Long-Term Survival Following Minimally Invasive Lung Cancer Surgery: Comparing Robotic-Assisted and Video-Assisted Surgery
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Type
2.2. Inclusion/Exclusion Criteria
2.3. Surgical Procedures
2.4. Data Collection
2.5. Surveillance and Follow-Up
2.6. Outcomes
2.7. TNM Staging
2.8. Statistical Analysis
3. Results
3.1. Description and Comparison of Baseline Characteristics
3.2. Quality of Follow-Up
3.3. Primary Analysis
3.4. Per-Operative and Short-Term Post-Operative Outcomes
3.5. Characteristics of Recurrences
4. Discussion
4.1. Summary of Main Results
4.2. Comparison with Literature
4.3. Strengths
4.4. Limitations
4.5. Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montagne, F.; Guisier, F.; Venissac, N.; Baste, J.-M. The Role of Surgery in Lung Cancer Treatment: Present Indications and Future Perspectives—State of the Art. Cancers 2021, 13, 3711. [Google Scholar] [CrossRef]
- Vansteenkiste, J.; Crinò, L.; Dooms, C.; Douillard, J.Y.; Faivre-Finn, C.; Lim, E.; Rocco, G.; Senan, S.; Van Schil, P.; Veronesi, G.; et al. 2nd ESMO Consensus Conference on Lung Cancer: Early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25, 1462–1474. [Google Scholar] [CrossRef] [PubMed]
- Postmus, P.E.; Kerr, K.M.; Oudkerk, M.; Senan, S.; Waller, D.A.; Vansteenkiste, J.; Escriu, C.; Peters, S.; ESMO Guidelines Committee. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv1–iv21. [Google Scholar] [CrossRef] [PubMed]
- Laursen, L.; Petersen, R.H.; Hansen, H.J.; Jensen, T.K.; Ravn, J.; Konge, L. Video-assisted thoracoscopic surgery lobectomy for lung cancer is associated with a lower 30-day morbidity compared with lobectomy by thoracotomy. Eur. J. Cardio-Thorac. 2016, 49, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Pagès, P.-B.; Delpy, J.-P.; Orsini, B.; Gossot, D.; Baste, J.-M.; Thomas, P.; Dahan, M.; Bernard, A. Propensity Score Analysis Comparing Videothoracoscopic Lobectomy With Thoracotomy: A French Nationwide Study. Ann. Thorac. Surg. 2016, 101, 1370–1378. [Google Scholar] [CrossRef] [PubMed]
- Falcoz, P.-E.; Puyraveau, M.; Thomas, P.; Decaluwe, H.; Hürtgen, M.; Petersen, R.H.; Hansen, H.; Brunelli, A.; Van Raemdonck, D.; Dahan, M.; et al. Video-assisted thoracoscopic surgery versus open lobectomy for primary non-small-cell lung cancer: A propensity-matched analysis of outcome from the European Society of Thoracic Surgeon database. Eur. J. Cardio-Thorac. 2016, 49, 602–609. [Google Scholar] [CrossRef]
- Bendixen, M.; Jørgensen, O.D.; Kronborg, C.; Andersen, C.; Licht, P.B. Postoperative pain and quality of life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early stage lung cancer: A randomised controlled trial. Lancet Oncol. 2016, 17, 836–844. [Google Scholar] [CrossRef]
