Feasibility of Rehabilitation during Chemoradiotherapy among Patients with Stage III Non-Small Cell Lung Cancer: A Proof-of-Concept Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Patients
2.2. Cancer Treatment
2.3. Content and Assessment of the Multimodal Rehabilitation Program during CHRT
2.3.1. Physical Exercise Training
2.3.2. Nutritional Support
2.3.3. Smoking Cessation
2.3.4. Physical Assessments
2.3.5. Nutritional Assessment
2.4. Feasibility of the Performed Assessments and the Rehabilitation Program during CHRT
2.5. Statistical Analyses
3. Results
3.1. Patient and Treatment Characteristics
3.2. The Multimodal Rehabilitation Program during CHRT
3.3. Feasibility
3.3.1. Feasibility of the Rehabilitation Program during CHRT
3.3.2. Feasibility of Performing Assessments
3.4. Preliminary Effects on Physical and Nutritional Parameters
3.4.1. Physical Parameters
3.4.2. Nutritional Parameters
4. Discussion
4.1. Strengths and Limitations
4.2. Implications and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Aupérin, A.; Le Péchoux, C.; Rolland, E.; Curran, W.J.; Furuse, K.; Fournel, P.; Belderbos, J.; Clamon, G.; Ulutin, H.C.; Paulus, R.; et al. Meta-Analysis of Concomitant Versus Sequential Radiochemotherapy in Locally Advanced Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2010, 28, 2181–2190. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, W.E.E.; De Ruysscher, D.; Weder, W.; Le Péchoux, C.; De Leyn, P.; Hoffmann, H.; Westeel, V.; Stahel, R.; Felip, E.; Peters, S.; et al. 2nd ESMO Consensus Conference in Lung Cancer: Locally advanced stage III non-small-cell lung cancer. Ann. Oncol. 2015, 26, 1573–1588. [Google Scholar] [CrossRef] [PubMed]
- Janssen-Heijnen, M.L.G.; Smulders, S.; Lemmens, V.E.P.P.; Smeenk, F.W.J.M.; van Geffen, H.J.A.A.; Coebergh, J.W.W. Effect of comorbidity on the treatment and prognosis of elderly patients with non-small cell lung cancer. Thorax 2004, 59, 602–607. [Google Scholar] [CrossRef] [Green Version]
- Driessen, E.J.; Bootsma, G.P.; Hendriks, L.; Berkmortel, F.W.V.D.; Bogaarts, B.A.; van Loon, J.G.; Dingemans, A.-M.C.; Janssen-Heijnen, M.L. Stage III Non-Small Cell Lung Cancer in the elderly: Patient characteristics predictive for tolerance and survival of chemoradiation in daily clinical practice. Radiother. Oncol. 2016, 121, 26–31. [Google Scholar] [CrossRef]
- Janssen-Heijnen, M.L.; Maas, H.A.; Houterman, S.; Lemmens, V.E.; Rutten, H.J.; Coebergh, J.W.W. Comorbidity in older surgical cancer patients: Influence on patient care and outcome. Eur. J. Cancer 2007, 43, 2179–2193. [Google Scholar] [CrossRef]
- Hoeben, K.W.J.; van Steenbergen, L.N.; van de Wouw, A.J.; Rutten, H.J.; van Spronsen, D.J.; Janssen-Heijnen, M.L.G. Treatment and complications in elderly stage III colon cancer patients in the Netherlands. Ann. Oncol. 2012, 24, 974–979. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Chen, J.-H.; Chen, K.-Y.; Shih, J.-Y.; Yang, J.C.-H.; Yu, C.-J.; Yang, P.-C. Advanced non-small cell lung cancer in the elderly: The impact of age and comorbidities on treatment modalities and patient prognosis. J. Geriatr. Oncol. 2015, 6, 38–45. [Google Scholar] [CrossRef]
- Voorn, M.J.J.; Aerts, L.P.A.; Bootsma, G.P.; Bezuidenhout, J.B.; van Kampen-van den Boogaart, V.E.M.; Bongers, B.C.; de Ruysscher, D.K.; Janssen-Heijnen, M.L.G. Associations of Pretreatment Physical Status Parameters with Tolerance of Con-current Chemoradiation and Survival in Patients with Non-small Cell Lung Cancer. Lung 2021, 199, 223–234. [Google Scholar] [CrossRef]
