sensitivity | [26,35,49] |
CTRB1 | = | = | - | serine protease | [25] |
ECEL1 | = | = | - | regulation of hormones and neuropeptides | [27] |
AURKB | = | - | - | chromatid segregation | [41,50] |
CEACAM6 | = | - | - | adhesion, proliferation, apoptosis, differentiation, | [46] |
invasion, metastasis, therapy response | |||||
HLA-B | = | - | - | immune response | [44] |
INMT | = | - | - | enzyme, methyltransferase | [25] |
PRG3 | = | - | - | proteoglykane, survival | [39] |
AZU1 | - | - | - | therapy response and survival | [42,43] |
OPTN | = | = | + | inflammation, apoptosis | [51] |
HLA-DMB | = | = | + | immune response, survival | [29,30] |
NDUFAB1 | = | = | + | oxidative stress, gain of mutations | [52] |
HLA-DRA | = | + | + | immune response | [25] |
EN1 | = | - | = | homeobox gene, differentiation, therapy response | [28,53] |
MUC8 | = | - | = | anti-inflammation | [54] |
LOC389458 | - | = | - | uncharaterized | |
SPRR2A | - | = | - | local invasiveness, protection oxidative stress | [31] |
TLX3 | - | = | - | homeobox gene, driver of T-ALL | [40] |
LOC284023 | - | + | - | uncharaterized | |
RHBDL1 | = | + | = | potential intramembrane serine protease | [25,55] |
RPL18A | = | + | = | part 60S ribosomal subunit, lack red blood cells | [36,56] |
PF4 | + | = | + | regulation hematopoietic stem and progenitor cells | [37,38,45,57,58] |
TMEM40 | + | = | + | apoptosis, proliferation, migration, invasion | [32,33,34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarz, A.; Roeder, I.; Seifert, M. Comparative Gene Expression Analysis Reveals Similarities and Differences of Chronic Myeloid Leukemia Phases. Cancers 2022, 14, 256. https://doi.org/10.3390/cancers14010256
Schwarz A, Roeder I, Seifert M. Comparative Gene Expression Analysis Reveals Similarities and Differences of Chronic Myeloid Leukemia Phases. Cancers. 2022; 14(1):256. https://doi.org/10.3390/cancers14010256
Chicago/Turabian StyleSchwarz, Annemarie, Ingo Roeder, and Michael Seifert. 2022. "Comparative Gene Expression Analysis Reveals Similarities and Differences of Chronic Myeloid Leukemia Phases" Cancers 14, no. 1: 256. https://doi.org/10.3390/cancers14010256
APA StyleSchwarz, A., Roeder, I., & Seifert, M. (2022). Comparative Gene Expression Analysis Reveals Similarities and Differences of Chronic Myeloid Leukemia Phases. Cancers, 14(1), 256. https://doi.org/10.3390/cancers14010256