- Paul, S.; Isaacs, A.J.; Treasure, T.; Altorki, N.K.; Sedrakyan, A. Long term survival with thoracoscopic versus open lobectomy: Propensity matched comparative analysis using SEER-Medicare database. Bmj. Br. Med. J. 2014, 349, g5575. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Sedrakyan, A.; Chiu, Y.-L.; Nasar, A.; Port, J.L.; Lee, P.C.; Stiles, B.M.; Altorki, N.K. Outcomes after lobectomy using thoracoscopy vs thoracotomy: A comparative effectiveness analysis utilizing the Nationwide Inpatient Sample database. Eur. J. Cardio-Thorac. 2013, 43, 813–817. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Altorki, N.K.; Sheng, S.; Lee, P.C.; Harpole, D.H.; Onaitis, M.W.; Stiles, B.M.; Port, J.L.; D’Amico, T.A. Thoracoscopic lobectomy is associated with lower morbidity than open lobectomy: A propensity-matched analysis from the STS database. J. Thorac. Cardiovasc. Surg. 2010, 139, 366–378. [Google Scholar] [CrossRef] [Green Version]
- Aiolfi, A.; Nosotti, M.; Micheletto, G.; Khor, D.; Bonitta, G.; Perali, C.; Marin, J.; Biraghi, T.; Bona, D. Pulmonary lobectomy for cancer: Systematic review and network meta-analysis comparing open, video-assisted thoracic surgery, and robotic approach. Surgery 2021, 169, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.; Batchelor, T.; Shackcloth, M.; Dunning, J.; Mcgonigle, N.; Brush, T.; Dabner, L.; Harris, R.; Mckeon, H.; Paramasivan, S.; et al. Study protocol for VIdeo assisted thoracoscopic lobectomy versus conventional Open LobEcTomy for lung cancer, a UK multicentre randomised controlled trial with an internal pilot (the VIOLET study). Bmj. Open. 2019, 9, e029507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, E.K.S.; Batchelor, T.J.; Dunning, J.; Shackcloth, M.; Anikin, V.; Naidu, B.; Belcher, E.; Loubani, M.; Zamvar, V.; Harris, R.A.; et al. Video-assisted thoracoscopic versus open lobectomy in patients with early-stage lung cancer: One-year results from a randomized controlled trial (VIOLET). J. Clin. Oncol. 2021, 39, 8504. [Google Scholar] [CrossRef]
- Ng, C.S.; MacDonald, J.K.; Gilbert, S.; Khan, A.Z.; Kim, Y.T.; Louie, B.E.; Marshall, M.B.; Santos, R.S.; Scarci, M.; Shargal, Y.; et al. Optimal Approach to Lobectomy for Non-Small Cell Lung Cancer: Systemic Review and Meta-Analysis. Innov. Technol. Tech. Cardiothorac Vasc Surg. 2019, 14, 90–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Shen, Y.; Onaitis, M. Comparative study of anatomic lung resection by robotic vs. video-assisted thoracoscopic surgery. J. Thorac. Dis. 2019, 11, 1243–1250. [Google Scholar] [CrossRef]
- O’Sullivan, K.E.; Kreaden, U.S.; Hebert, A.E.; Eaton, D.; Redmond, K.C. A systematic review and meta-analysis of robotic versus open and video-assisted thoracoscopic surgery approaches for lobectomy. Interact. Cardiovasc. Thorac. Surg. 2019, 28, 526–534. [Google Scholar] [CrossRef]
- Wei, S.; Chen, M.; Chen, N.; Liu, L. Feasibility and safety of robot-assisted thoracic surgery for lung lobectomy in patients with non-small cell lung cancer: A systematic review and meta-analysis. World J. Surg. Oncol. 2017, 15, 98. [Google Scholar] [CrossRef]
- Kent, M.; Wang, T.; Whyte, R.; Curran, T.; Flores, R.; Gangadharan, S. Open, Video-Assisted Thoracic Surgery, and Robotic Lobectomy: Review of a National Database. Ann. Thorac. Surg. 2014, 97, 236–244. [Google Scholar] [CrossRef]