- Driessen, E.J.; Peeters, M.E.; Bongers, B.C.; Maas, H.A.; Bootsma, G.P.; van Meeteren, N.L.; Janssen-Heijnen, M.L. Effects of prehabilitation and rehabilitation including a home-based component on physical fitness, adherence, treatment tolerance, and recovery in patients with non-small cell lung cancer: A systematic review. Crit. Rev. Oncol. 2017, 114, 63–76. [Google Scholar] [CrossRef] [PubMed]
- van der Meij, B.S.; Langius, J.A.E.; Smit, E.F.; Spreeuwenberg, M.D.; von Blomberg, B.M.E.; Heijboer, A.C.; Paul, M.A.; van Leeuwen, P.A.M. Oral Nutritional Supplements Containing (n-3) Polyunsaturated Fatty Acids Affect the Nutritional Status of Patients with Stage III Non-Small Cell Lung Cancer during Multimodality Treatment. J. Nutr. 2010, 140, 1774–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniel, M.; Keefe, F.J.; Lyna, P.; Peterson, B.; Garst, J.; Kelley, M.; Bepler, G.; Bastian, L.A. Persistent Smoking After a Diagnosis of Lung Cancer Is Associated with Higher Reported Pain Levels. J. Pain 2009, 10, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Denehy, L.; Cao, Y.; Cong, Q.; Wu, E.; Granger, C.; Ni, J.; Edbrooke, L. A 12-Week Multi-Modal Exercise Program: Feasibility of Combined Exercise and Simplified 8-Style Tai Chi Following Lung Cancer Surgery. Integr. Cancer Ther. 2020, 19. [Google Scholar] [CrossRef] [PubMed]
- García, R.S.; Yáñez-Brage, M.I.; Moolhuyzen, E.G.; Riobo, M.S.; Paz, A.L.; Mate, J.M.B. Preoperative exercise training prevents functional decline after lung resection surgery: A randomized, single-blind controlled trial. Clin. Rehabilitation 2016, 31, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Granger, C.L.; Irving, L.; Antippa, P.; Edbrooke, L.; Parry, S.; Krishnasamy, M.; Denehy, L. CAPACITY: A physical activity self-management program for patients undergoing surgery for lung cancer, a phase I feasibility study. Lung Cancer 2018, 124, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Avancini, A.; Sartori, G.; Gkountakos, A.; Casali, M.; Trestini, I.; Tregnago, D.; Bria, E.; Jones, L.W.; Milella, M.; Lanza, M.; et al. Physical Activity and Exercise in Lung Cancer Care: Will Promises Be Fulfilled? Oncologist 2020, 25, e555–e569. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, V.; Lawson, C.; Carli, F.; Scheede-Bergdahl, C.; Chevalier, S. Feasibility of a novel mixed-nutrient supplement in a multimodal prehabilitation intervention for lung cancer patients awaiting surgery: A randomized controlled pilot trial. Int. J. Surg. 2021, 93, 106079. [Google Scholar] [CrossRef]
- Temel, J.S.; Greer, J.A.; Goldberg, S.; Vogel, P.D.; Sullivan, M.; Pirl, W.F.; Lynch, T.J.; Christiani, D.C.; Smith, M.R. A Structured Exercise Program for Patients with Advanced Non-small Cell Lung Cancer. J. Thorac. Oncol. 2009, 4, 595–601. [Google Scholar] [CrossRef] [Green Version]
- Heldens, A.F.J.M.; Bongers, B.C.; de Vos-Geelen, J.; van Meeteren, N.L.U.; Lenssen, A.F. Feasibility and preliminary effec-tiveness of a physical exercise training program during neoadjuvant chemoradiotherapy in individual patients with rectal cancer prior to major elective surgery. Eur. J. Surg. Oncol. 2016, 42, 1322–1330. [Google Scholar] [CrossRef]
