Predictors of Outcome after (Chemo)Radiotherapy for Node-Positive Oropharyngeal Cancer: The Role of Functional MRI
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population and Treatment Characteristics
2.2. MRI Protocols
2.3. DCE-MRI and DWI Analysis
2.4. Statistics
2.5. Machine Learning Analysis
3. Results
3.1. Patient Characteristics
3.2. MRI Analysis and Prediction Models Driven by Machine Learning
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noronha, V.; Joshi, A.; Patil, V.M.; Agarwal, J.; Ghosh-Laskar, S.; Budrukkar, A.; Murthy, V.; Gupta, T.; D’Cruz, A.K.; Banavali, S.; et al. Once-a-week versus once-every-3-weeks cisplatin chemoradiation for locally advanced head and neck cancer: A phase III randomized noninferiority trial. J. Clin. Oncol. 2018, 36, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Kiyota, N.; Tahara, M.; Fujii, H.; Yamazaki, T.; Mitani, H.; Iwae, S.; Fujimoto, Y.; Onozawa, Y.; Hanai, N.; Ogawaet, T.; et al. Phase II/III trial of post-operative chemoradiotherapy comparing 3-weekly cisplatin with weekly cisplatin in high-risk patients with squamous cell carcinoma of head and neck (JCOG1008). J. Clin. Oncol. 2020, 38, 6502. [Google Scholar] [CrossRef]
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.I.; Nguyen-Tân, P.F.; Westra, W.H.; Chung, C.H.; Jordan, R.C.; Luet, C.; et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillison, M.L.; d’Souza, G.; Westra, W.; Sugar, E.; Xiao, W.; Begum, S.; Viscidi, R. Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J. Natl. Cancer Inst. 2008, 100, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Marur, S.; d’Souza, G.; Westra, W.H.; Forastiere, A.A. HPV-associated head and neck cancer: A virus-related cancer epidemic. Lancet Oncol. 2010, 11, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Kaka, A.S.; Kumar, B.; Kumar, P.; Wakely, P.E., Jr.; Kirsch, C.M.; Old, M.O.; Ozer, E.; Agrawal, A.; Carrau, R.E.; Schuller, D.E.; et al. Highly aggressive human papillomavirus-related oropharyngeal cancer: Clinical, radiologic, and pathologic characteristics. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, 327–335. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, B.; Huang, S.H.; Perez-Ordonez, B.; Massey, C.; Siu, L.L.; Weinreb, I.; Hope, A.; Kim, J.; Bayley, A.J.; Cummings, B. Outcomes of HPV-related oropharyngeal cancer patients treated by radiotherapy alone using altered fractionation. Radiother. Oncol. 2012, 103, 49–56. [Google Scholar] [CrossRef]
- Vainshtein, J.M.; Spector, M.E.; McHugh, J.B.; Wong, K.K.; Walline, H.W.; Byrd, S.A.; Komarck, C.M.; Ibrahim, M.; Stenmark, M.H.; Prince, M.E.; et al. Refining risk stratification for locoregional failure after chemoradiotherapy in human papillomavirus-associated oropharyngeal cancer. Oral Oncol. 2014, 50, 513–519. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, B.; Huang, S.H.; Siu, L.L.; Waldron, J.; Zhao, H.; Perez-Ordonez, B.; Weinreb, I.; Kim, J.; Ringash, J.; Bayley, A.; et al. Deintensification candidate subgroups in human papillomavirus-related oropharyngeal cancer according to minimal risk of distant metastasis. J. Clin. Oncol. 2013, 31, 543–550. [Google Scholar] [CrossRef]