- Adams, R.D.; Bolton, W.D.; Stephenson, J.E.; Henry, G.; Robbins, E.T.; Sommers, E. Initial Multicenter Community Robotic Lobectomy Experience: Comparisons to a National Database. Ann. Thorac. Surg. 2014, 97, 1893–1900. [Google Scholar] [CrossRef]
- Veronesi, G.; Abbas, A.E.-S.; Muriana, P.; Lembo, R.; Bottoni, E.; Perroni, G.; Testori, A.; Dieci, E.; Bakhos, C.T.; Car, S.; et al. Perioperative Outcome of Robotic Approach Versus Manual Videothoracoscopic Major Resection in Patients Affected by Early Lung Cancer: Results of a Randomized Multicentric Study (ROMAN Study). Front. Oncol. 2021, 11, 726408. [Google Scholar] [CrossRef]
- Ma, J.; Li, X.; Zhao, S.; Wang, J.; Zhang, W.; Sun, G. Robot-assisted thoracic surgery versus video-assisted thoracic surgery for lung lobectomy or segmentectomy in patients with non-small cell lung cancer: A meta-analysis. Bmc. Cancer 2021, 21, 498. [Google Scholar] [CrossRef]
- Kneuertz, P.J.; D’Souza, D.M.; Richardson, M.; Abdel-Rasoul, M.; Moffatt-Bruce, S.D.; Merritt, R.E. Long-Term Oncologic Outcomes After Robotic Lobectomy for Early-stage Non–Small-cell Lung Cancer Versus Video-assisted Thoracoscopic and Open Thoracotomy Approach. Clin. Lung Cancer 2020, 21, 214–224.e2. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Jin, R.; Yang, S.; Park, B.J.; Li, H. Long-term and short-term outcomes of robot- versus video-assisted anatomic lung resection in lung cancer: A systematic review and meta-analysis. Eur. J. Cardio-Thorac. 2020, 59, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Kent, M.S.; Hartwig, M.G.; Vallières, E.; Abbas, A.E.; Cerfolio, R.J.; Dylewski, M.R.; Fabian, T.; Herrera, L.J.; Jett, K.G.; Lazzaro, R.S.; et al. Pulmonary Open, Robotic and Thoracoscopic Lobectomy (PORTaL) Study: An Analysis of 5721 Cases. Ann. Surg. 2021. [Google Scholar] [CrossRef] [PubMed]
- Sesti, J.; Langan, R.C.; Bell, J.; Nguyen, A.; Turner, A.; Hilden, P.; Leshchuk, K.; Dabrowski, M.; Paul, S. A Comparative Analysis of Long-Term Survival of Robotic Versus Thoracoscopic Lobectomy. Ann. Thorac. Surg. 2020, 110, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Veluswamy, R.R.; Brown, S.-A.W.; Mhango, G.; Sigel, K.; Nicastri, D.G.; Smith, C.B.; Bonomi, M.; Galsky, M.D.; Taioli, E.; Neugut, A.I.; et al. Comparative Effectiveness of Robotic-Assisted Surgery for Resectable Lung Cancer in Older Patients. Chest 2020, 157, 1313–1321. [Google Scholar] [CrossRef]
- Yang, H.-X.; Woo, K.M.; Sima, C.S.; Bains, M.S.; Adusumilli, P.S.; Huang, J.; Finley, D.J.; Rizk, N.P.; Rusch, V.; Jones, D.R.; et al. Long-term Survival Based on the Surgical Approach to Lobectomy for Clinical Stage I Nonsmall Cell Lung Cancer. Ann. Surg. 2017, 265, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Hansen, H.J.; Petersen, R.H. Video-assisted thoracoscopic lobectomy using a standardized three-port anterior approach-The Copenhagen experience. Ann. Cardiothorac. Surg. 2012, 1, 70–76. [Google Scholar]