- Dalal, H.M.; Zawada, A.; Jolly, K.; Moxham, T.; Taylor, R.S. Home based versus centre based cardiac rehabilitation: Cochrane systematic review and meta-analysis. BMJ 2010, 340, b5631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoogeboom, T.J.; Oosting, E.; Vriezekolk, J.E.; Veenhof, C.; Siemonsma, P.C.; de Bie, R.A.; van den Ende, C.H.M.; van Meeteren, N.L.U. Therapeutic Validity and Effectiveness of Preoperative Exercise on Functional Recovery after Joint Re-placement: A Systematic Review and Meta-Analysis. PLoS ONE 2012, 7, e38031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlson, M.; Szatrowski, T.P.; Peterson, J.; Gold, J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994, 47, 1245–1251. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Langer, D.; Charususin, N.; Jácome, C.; Hoffman, M.; McConnell, A.; Decramer, M.; Gosselink, R. Efficacy of a Novel Method for Inspiratory Muscle Training in People With Chronic Obstructive Pulmonary Disease. Phys. Ther. 2015, 95, 1264–1273. [Google Scholar] [CrossRef] [Green Version]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef] [Green Version]
- Ravasco, P. Nutritional approaches in cancer: Relevance of individualized counseling and supplementation. Nutrition 2015, 31, 603–604. [Google Scholar] [CrossRef]
- Kotz, D.; Wagena, E.J.; Wesseling, G. Smoking cessation practices of Dutch general practitioners, cardiologists, and lung physicians. Respir. Med. 2007, 101, 568–573. [Google Scholar] [CrossRef] [Green Version]
- American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on cardiopulmonary exercise testing. Am. J. Respir. Crit. Care Med. 2003, 167, 211–277. [Google Scholar] [CrossRef]
- Levett, D.; Jack, S.; Swart, M.; Carlisle, J.; Wilson, J.; Snowden, C.; Riley, M.; Danjoux, G.; Ward, S.; Older, P.; et al. Perioperative cardiopulmonary exercise testing (CPET): Consensus clinical guidelines on indications, organization, conduct, and physiological interpretation. Br. J. Anaesth. 2018, 120, 484–500. [Google Scholar] [CrossRef] [Green Version]
- Laboratories ATSCoPSfCPF. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Velthuis, M.; Agasi-Idenburg, S.; Aufdemkampe, G.; Wittink, H. The Effect of Physical Exercise on Cancer-related Fatigue during Cancer Treatment: A Meta-analysis of Randomised Controlled Trials. Clin. Oncol. 2010, 22, 208–221. [Google Scholar] [CrossRef] [PubMed]
- van Waart, H.; Stuiver, M.M.; van Harten, W.H.; Sonke, G.S.; Aaronson, N.K. Design of the Physical exercise during Adjuvant Chemotherapy Effectiveness Study (PACES): A randomized controlled trial to evaluate effectiveness and cost-effectiveness of physical exercise in improving physical fitness and reducing fatigue. BMC Cancer 2010, 10, 673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granger, C.; Parry, S.; Edbrooke, L.; Denehy, L. Deterioration in physical activity and function differs according to treatment type in non-small cell lung cancer—Future directions for physiotherapy management. Physiotherapy 2015, 102, 256–263. [Google Scholar] [CrossRef]
- Moug, S.J.; Mutrie, N.; Barry, S.J.E.; Mackay, G.; Steele, R.J.C.; Boachie, C.; Buchan, C.; Anderson, A. Prehabilitation is feasible in patients with rectal cancer undergoing neoadjuvant chemoradiotherapy and may minimize physical deterioration: Results from the REx trial. Color. Dis. 2019, 21, 548–562. [Google Scholar] [CrossRef] [Green Version]
- Leach, H.J.; Devonish, J.A.; Bebb, D.G.; Krenz, K.A.; Culos-Reed, S.N. Exercise preferences, levels and quality of life in lung cancer survivors. Support. Care Cancer 2015, 23, 3239–3247. [Google Scholar] [CrossRef]
- Cheifetz, O.; Dorsay, J.P.; Hladysh, G.; MacDermid, J.; Serediuk, F.; Woodhouse, L.J. CanWell: Meeting the psychosocial and exercise needs of cancer survivors by translating evidence into practice. Psycho-Oncology 2013, 23, 204–215. [Google Scholar] [CrossRef]
- Bourke, L.; Homer, K.E.; Thaha, M.A.; Steed, L.; Rosario, D.J.; Robb, K.A.; Saxton, J.M.; Taylor, S.J.C. Interventions for promoting habitual exercise in people living with and beyond cancer. Cochrane Database Syst. Rev. 2013, CD010192. [Google Scholar] [CrossRef] [Green Version]