- Mermod, M.; Tolstonog, G.; Simon, C.; Monnier, Y. Extracapsular spread in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Oral Oncol. 2016, 62, 60–71. [Google Scholar] [CrossRef]
- Carter, R.L.; Barr, L.C.; O’Brien, C.J.; Soo, K.C.; Shaw, H.J. Transcapsular spread of metastatic squamous cell carcinoma from cervical lymph nodes. Am. J. Surg. 1985, 150, 495–499. [Google Scholar] [CrossRef]
- Mortensen, L.S.; Johansen, J.; Kallehauge, J.; Primdahl, H.; Busk, M.; Lassen, P.; Alsner, J.; Sørensen, B.S.; Toustrup, K.; Jakobsen, S.; et al. FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: Results from the DAHANCA 24 trial. Radiother. Oncol. 2012, 105, 14–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welz, S.; Mönnich, S.; Pfannenberg, C.; Nikolaou, K.; Reimold, M.; la Fougère, C.; Reischl, G.; Mauz, P.; Paulsen, F.; Alber, M.; et al. Prognostic value of dynamic hypoxia PET in head and neck cancer: Results from a planned interim analysis of a randomized phase II hypoxia-image guided dose escalation trial. Radiother. Oncol. 2017, 124, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.F.A.; Parra, C.; Lu, Y.; Shukla-Dave, A. Evaluation of head and neck tumors with functional MR imaging. Magn. Reason. Imaging Clin. N. Am. 2016, 24, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.B.; Edge, S.; Greene, F.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. AJCC Cancer Staging Manual, 8th ed.; Springer: Berlin, Germany; American Joint Commission on Cancer: Washington, DC, USA, 2017. [Google Scholar]
- Sanguineti, G.; Gunn, G.B.; Endres, E.J.; Chaljub, G.; Cheruvu, P.; Parker, B. Patterns of locoregional failure after exclusive IMRT for oropharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 737–746. [Google Scholar] [CrossRef]
- Bernier, J.; Domenge, C.; Ozsahin, M.; Matuszewska, K.; Lefèbvre, J.L.; Greiner, R.H.; Giralt, J.; Maingon, P.; Rolland, F.; Bolla, M.; et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N. Engl. J. Med. 2004, 350, 1945–1952. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Baue, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reason. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [Green Version]
- Tofts, P.S.; Brix, G.; Buckley, D.L.; Evelhoch, J.L.; Henderson, E.; Knopp, M.V.; Larsson, H.B.; Lee, T.Y.; Mayr, N.A.; Parker, G.J.; et al. Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: Standardized quantities and symbols. J. Magn. Reason. Imaging 1999, 10, 223–232. [Google Scholar] [CrossRef]
- Federau, C. Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: A review of the evidence. NMR Biomed. 2017, 30, e3780. [Google Scholar] [CrossRef]