- Gondé, H.; Laurent, M.; Gillibert, A.; Sarsam, O.M.; Varin, R.; Grimandi, G.; Peillon, C.; Baste, J.-M. The affordability of minimally invasive procedures in major lung resection: A prospective study. Interact. Cardiovasc. Thorac. Surg. 2017, 25, 469–475. [Google Scholar] [CrossRef]
- Sarsam, M.; Baste, J.-M.; Lachkar, S. Multidisciplinary approach to minimally invasive lung segmentectomy. J. Vis. Surg. 2020, 6, 50. [Google Scholar] [CrossRef]
- Baste, J.M.; Soldea, V.; Lachkar, S.; Rinieri, P.; Sarsam, M.; Bottet, B.; Peillon, C. Development of a precision multimodal surgical navigation system for lung robotic segmentectomy. J. Thorac. Dis. 2018, 10, S1195–S1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lachkar, S.; Baste, J.-M.; Thiberville, L.; Peillon, C.; Rinieri, P.; Piton, N.; Guisier, F.; Salaün, M. Pleural Dye Marking Using Radial Endobronchial Ultrasound and Virtual Bronchoscopy before Sublobar Pulmonary Resection for Small Peripheral Nodules. Respiration 2018, 95, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Chaari, Z.; Montagne, F.; Sarsam, M.; Bottet, B.; Rinieri, P.; Gillibert, A.; Baste, J.M. Midterm survival of imaging-assisted robotic lung segmentectomy for non-small-cell lung cancer. Interact. Cardiovasc. Thorac. Surg. 2021. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, F.; Jiang, G.; Wang, J. Applications of indocyanine green based near-infrared fluorescence imaging in thoracic surgery. J. Thorac. Dis. 2016, 8, S738–S743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nex, G.; Schiavone, M.; De Palma, A.; Quercia, R.; Brascia, D.; De Iaco, G.; Signore, F.; Panza, T.; Marulli, G. How to identify intersegmental planes in performing sublobar anatomical resections. J. Thorac. Dis. 2020, 12, 3369–3375. [Google Scholar] [CrossRef]
- Batchelor, T.J.P.; Rasburn, N.J.; Abdelnour-Berchtold, E.; Brunelli, A.; Cerfolio, R.J.; Gonzalez, M.; Ljungqvist, O.; H Petersen, R.; M Popescu, W.; D Slinger, P. Guidelines for enhanced recovery after lung surgery: Recommendations of the Enhanced Recovery After Surgery (ERAS®) Society and the European Society of Thoracic Surgeons (ESTS). Eur. J. Cardio-Thorac. 2019, 55, 91–115. [Google Scholar] [CrossRef]
- Rami-Porta, R.; Giroux, D.; Goldstraw, P. The new TNM classification of lung cancer in practice. Breathe 2011, 7, 348–360. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Thomas, L.E.; Li, F. Addressing Extreme Propensity Scores via the Overlap Weights. Am. J. Epidemiol. 2018, 188, 250–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schomaker, M.; Heumann, C. Bootstrap inference when using multiple imputation. Stat. Med. 2018, 37, 2252–2266. [Google Scholar] [CrossRef]