- Barber, F.D. Effects of Social Support on Physical Activity, Self-Efficacy, and Quality of Life in Adult Cancer Survivors and Their Caregivers. Oncol. Nurs. Forum 2013, 40, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Sun, V.; Raz, D.J.; Kim, J.Y.; Melstrom, L.; Hite, S.; Varatkar, G.; Fong, Y. Barriers and facilitators of adherence to a perioperative physical activity intervention for older adults with cancer and their family caregivers. J. Geriatr. Oncol. 2019, 11, 256–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edbrooke, L.; Denehy, L.; Granger, C.L.; Kapp, S.; Aranda, S. Home-based rehabilitation in inoperable non-small cell lung cancer—the patient experience. Support. Care Cancer 2019, 28, 99–112. [Google Scholar] [CrossRef]
- Beck, A.; Thaysen, H.V.; Soegaard, C.H.; Blaakaer, J.; Seibaek, L. Investigating the experiences, thoughts, and feelings under-lying and influencing prehabilitation among cancer patients: A qualitative perspective on the what, when, where, who, and why. Disabil. Rehabil. 2022, 44, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Peretti, A.; Amenta, F.; Tayebati, S.K.; Nittari, G.; Mahdi, S.S. Telerehabilitation: Review of the State-of-the-Art and Areas of Application. JMIR Rehabil. Assist. Technol. 2017, 4, e7. [Google Scholar] [CrossRef]
- Lambert, T.E.; Harvey, L.A.; Avdalis, C.; Chen, L.W.; Jeyalingam, S.; Pratt, C.A.; Tatum, H.J.; Bowden, J.; Lucas, B.R. An app with remote support achieves better adherence to home exercise programs than paper handouts in people with musculoskeletal conditions: A randomised trial. J. Physiother. 2017, 63, 161–167. [Google Scholar] [CrossRef]
- Chou, C.-H.; Hwang, C.-L.; Wu, Y.-T. Effect of Exercise on Physical Function, Daily Living Activities, and Quality of Life in the Frail Older Adults: A Meta-Analysis. Arch. Phys. Med. Rehabil. 2012, 93, 237–244. [Google Scholar] [CrossRef]
- Kilari, D.; Soto-Perez-De-Celis, E.; Mohile, S.G.; Alibhai, S.; Presley, C.J.; Wildes, T.M.; Klepin, H.D.; Demark-Wahnefried, W.; Jatoi, A.; Harrison, R.; et al. Designing exercise clinical trials for older adults with cancer: Recommendations from 2015 Cancer and Aging Research Group NCI U13 Meeting. J. Geriatr. Oncol. 2016, 7, 293–304. [Google Scholar] [CrossRef] [Green Version]
Assessments | Appointment | T0 | Appointment | T1 | T2 | T3 | |
---|---|---|---|---|---|---|---|
Concurrent CHRT (cCHRT) | Week 0 | Week 1 | Week 2 | Week 5 | Week 13 | Week 22 | |
Sequential CHRT (sCHRT) | Week 0 | Week 1 | Week 2 | Week 5 | Week 19 | Week 28 | |
ENROLMENT | |||||||
Informed consent | |||||||
Informed about smoking | |||||||
CANCER TREATMENT: | |||||||
Consultation with pulmonologist | |||||||
Intake by case manager | |||||||
Chemotherapy | Start | ||||||
Radiotherapy | For cCHRT: start during CT; for sCHRT: start after CT | ||||||
MULTIMODAL REHABILITATION DURING CHRT: | |||||||
Physical counseling a | |||||||
Dietary counseling b | |||||||
Case manager c | |||||||
ASSESSMENTS: | |||||||
CPET | |||||||
6MWT | |||||||
HGS | |||||||
BMI | |||||||
FFMI | |||||||
Energy and protein intake | |||||||
Pedometer | |||||||
FEASBILITY | |||||||
Adherence and dropouts | |||||||
Smoking | |||||||
0–10 VAS score for motivation |
Patient Selection a | Patients Aged ≥50 Years Diagnosed with Stage III NSCLC According to the 8th Edition of the TNM Guidelines Undergoing CHRT (Either Concurrent CHRT or Sequential CHRT) |
---|---|