- Marzi, S.; Piludu, F.; Vidiri, A. Assessment of diffusion parameters by intravoxel incoherent motion MRI in head and neck squamous cell carcinoma. NMR Biomed. 2013, 12, 1806–1814. [Google Scholar] [CrossRef]
- Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of Conventional Statistical Methods with Machine Learning in Medicine: Diagnosis, Drug Development, and Treatment. Medicina 2020, 56, 455. [Google Scholar] [CrossRef] [PubMed]
- Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine learning for medical imaging. Radiographics 2017, 37, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 2005, 3, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, M.; Kato, H.; Tomita, H.; Hara, A.; Suzui, N.; Miyazaki, T.; Matsuo, M. Comparison of imaging findings between human papillomavirus-positive and -negative squamous cell carcinomas of the maxillary sinus. J. Clin. Imaging Sci. 2020, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Leeb, S.J.; Leec, D.; Kima, S.Y.; Choi, J.W. Correlation of human papilloma virus status with quantitative perfusion/ diffusion/metabolic imaging parameters in the oral cavity and oropharyngeal squamous cell carcinoma: Comparison of primary tumour sites and metastatic lymph nodes. Clin. Radiol. 2018, 73, 757.e21–757.e27. [Google Scholar] [CrossRef]
- Caudell, J.; Torres-Roca, J.F.; Gillies, R.J.; Enderling, H.; Kim, S.; Rishi, A.; Moros, E.G.; Harrison, L.B. The future of personalised radiotherapy for head and neck cancer. Lancet Oncol. 2017, 18, e266–e273. [Google Scholar] [CrossRef]
- Gaustad, J.V.; Hauge, A.; Wegner, C.S.; Simonsen, T.G.; Lund, K.V.; Hansem, L.M.K.; Rofstad, E.K. DCE-MRI of tumor hypoxia and hypoxia-associated aggressiveness. Cancers 2020, 12, 1979. [Google Scholar] [CrossRef]
- Martens, R.M.; Koopman, T.; Lavini, C.; van de Brug, T.; Zwezerijnen, G.J.C.; Marcus, T.; Vergeer, M.R.; Leemans, C.R.; de Bree, R.; de Graaf, P.; et al. early response prediction of multiparametric functional MRI and 18F-FDG-PET in patients with head and neck squamous cell carcinoma treated with (chemo)radiation. Cancers 2022, 14, 216. [Google Scholar] [CrossRef]
- Bos, P.; van der Hulst, H.J.; van den Brekel, M.W.M.; Schats, W.; Jasperse, B.; Beets-Tan, R.G.H.; Castelijns, J.A. Prognostic functional MR imaging parameters in head and neck squamous cell carcinoma: A systematic review. Eur. J. Radiol. 2021, 144, 109952. [Google Scholar] [CrossRef]
- Vaupel, P.; Mayer, A. Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev. 2007, 26, 225–239. [Google Scholar] [CrossRef]
- Bisdas, S.; Seitz, O.; Middendorp, M.; Chambron-Pinho, N.; Bisdas, T.; Vogl, T.J.; Hammerstingl, R.; Ernemann, U.; Mack, M.G. An exploratory pilot study into the association between microcirculatory parameters derived by MRI-based pharmacokinetic analysis and glucose utilization estimated by PET-CT imaging in head and neck cancer. Eur. Radiol. 2010, 20, 2358–2366. [Google Scholar] [CrossRef] [PubMed]