- Fay, M.P.; Brittain, E.H. Finite sample pointwise confidence intervals for a survival distribution with right-censored data. Stat. Med. 2016, 35, 2726–2740. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-F.J.; Kumar, A.; Klapper, J.A.; Hartwig, M.G.; Tong, B.C.; Harpole, D.H.; Berry, M.F.; D’Amico, T.A. A National Analysis of Long-term Survival Following Thoracoscopic Versus Open Lobectomy for Stage I Non-small-cell Lung Cancer. Ann. Surg. 2019, 269, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Boffa, D.J.; Kosinski, A.S.; Furnary, A.P.; Kim, S.; Onaitis, M.W.; Tong, B.C.; Cowper, P.A.; Hoag, J.R.; Jacobs, J.P.; Wright, C.D.; et al. Minimally Invasive Lung Cancer Surgery Performed by Thoracic Surgeons as Effective as Thoracotomy. J. Clin. Oncol. 2018, 36, 2378–2385. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.-Y.; Huang, J.-Y.; Lin, C.-H.; Ko, J.-L.; Chou, C.-T.; Wu, Y.-C.; Lin, S.-H.; Liaw, Y.-P. Thoracoscopic Lobectomy Produces Long-Term Survival Similar to That with Open Lobectomy in Cases of Non–Small Cell Lung Carcinoma: A Propensity-Matched Analysis Using a Population-Based Cancer Registry. J. Thorac. Oncol. 2016, 11, 1326–1334. [Google Scholar] [CrossRef] [Green Version]
- Spaggiari, L.; Sedda, G.; Maisonneuve, P.; Tessitore, A.; Casiraghi, M.; Petrella, F.; Galetta, D. A Brief Report on Survival After Robotic Lobectomy for Early-Stage Lung Cancer. J. Thorac. Oncol. 2019, 14, 2176–2180. [Google Scholar] [CrossRef] [PubMed]
- Cerfolio, R.J.; Ghanim, A.F.; Dylewski, M.; Veronesi, G.; Spaggiari, L.; Park, B.J. The long-term survival of robotic lobectomy for non–small cell lung cancer: A multi-institutional study. J. Thorac. Cardiovasc. Surg. 2018, 155, 778–786. [Google Scholar] [CrossRef] [Green Version]
- Park, B.J. Robotic lobectomy for non-small cell lung cancer (NSCLC): Multi-center registry study of long-term oncologic results. Ann. Cardiothorac. Surg. 2012, 1, 24–26. [Google Scholar]
- Lutz, J.A.; Seguin-Givelet, A.; Grigoroiu, M.; Brian, E.; Girard, P.; Gossot, D. Oncological results of full thoracoscopic major pulmonary resections for clinical Stage I non-small-cell lung cancer. Eur. J. Cardio-Thorac. 2018, 55, 263–270. [Google Scholar] [CrossRef]
- Nguyen, D.; Gharagozloo, F.; Tempesta, B.; Meyer, M.; Gruessner, A. Long-term results of robotic anatomical segmentectomy for early-stage non-small-cell lung cancer. Eur. J. Cardio-Thorac. 2018, 55, 427–433. [Google Scholar] [CrossRef]
- Licht, P.B.; Jørgensen, O.D.; Ladegaard, L.; Jakobsen, E. A National Study of Nodal Upstaging After Thoracoscopic Versus Open Lobectomy for Clinical Stage I Lung Cancer. Ann. Thorac. Surg. 2013, 96, 943–950. [Google Scholar] [CrossRef]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv192–iv237. [Google Scholar] [CrossRef]
- Schil, P.E.V.; Balduyck, B.; Waele, M.D.; Hendriks, J.M.; Hertoghs, M.; Lauwers, P. Surgical treatment of early-stage non-small-cell lung cancer. Eur. J. Cancer 2013, 11, 110–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, P.; Dahan, M.; Riquet, M.; Massart, G.; Falcoz, P.E.; Brouchet, L.; Le Pimpec Barthes, F.; Doddoli, C.; Martinod, E.; Fadel, E.; et al. Pratiques chirurgicales dans le traitement du cancer primitif non à petites cellules du poumon Recommandations de la SFCTCV: Pratiques chirurgicales dans le traitement du cancer du poumon. Rev. Mal. Respir. 2008, 25, 1031–1036. [Google Scholar] [CrossRef]