Type and dosage of the rehabilitation program during CHRT (F: Frequency, I: intensity, T: Time, T: Type) | Aerobic exercises: F: 5 times/week 30 min, I: 6–20 Borg score 13–15, T: 30–60 min, T: Functional exercises involving large muscle groups (e.g., walking, cycling, climbing stairs, and swimming) Resistance exercises: F: 3 times/week, I: 6–20 Borg score 13–15, T: 3 × 15–20 repetitions, T: Peripheral resistance training of the large muscle groups of the lower and upper extremities using open and closed kinetic chain exercises (e.g., stair climbing, sit-to stand exercises, a Thera band, filled 0.5 L bottles) Breathing exercises: F: 2/day, I: highest tolerable intensity, T: 30 breaths, T: Inspiratory muscle training |
Qualified supervisor (if applicable) | The physical exercise training program was carried out in the patient’s living environment, every two weeks supervised by a physical therapist specialized in oncology |
Type and timing of outcome assessment | Type: feasibility of the multimodal rehabilitation program during CHRT was measured by the patient’s preferences and experiences, patient dropout, and adverse events during rehabilitation, adherence to the rehabilitation program, motivation, and problems concerning logistic planning Timing: before the start of CHRT (T0), between the first and second chemotherapy (T1), after the last session of radiotherapy (T2), three months after the last treatment (T3) |
Safety of the exercise program | Patient dropout and adverse events to rehabilitation during CHRT were registered by the healthcare professionals during contact moments as part of usual care |
Adherence to the exercise program | Adherence was monitored with a diary and weekly feedback from the patients. Successful exercise session adherence was defined as achieving >80% of the prescribed duration, intensity, and frequency of the training sessions during the physical exercise training program |
Variable | Patient 1 | Patient 2 | Patient 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | 57 | 60 | 74 | |||||||||
Sex | Male | Male | Male | |||||||||
Stage | IIIB | IIIB | IIIA | |||||||||
Comorbidities | None | None | CABG (2017) | |||||||||
Time of assessment | T0 | T1 | T2 | T3 | T0 | T1 | T2 | T3 | T0 | T1 | T2 | T3 |
Treatment schedule | ||||||||||||
Type of CHRT | Concurrent | Concurrent | Sequential | |||||||||
Treatment time of CT | 8 weeks | 9 weeks | 16 weeks | |||||||||
Treatment time of RT | 6 weeks | 4 weeks | 6 weeks | |||||||||
Physical parameters | ||||||||||||
CPET VO2peak (mL/kg/min) | 17.7 | - | - | 17.8 | 27.1 | - | - | 22.1 | 13.8 | - | - | 11.7 |
CPET VO2 at the VAT (mL/kg/min) | 9.3 | - | - | 8.9 | 16.6 | - | - | 12.2 | 8.7 | - | - | 7.0 |
CPET RERpeak | 1.02 | - | - | 1.02 | 1.21 | - | - | 1.19 | 1.07 | - | - | 1.04 |
6MWT (m) | 460 | 500 | 430 | 535 | 465 | 548 | 480 | 487 | 265 | 250 | 323 | 310 |
6MWT 6–20 Borg score | 11 | 11 | 12 | 11 | 10 | 12 | 10 | 11 | 13 | 14 | 13 | 12 |
HGS dominant hand (kg) | 46 | 48 | 48 | 52 | 37 | NM | 30 | 25 | 31 | 26 | 28 | 25 |
Nutritional parameters | ||||||||||||
Body mass (kg) | 74.0 | 75.3 | 74.8 | 77.1 | 62.9 | 66.3 | 69.5 | 72.9 | 63.0 | 62.6 | 66.4 | 67.3 |
BMI (kg/m2) | 23.4 | 23.7 | 23.6 | 24.3 | 21.2 | 21.9 | 23.0 | 24.1 | 22.6 | 22.5 | 23.8 | 24.1 |
FFMI (kg/m2) | 16.6 | 16.5 | 16.9 | 16.7 | 16.7 | 17.4 | 17.3 | 17.2 | 15.3 | 14.9 | 16.9 | 15.6 |
Energy intake (% of recommended) | 93 | 113 | 90 | 85 | 95 | 116 | 102 | 99 | 53 | 92 | 90 | 99 |
Protein intake (% of recommended) | 98 | 78 | 100 | 94 | 80 | 112 | 107 | 81 | 56 | 88 | 82 | 98 |
Feasibility | ||||||||||||
Adherence to rehabilitation | 100% | 80% | 48% | |||||||||
6–20 Borg score during exercises | 13 | 12 | 11 | 13 | 11 | 10 | 10 | 11 | 10 | 10 | 10 | 10 |