- King, A.D.; Thoeny, H.C. Functional MRI for the prediction of treatment response in head and neck squamous cell carcinoma: Potential and limitations. Cancer Imaging 2016, 16, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, K.H.; Panek, R.; Dunlop, A.; Mcquaid, D.; Riddell, A.; Welsh, L.C.; Murray, I.; Koh, D.M.; Leach, M.O.; Bhide, S.A.; et al. Changes in multimodality functional imaging parameters early during chemoradiation predict treatment response in patients with locally advanced head and neck cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 759–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vokes, E.E.; Weichselbaum, R.R.; Lippman, S.M.; Hong, W.K. Head and neck cancer. N. Engl. J. Med. 1993, 328, 184–194. [Google Scholar] [CrossRef]
- Dimery, I.W.; Hong, W.K. Overview of combined modality therapies for head and neck cancer. J. Natl. Cancer Inst. 1993, 85, 95–111. [Google Scholar] [CrossRef]
- Youssef, E.; Chuba, P.; Salib, N.; Yoo, G.H.; Penagarícano, J.; Ezzat, W.; Aref, A. Pathological distribution of positive lymph nodes in patients with clinically and radiologically N0 oropharyngeal carcinoma: Implications for IMRT treatment planning. Cancer J. 2005, 11, 412–416. [Google Scholar] [CrossRef]
- Bosch, F.X.; Lorincz, A.; Muñoz, N.; Meijer, C.J.; Shah, K.V. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol. 2002, 55, 244–265. [Google Scholar] [CrossRef] [Green Version]
- Vainshtein, J.M.; Spector, M.E.; Ibrahim, M.; Bradford, C.R.; Wolf, G.T.; Stenmark, M.H.; Worden, F.P.; McHugh, J.B.; Prince, M.E.; Carey, T. Matted nodes: High distant-metastasis risk and a potential indication for intensification of systemic therapy in human papillomavirus-related oropharyngeal cancer. Head Neck 2016, 38 (Suppl. S1), E805–E814. [Google Scholar] [CrossRef]
- Spector, M.E.; Gallagher, K.K.; Light, E.; Ibrahim, M.; Chanowski, E.J.; Moyer, J.S.; Prince, M.E.; Wolf, G.Y.; Bradford, C.R.; Cordell, K.; et al. Matted nodes: Poor prognostic marker in Oropharyngeal squamous cell carcinoma Independent of HPV and EGFR status. Head Neck 2012, 34, 1727–1733. [Google Scholar] [CrossRef] [Green Version]
- Di, B.; Li, X.M.; Shao, Y.L.; He, Z.G. Efficacy of radical neck dissection for advanced cervical nodal metastases. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2005, 40, 106–110. [Google Scholar]
- Myers, J.N.; Greenberg, J.S.; Mo, V.; Roberts, D. Extracapsular spread: A significant predictor of treatment failure in patients with squamous cell carcinoma of the tongue. Cancer 2001, 92, 3030–3036. [Google Scholar] [CrossRef]
- Wenzel, S.; Sagowski, C.; Kehrl, W.; Metternich, F.U. The prognostic impact of metastatic pattern of lymph nodes in patients with oral and oropharyngeal squamous cell carcinomas. Eur. Arch. Otorhinolaryngol. 2004, 261, 270–275. [Google Scholar]