- Suzuki, K.; Saji, H.; Aokage, K.; Watanabe, S.; Okada, M.; Mizusawa, J.; Nakajima, R.; Tsuboi, M.; Nakamura, S.; Nakamura, K.; et al. Comparison of pulmonary segmentectomy and lobectomy: Safety results of a randomized trial. J. Thorac. Cardiovasc. Surg. 2019, 158, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Gac, C.L.; Gondé, H.; Gillibert, A.; Laurent, M.; Selim, J.; Bottet, B.; Rémi, V.; Jean-Marc, B. Medico-economic impact of robot-assisted lung segmentectomy: What is the cost of the learning curve? Interact. Cardio Vasc. Thorac. Surg. 2019, 30, 255–262. [Google Scholar]
Lobectomy | Segmentectomy | |||||
---|---|---|---|---|---|---|
VATS n = 436 | RATS n = 234 | p * | VATS n = 46 | RATS n = 128 | p * | |
Age, year, mean ± SD | 65.24 ± 9.36 | 64.49 ± 10.49 | 0.35 | 63.29 ± 8.13 | 64.34 ± 8.24 | 0.46 |
Gender, Female n (%) | 139 (31.9%) | 87 (37.2%) | 0.20 | 19 (41.3%) | 53 (41.4%) | 1.00 |
Smoking status, n (%) | 0.11 | 0.087 | ||||
Never | 113 (25.9%) | 71 (30.3%) | 8 (17.4%) | 34 (26.6%) | ||
Former | 139 (31.9%) | 57 (24.4%) | 14 (30.4%) | 20 (15.6%) | ||
Current | 184 (42.2%) | 106 (45.3%) | 24 (52.2%) | 74 (57.8%) | ||
Pulmonary co-morbidities, n (%) | ||||||
COPD | 99 (22.7%) | 48 (20.5%) | 0.58 | 11 (23.9%) | 21 (16.4%) | 0.36 |
Emphysema | 6 (1.4%) | 2 (0.9%) | 0.86 | 2 (4.3%) | 3 (2.3%) | 0.80 |
Sleep apnea | 27 (6.2%) | 9 (3.8%) | 0.27 | 1 (2.2%) | 7 (5.5%) | 0.65 |
Prior thoracic surgery | 44 (10.1%) | 13 (5.6%) | 0.057 | 6 (13%) | 27 (21.1%) | 0.33 |
History of treated cancer, n (%) | 130 (29.8%) | 63 (26.9%) | 0.49 | 21 (45.7%) | 54 (42.2%) | 0.81 |
Lung cancer | 18 (4.1%) | 5 (2.1%) | 0.26 | 7 (15.2%) | 18 (14.1%) | 1.00 |
Cardiovascular co-morbidities, n (%) | ||||||
High blood pressure | 117 (26.8%) | 70 (29.9%) | 0.45 | 15 (32.6%) | 30 (23.4%) | 0.31 |
Coronary artery disease | 42 (9.6%) | 14 (6%) | 0.13 | 3 (6.5%) | 3 (2.3%) | 0.38 |
Cardiac arrythmia | 26 (6%) | 9 (3.8%) | 0.32 | 0 (0%) | 7 (5.5%) | 0.22 |
Stroke | 15 (3.4%) | 7 (3%) | 0.95 | 2 (4.3%) | 5 (3.9%) | 1.00 |
Pre-operative treatment, n (%) | ||||||
Immunotherapy | 4 (0.9%) | 2 (0.9%) | 1.00 | 0 (0%) | 2 (1.6%) | 1.00 |
Corticosteroid therapy | 5 (1.1%) | 1 (0.4%) | 0.64 | 0 (0%) | 0 (0%) | 1.00 |
Immunosuppressive therapy | 13 (3%) | 2 (0.9%) | 0.12 | 0 (0%) | 2 (1.6%) | 1.00 |
Functional PFT | ||||||
FEV1, %, mean ± SD | 85.42 ± 18.39 | 85.3 ± 19.85 | 0.94 | 87.17 ± 21.16 | 88.55 ± 20.19 | 0.71 |
FEV1 Missing data | 33 (7.6%) | 32 (13.7%) | 0.018 | 4 (8.7%) | 12 (9.4%) | 1.00 |
DLCO, %, mean ± SD | 72.99 ± 18.46 | 74.29 ± 19.1 | 0.54 | 75.23 ± 18.75 | 70.75 ± 15.94 | 0.24 |
DLCO Missing data | 139 (31.9%) | 131 (56%) | <0.0001 | 11 (23.9%) | 80 (62.5%) | <0.0001 |
ASA score | 0.45 | 0.22 | ||||
1 | 106 (24.3%) | 56 (23.9%) | 16 (34.8%) | 27 (21.1%) | ||
2 | 210 (48.2%) | 119 (50.9%) | 21 (45.7%) | 76 (59.4%) | ||
3 | 115 (26.4%) | 59 (25.2%) | 9 (19.6%) | 24 (18.8%) | ||