Smoking | yes | no | no | yes | yes | no | no | yes | yes | yes | yes | yes |
0–10 VAS for motivation to perform rehabilitation | 10 | 10 | 10 | 9 | 7 | 8 | 8 | 9 | 7 | 8 | 9 | 10 |
Variable | Patient 4 | Patient 5 | Patient 6 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | 58 | 70 | 69 | |||||||||
Sex | Female | Male | Male | |||||||||
Stage | IIIA | IIIA | IIIA | |||||||||
Comorbidities | Depression (since 1995) | Osteopenia (since 2017) | RA (since 2010) | |||||||||
Time of assessment | T0 | T1 | T2 | T3 | T0 | T1 | T2 | T3 | T0 | T1 | T2 | T3 |
Treatment schedule | ||||||||||||
Type of CHRT | Concurrent | Concurrent | Sequential | |||||||||
Treatment time of CT | 8 weeks | 10 weeks | 19 weeks | |||||||||
Treatment time of RT | 5 weeks | 4 weeks | 5 weeks | |||||||||
Physical parameters | ||||||||||||
CPET VO2peak (mL/kg/min) | 15.0 | - | - | 13.3 | 14.3 | - | - | 16.6 | 19.2 | - | - | 18.3 |
CPET VO2 at the VAT (mL/kg/min) | 9.0 | - | - | 10.9 | 12.0 | - | - | 10.0 | 11.1 | - | - | 14.1 |
CPET RERpeak | 1.04 | - | - | 1.02 | 1.21 | - | - | 1.36 | 1.06 | - | - | 1.03 |
6MWT (m) | 470 | 396 | - a | 445 | 482 | 480 | 500 | 505 | 441 | 455 | 400 | 400 |
6MWT 6–20 Borg score | 12 | 12 | - a | 12 | 12 | 11 | 11 | 13 | 12 | 12 | 13 | 13 |
HGS dominant hand (kg) | 29 | 30 | - a | 32 | 30 | 38 | 38 | 35 | 26 | 28 | 25 | 29 |
Nutritional parameters | ||||||||||||
Body mass (kg) | 79.9 | 81.2 | 77.0 | 81.8 | 77.6 | 77.8 | 79.2 | 79.5 | 99.4 | 96.3 | 94.1 | 89.5 |
BMI (kg/m2) | 29.0 | 28.7 | 27.6 | 29.3 | 24.6 | 24.5 | 25.0 | 25.1 | 31.4 | 30.4 | 29.7 | 28.3 |
FFMI (kg/m2) | 17.2 | 17.4 | - a | 17.4 | 17.8 | 18.5 | 18.3 | 18.9 | 19.2 | 17.8 | 17.5 | 17.6 |
Energy intake (% of recommended) | 69 | 88 | 92 | 87 | 81 | 112 | 115 | 113 | 60 | 86 | 100 | 64 |
Protein intake (% of recommended) | 61 | 77 | 76 | 76 | 56 | 85 | 92 | 88 | 75 | 92 | 100 | 83 |
Feasibility | ||||||||||||
Adherence to rehabilitation | 80% | 100% | 80% | |||||||||
6–20 Borg score during exercises | 11 | 12 | 10 | 12 | 11 | 11 | 11 | 11 | 13 | 12 | 10 | 12 |
Smoking | yes | no | no | Yes | No | No | No | No | No | No | No | No |
0–10 VAS for motivation to perform rehabilitation | 8 | 7 | 8 | 8 | 9 | 9 | 8 | 8 | 7 | 8 | 6 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voorn, M.J.J.; Bongers, B.C.; van Kampen-van den Boogaart, V.E.M.; Driessen, E.J.M.; Janssen-Heijnen, M.L.G. Feasibility of Rehabilitation during Chemoradiotherapy among Patients with Stage III Non-Small Cell Lung Cancer: A Proof-of-Concept Study. Cancers 2022, 14, 2387. https://doi.org/10.3390/cancers14102387
Voorn MJJ, Bongers BC, van Kampen-van den Boogaart VEM, Driessen EJM, Janssen-Heijnen MLG. Feasibility of Rehabilitation during Chemoradiotherapy among Patients with Stage III Non-Small Cell Lung Cancer: A Proof-of-Concept Study. Cancers. 2022; 14(10):2387. https://doi.org/10.3390/cancers14102387
Chicago/Turabian StyleVoorn, Melissa J. J., Bart C. Bongers, Vivian E. M. van Kampen-van den Boogaart, Elisabeth J. M. Driessen, and Maryska L. G. Janssen-Heijnen. 2022. "Feasibility of Rehabilitation during Chemoradiotherapy among Patients with Stage III Non-Small Cell Lung Cancer: A Proof-of-Concept Study" Cancers 14, no. 10: 2387. https://doi.org/10.3390/cancers14102387
APA StyleVoorn, M. J. J., Bongers, B. C., van Kampen-van den Boogaart, V. E. M., Driessen, E. J. M., & Janssen-Heijnen, M. L. G. (2022). Feasibility of Rehabilitation during Chemoradiotherapy among Patients with Stage III Non-Small Cell Lung Cancer: A Proof-of-Concept Study. Cancers, 14(10), 2387. https://doi.org/10.3390/cancers14102387