- Bernier, J.; Cooper, J.S.; Pajak, T.F.; van Glabbeke, M.; Bourhis, J.; Forastiere, A.; Ozsahin, E.M.; Jacobs, J.R.; Jassem, J.; Ang, K.K.; et al. Defining risk levels in locally advanced head and neck cancers: A comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck 2005, 27, 843–850. [Google Scholar] [PubMed]
- Benchetrit, L.; Torabi, S.; Givi, B.; Haughey, B.; Judson, B.L. Prognostic significance of extranodal extension in HPV-mediated oropharyngeal carcinoma: A systematic review and meta-analysis. Otolaryngol. Head Neck Surg. 2021, 164, 720–732. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.P.; Jackson, A.; Parker, G.J.; Roberts, C.; Jayson, G.C. Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat. Rev. Clin. Oncol. 2012, 9, 167–177. [Google Scholar] [CrossRef] [PubMed]
Characteristic | p16-Pos (#/%) | p16-Neg (#/%) | Overall (#/%) |
---|---|---|---|
cN1 | 33 (62.3%) | 2 (13.3%) | 35 (51.5%) |
cN2 | 17 (32%) | 5 (33.3%) | 22 (32.3%) |
cN2a | - | 1 | |
cN2b | - | 4 | |
cN2c | - | 0 | |
cN3 | 3 (5.7%) | 8 (53.4%) | 11 (16.2%) |
cN3a | - | 0 | |
cN3b | - | 8 | |
Unilateral N | 38 (71.6%) | 11 (73.3%) | 49 (72%) |
Bilateral N | 15 (28.4%) | 4 (26.7%) | 19 (28%) |
ENE present | 35 (66%) | 6 (40%) | 41 (60.3%) |
ENE not present | 18 (34%) | 9 (60%) | 27 (39.7%) |
Cystic N on MR yes | 23 (43.4%) | 5 (33.3%) | 28 (41.2%) |
Cystic N on MR no | 30 (56.6%) | 10 (66.4%) | 40 (58.8%) |
Cystic N on CT yes | 21 (39.6%) | 4 (26.7%) | 25 (37.8%) |
Cystic N on CT no | 32 (60.4%) | 11 (73.3%) | 43 (63.2%) |
Matted nodes present | 12 (22.6%) | 2 (13.3%) | 14 (20.6%) |
Matted nodes not present | 41 (77.4%) | 13 (86.7%) | 54 (79.4%) |
Subsite | |||
Tonsil | 30 (56.6%) | 3 (20%) | 33 (48.5%) |
Base of tongue | 23 (43.4%) | 12 (80%) | 35 (51.5%) |
Smoking status | |||
none | 10 (18.9%) | 0 | 10 (14.7%) |
0–5 pack/year | 18 (33.9%) | 3 (20%) | 21 (30.9%) |
6–24 pack/year | 7 (13.3%) | 1 (6.7%) | 8 (11.8%) |
>24 pack/year | 18 (33.9%) | 11 (73.3%) | 29 (42.6%) |
Alcohol | |||
None | 40 (75.5%) | 5 (33.3%) | 45 (66.2%) |
Social | 12 (22.6%) | 2 (13.3%) | 14 (20.6%) |
Alcoholic | 1 (1.9%) | 8 (53.4%) | 9 (13.2%) |
Overall | 53 (77.9%) | 15 (22.1%) | 68 (100%) |
Variable | Disease Progression | ||
---|---|---|---|
No | Yes | p value | |
P16 | |||
Yes | 39 | 14 | 0.134 |
No | 8 | 7 | |
T subsite | |||
Tonsil | 22 | 138 | 0.253 |
Base of tongue | 25 | ||
Smoking habit | |||
No | 9 | 1 | 0.122 |
0–5 pack/year | 15 | 6 | |
6–24 pack/year | 5 | 3 | |
>24 pack/year | 18 | 11 | |
Alcohol | |||
None | 34 | 11 | 0.253 |
Social | 7 | 7 | |
alcoholic | 6 | 3 | |
T size * (cm) | 3.4 (2.6–4.2) * | 3.4 (1.5–3.4) * | 0.942 |
N diameter * (cm) | 1.8 (1.6–2.5) * | 2.8 (2.1–4.2) * | 0.022 |
ENE present | |||
Yes | 25 | 16 | 0.073 |
No | 22 | 5 | |
Matted lymph nodes | |||
Yes | 8 | 6 | 0.276 |
No | 39 | 15 | |
Cystic lymph nodes on MR | |||
Yes | 22 | 6 | 0.158 |
No | 25 | 15 | |
Cystic lymph nodes on CT | |||
Yes | 19 | 6 | 0.349 |
No | 28 | 15 |