4 | 5 (1.1%) | 0 (0%) | 0 (0%) | 1 (0.8%) | ||
ECOG Performance status | <0.0001 | 0.77 | ||||
0 | 231 (53%) | 180 (76.9%) | 32 (69.6%) | 93 (72.7%) | ||
1 | 186 (42.7%) | 49 (20.9%) | 14 (30.4%) | 33 (25.8%) | ||
≥2 | 19 (4.4%) | 5 (2.1%) | 0 (0%) | 2 (1.6%) | ||
Charlson Index, mean ± SD | 3.59 ± 2.05 | 3.33 ± 1.86 | 0.11 | 3.70 ± 2.14 | 3.48 ± 1.93 | 0.52 |
Primary tumor location, n (%) | 0.29 | 0.001 | ||||
RUL | 61 (14.3%) | 23 (10.6%) | 8 (19.5%) | 15 (14.9%) | ||
RML | 115 (26.9%) | 50 (23%) | 15 (36.6%) | 44 (43.6%) | ||
RIL | 64 (15%) | 34 (15.7%) | 16 (39%) | 15 (14.9%) | ||
LUL | 21 (4.9%) | 17 (7.8%) | 0 (0%) | 0 (0%) | ||
LIL | 167 (39%) | 93 (42.9%) | 2 (4.9%) | 27 (26.7%) | ||
Missing data | 8/436 (1.8%) | 17/234 (7.3%) | 5/46 (10.9%) | 27/128 (21.1%) | ||
Pre-operative stage #, n (%) | 0.65 | 0.43 | ||||
0 | 0 (0%) | 1 (0.4%) | 0 (0%) | 0 (0%) | ||
IA | 213 (48.9%) | 112 (47.9%) | 38 (82.6%) | 111 (86.7%) | ||
IB | 103 (23.6%) | 50 (21.4%) | 2 (4.3%) | 8 (6.2%) | ||
IIA | 35 (8%) | 27 (11.5%) | 0 (0%) | 0 (0%) | ||
IIB | 32 (7.3%) | 14 (6%) | 1 (2.2%) | 4 (3.1%) | ||
IIIA | 36 (8.3%) | 20 (8.5%) | 3 (6.5%) | 2 (1.6%) | ||
IIIB | 1 (0.2%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
IV | 16 (3.7%) | 10 (4.3%) | 2 (4.3%) | 3 (2.3%) | ||
Histology, n (%) | 0.005 | 0.49 | ||||
Adenocarcinoma | 296 (67.9%) | 163 (69.7%) | 37 (80.4%) | 106 (82.8%) | ||
Squamous cell carcinoma | 97 (22.2%) | 44 (18.8%) | 3 (6.5%) | 10 (7.8%) | ||
Typical and atypical carcinoid tumor | 10 (2.3%) | 18 (7.7%) | 2 (4.3%) | 8 (6.2%) | ||
Large cell carcinoma | 10 (2.3%) | 4 (1.7%) | 3 (6.5%) | 2 (1.6%) | ||
Others | 23 (5.3%) | 5 (2.1%) | 1 (2.2%) | 2 (1.6%) |
VATS | RATS | |||
---|---|---|---|---|
Lobectomy | ||||
Sample size | n events/N patients | n events/N patients | ||
5-Y DFS | 137/436 | 62/234 | ||
5-Y OS | 103/436 | 46/234 | ||
5-Y TTR | 111/436 | 53/234 | ||
Unadjusted | Surv (95% CI) | Surv (95% CI) | Surv difference (95% CI) | p |
5-Y DFS | 53.9% (47.7–60.2%) | 57.4% (47.2–67.4%) | 3.6% (−8.9 to 15.4%) | 0.56 |
5-Y OS | 61.2% (54.9–67.6%) | 60.6% (48.8–71.6%) | −0.7% (−13.9 to 12.1%) | 0.92 |
5-Y TTR | 61.8% (55.5–68.0%) | 65.4% (56.2–73.8%) | 3.6% (−7.5 to 14.2%) | 0.51 |
Propensity score adjusted | Surv (95% CI) | Surv (95% CI) | Surv difference (95% CI) | p |
5-Y DFS | 60.9% (52.9–68.8%) | 52.7% (41.7–63.7%) | −8.3% (−22.2 to 4.9%) | 0.24 |
5-Y OS | 69.3% (61.5–77.4%) | 57.2% (45.2–68.9%) | −12.1% (−27.2 to 1.6%) | 0.084 |
5-Y TTR | 66.2% (58.5–73.9%) | 60.2% (49.6–70.4%) | −6.0% (−19.3 to 6.5%) | 0.37 |
Segmentectomy | ||||
Sample size | n events/N patients | n events/N patients | ||
3-Y DFS | 6/46 | 18/128 | ||
3-Y OS | 3/46 | 9/128 | ||
3-Y TTR | 5/46 | 18/128 | ||
Unadjusted | Surv (95% CI) | Surv (95% CI) | Surv difference (95% CI) | p |
3-Y DFS | 82.8% (68.9–94.7%) | 77.4% (67.2–86.9%) | −5.4% (−21.3 to 11.8%) | 0.50 |
3-Y OS | 89.3% (75.0–100%) | 87.3% (77.9–94.9%) | −2.0% (−16.6 to 14.4%) | 0.76 |
3-Y TTR | 84.7% (70.6–96.6%) | 77.4% (67.2–86.9%) | −7.3% (−23.2 to 9.8%) | 0.37 |