Disease Control | Disease Progression | |||||
---|---|---|---|---|---|---|
DCE-MRI Parameter | Median | IQR | Median | IQR | p Value | |
Ktrans | Median | 0.80 | 0.39 | 0.63 | 0.47 | 0.158 |
IQR | 0.50 | 0.43 | 0.44 | 0.39 | 0.204 | |
P10 | 0.42 | 0.15 | 0.36 | 0.33 | 0.496 | |
P25 | 0.61 | 0.24 | 0.46 | 0.44 | 0.246 | |
P75 | 1.06 | 0.68 | 0.92 | 0.71 | 0.204 | |
P90 | 1.45 | 1.24 | 1.25 | 1.48 | 0.260 | |
Skewness | 1.77 | 1.44 | 1.88 | 1.10 | 0.900 | |
Kurtosis | 6.95 | 9.09 | 10.82 | 11.37 | 0.271 | |
Mean | 0.92 | 0.60 | 0.81 | 0.66 | 0.294 | |
Std | 0.62 | 0.52 | 0.48 | 0.46 | 0.223 | |
Energy | 0.15 | 0.10 | 0.18 | 0.13 | 0.160 | |
Entropy | 3.16 | 1.02 | 2.84 | 1.04 | 0.193 | |
Kep | Median | 2.24 | 0.96 | 1.80 | 0.64 | 0.016 |
IQR | 1.60 | 1.48 | 1.20 | 1.04 | 0.151 | |
P10 | 1.04 | 0.40 | 0.84 | 0.72 | 0.035 | |
P25 | 1.52 | 0.56 | 1.24 | 0.80 | 0.008 | |
P75 | 3.16 | 1.76 | 2.36 | 1.28 | 0.034 | |
P90 | 4.80 | 3.12 | 3.28 | 3.04 | 0.137 | |
Skewness | 5.02 | 4.97 | 8.05 | 10.95 | 0.120 | |
Kurtosis | 56.18 | 107.39 | 112.25 | 404.49 | 0.120 | |
Mean | 2.91 | 1.44 | 1.99 | 1.35 | 0.033 | |
Std | 2.47 | 2.68 | 1.93 | 1.50 | 0.193 | |
Energy | 0.21 | 0.20 | 0.36 | 0.22 | 0.063 | |
ve | Entropy | 2.62 | 1.16 | 1.99 | 1.29 | 0.094 |
Median | 0.38 | 0.12 | 0.43 | 0.12 | 0.018 | |
IQR | 0.14 | 0.06 | 0.16 | 0.10 | 0.257 | |
P10 | 0.23 | 0.10 | 0.28 | 0.15 | 0.364 | |
P25 | 0.30 | 0.10 | 0.35 | 0.09 | 0.051 | |
P75 | 0.45 | 0.15 | 0.51 | 0.17 | 0.018 | |
P90 | 0.52 | 0.16 | 0.59 | 0.33 | 0.014 | |
Skewness | 0.18 | 0.96 | 0.28 | 0.96 | 0.573 | |
Kurtosis | 4.57 | 2.03 | 3.83 | 2.98 | 0.434 | |
Mean | 0.38 | 0.13 | 0.43 | 0.13 | 0.016 | |
Std | 0.12 | 0.05 | 0.13 | 0.09 | 0.507 | |
Energy | 0.07 | 0.03 | 0.06 | 0.03 | 0.405 | |
Entropy | 4.18 | 0.57 | 4.36 | 0.79 | 0.415 |
Disease Control | Disease Progression | |||||
---|---|---|---|---|---|---|
DCE-MRI Parameter | Median | IQR | Median | IQR | p Value | |
Ktrans | Median | 0.55 | 0.38 | 0.45 | 0.37 | 0.189 |
IQR | 0.42 | 0.31 | 0.30 | 0.35 | 0.069 | |
P10 | 0.24 | 0.30 | 0.21 | 0.19 | 0.582 | |
P25 | 0.38 | 0.32 | 0.32 | 0.24 | 0.536 | |
P75 | 0.80 | 0.50 | 0.66 | 0.60 | 0.069 | |
P90 | 1.14 | 0.81 | 0.83 | 0.76 | 0.036 | |
Skewness | 2.16 | 1.81 | 2.02 | 1.98 | 0.393 | |
Kurtosis | 10.00 | 14.24 | 10.87 | 13.27 | 0.951 | |
Mean | 0.66 | 0.44 | 0.51 | 0.39 | 0.065 | |
Std | 0.44 | 0.25 | 0.37 | 0.24 | 0.036 | |
Energy | 0.19 | 0.08 | 0.25 | 0.23 | 0.109 | |
Entropy | 2.80 | 0.78 | 2.36 | 1.28 | 0.077 | |
Kep | Median | 1.84 | 1.12 | 1.28 | 0.96 | 0.003 |
IQR | 1.28 | 0.96 | 0.80 | 0.60 | 0.000 | |
P10 | 0.80 | 1.16 | 0.64 | 0.44 | 0.446 | |
P25 | 1.20 | 0.80 | 0.96 | 0.84 | 0.044 | |
P75 | 2.48 | 1.56 | 1.76 | 1.20 | 0.000 | |
P90 | 3.52 | 2.66 | 2.24 | 1.64 | 0.000 | |
Skewness | 3.97 | 4.82 | 4.12 | 2.45 | 0.604 | |
Kurtosis | 28.81 | 79.47 | 42.11 | 46.95 | 0.795 | |
Mean | 2.22 | 1.30 | 1.39 | 1.26 | 0.000 | |
Std | 1.86 | 2.05 | 0.81 | 1.07 | 0.001 | |
Energy | 0.28 | 0.14 | 0.42 | 0.19 | 0.002 | |
ve | Entropy | 2.16 | 0.84 | 1.53 | 0.96 | 0.001 |
Median | 0.27 | 0.20 | 0.40 | 0.24 | 0.004 | |
IQR | 0.16 | 0.05 | 0.16 | 0.13 | 0.272 | |
P10 | 0.13 | 0.21 | 0.22 | 0.13 | 0.140 | |
P25 | 0.20 | 0.20 | 0.31 | 0.15 | 0.007 | |
P75 | 0.36 | 0.22 | 0.49 | 0.31 | 0.004 | |
P90 | 0.45 | 0.22 | 0.62 | 0.38 | 0.008 | |
Skewness | 0.58 | 0.78 | 0.08 | 0.93 | 0.018 | |
Kurtosis | 4.26 | 2.82 | 3.84 | 1.59 | 0.328 | |
Mean | 0.28 | 0.20 | 0.42 | 0.23 | 0.003 | |
Std | 0.12 | 0.05 | 0.14 | 0.08 | 0.036 | |
Energy | 0.07 | 0.03 | 0.06 | 0.05 | 0.228 | |
Entropy | 4.12 | 0.46 | 4.35 | 0.73 | 0.069 |
Diffusion Parameter | Disease Control | Disease Progression | |||
---|---|---|---|---|---|
T | Median | IQR | Median | IQR | p Value |
ADC | 1.34 | 0.47 | 1.31 | 0.50 | 0.480 |
Dt | 1.00 | 0.31 | 1.00 | 0.35 | 0.882 |
f (%) | 15.60 | 7.53 | 14.80 | 10.48 | 0.462 |
ADC10fr | 1.74 | 0.34 | 1.75 | 0.42 | 0.968 |
Dt,10fr | 1.38 | 0.32 | 1.39 | 0.33 | 0.377 |
f10fr (%) | 18.14 | 9.67 | 16.12 | 6.27 | 0.345 |
ΔADC (%) | 33.20 | 46.40 | 33.20 | 27.65 | 0.503 |
ΔDt (%) | 32.30 | 48.68 | 28.00 | 24.40 | 0.558 |
Δf (%) | 13.65 | 74.15 | 31.00 | 84.75 | 0.382 |
N | Median | IQR | Median | IQR | p value |
ADC | 1.09 | 0.37 | 1.19 | 0.39 | 0.640 |
Dt | 0.96 | 0.38 | 0.93 | 0.41 | 0.700 |
f (%) | 9.75 | 6.00 | 8.80 | 5.23 | 0.895 |
ADC10fr | 1.50 | 0.43 | 1.43 | 0.44 | 0.447 |
Dt,10fr | 1.24 | 0.49 | 1.24 | 0.28 | 0.938 |
f10fr (%) | 12.47 | 6.72 | 9.87 | 3.80 | 0.228 |
ΔADC (%) | 32.80 | 31.00 | 20.95 | 32.05 | 0.073 |
ΔDt (%) | 33.40 | 36.48 | 23.75 | 34.80 | 0.268 |
Δf (%) | 25.55 | 80.20 | 2.60 | 75.00 | 0.211 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Urso, P.; Farneti, A.; Marucci, L.; Marzi, S.; Piludu, F.; Vidiri, A.; Sanguineti, G. Predictors of Outcome after (Chemo)Radiotherapy for Node-Positive Oropharyngeal Cancer: The Role of Functional MRI. Cancers 2022, 14, 2477. https://doi.org/10.3390/cancers14102477
D’Urso P, Farneti A, Marucci L, Marzi S, Piludu F, Vidiri A, Sanguineti G. Predictors of Outcome after (Chemo)Radiotherapy for Node-Positive Oropharyngeal Cancer: The Role of Functional MRI. Cancers. 2022; 14(10):2477. https://doi.org/10.3390/cancers14102477
Chicago/Turabian StyleD’Urso, Pasqualina, Alessia Farneti, Laura Marucci, Simona Marzi, Francesca Piludu, Antonello Vidiri, and Giuseppe Sanguineti. 2022. "Predictors of Outcome after (Chemo)Radiotherapy for Node-Positive Oropharyngeal Cancer: The Role of Functional MRI" Cancers 14, no. 10: 2477. https://doi.org/10.3390/cancers14102477
APA StyleD’Urso, P., Farneti, A., Marucci, L., Marzi, S., Piludu, F., Vidiri, A., & Sanguineti, G. (2022). Predictors of Outcome after (Chemo)Radiotherapy for Node-Positive Oropharyngeal Cancer: The Role of Functional MRI. Cancers, 14(10), 2477. https://doi.org/10.3390/cancers14102477