Propensity score adjusted | Surv (95% CI) | Surv (95% CI) | Surv difference (95% CI) | p |
3-Y DFS | 84.6% (69.8–99.0%) | 72.9% (50.6–92.4%) | −11.7% (−38.7 to 7.8%) | 0.21 |
3-Y OS | 90.7% (79.1–100%) | 82.6% (65.1–99.9%) | −8.1% (−26.5 to 9.4%) | 0.51 |
3-Y TTR | 87.4% (73.8–100%) | 72.9% (50.6–92.4%) | −14.4% (−41.5 to 4.0%) | 0.12 |
Lobectomy | Segmentectomy | |||||
---|---|---|---|---|---|---|
VATS n = 436 | RATS n = 234 | p | VATS n = 46 | RATS n = 128 | p | |
Conversion to thoracotomy, n (%) | ||||||
Total | 48 (11%) | 16 (6.8%) | 0.10 | 5 (10.9%) | 3 (2.3%) | 0.062 |
For operative complications | 18 (4.1%) | 4 (1.7%) | 0.056 | 1 (2.2%) | 1 (0.8%) | 0.04 |
For disease reasons | 11 (2.5%) | 3 (1.3%) | 2 (4.3%) | 0 (0%) | ||
Due to symphysis and fissure | 13 (3%) | 2 (0.9%) | 1 (2.2%) | 1 (0.8%) | ||
For other reasons | 6 (1.4%) | 7 (3%) | 1 (2.2%) | 1 (0.8%) | ||
Operative time (min), med (Q1; Q3) | 150 (120; 180) | 150 (110; 180) | 0.09 * | 150 (120; 180) | 100 (84; 131) | <0.0001 * |
Clavien–Dindo complications | 0.26 | 0.079 | ||||
None | 232 (53.2%) | 141 (60.3%) | 31 (67.4%) | 101 (78.9%) | ||
I | 58 (13.3%) | 21 (9%) | 6 (13%) | 5 (3.9%) | ||
II | 102 (23.4%) | 55 (23.5%) | 7 (15.2%) | 20 (15.6%) | ||
IIIa | 13 (3%) | 2 (0.9%) | 0 (0%) | 1 (0.8%) | ||
IIIb | 23 (5.3%) | 11 (4.7%) | 1 (2.2%) | 1 (0.8%) | ||
IVa | 1 (0.2%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
IVb | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
V | 7 (1.6%) | 4 (1.7%) | 1 (2.2%) | 0 (0%) | ||
Mean ± SD (from 0 to 7) | 1.03 ± 1.41 | 0.89 ± 1.38 | 0.24 | 0.67 ± 1.32 | 0.41 ± 0.84 | 0.12 |
Length of stay, day, median (Q1; Q3) | 5 (4; 8) | 5 (4; 7) | 0.09 * | 4 (3; 5.8) | 4 (3; 5) | 0.84 * |
Re-admission, n,% | 16 (3.7%) | 10 (4.3%) | 0.85 | 2 (4.3%) | 0 (0%) | 0.14 |
Infection | 6 (31.6%) | 4 (30.8%) | 0 | 0 | ||
Pleural effusion | 2 (10.5%) | 6 (46.2%) | 0 | 0 | ||
Hemorrhage | 2 (10.5%) | 1 (7.7%) | 0 | 0 | ||
Pulmonary failure | 2 (10.5%) | 0 (0%) | 0 | 0 | ||
Thromboembolic complication | 2 (10.5%) | 0 (0%) | 0 | 0 | ||
Other | 5 (26.3%) | 2 (15.4%) | 2 (100%) | 0 | ||
Mortality | ||||||
At day 30 | 7 (1.61%) | 4 (1.73%) | 1.00 † | 1 (2.17%) | 0 (0%) | 0.53 † |
At day 90 | 11 (2.58%) | 6 (2.63%) | 1.00 † | 1 (2.17%) | 1 (0.81%) | 0.95 † |
Pathologic stage #, n (%) | 0.29 | 0.37 | ||||
0 | 8 (1.8%) | 4 (1.7%) | 1 (2.2%) | 5 (3.9%) | ||
IA | 134 (30.7%) | 78 (33.3%) | 30 (65.2%) | 86 (67.2%) | ||
IB | 145 (33.3%) | 61 (26.1%) | 6 (13%) | 18 (14.1%) | ||
IIA | 49 (11.2%) | 32 (13.7%) | 3 (6.5%) | 5 (3.9%) | ||
IIB | 41 (9.4%) | 19 (8.1%) | 2 (4.3%) | 9 (7%) | ||
IIIA | 42 (9.6%) | 34 (14.5%) | 4 (8.7%) | 2 (1.6%) | ||
IIIB | 3 (0.7%) | 2 (0.9%) | 0 (0%) | 0 (0%) | ||
IV | 14 (3.2%) | 4 (1.7%) | 0 (0%) | 3 (2.3%) | ||
Nodal Up-staging, n (%) | ||||||
cN0 → pN+ (N1 and/or N2) | 53 (12.2%) | 29 (12.4%) | 1.00 | 3 (6.5%) | 7 (5.5%) | 1.00 |
cN0 → pN1 | 37 (8.5%) | 18 (7.7%) | 0.84 | 2 (4.3%) | 6 (4.7%) | 1.00 |
cN0 → pN2 | 16 (3.7%) | 11 (4.7%) | 0.65 | 1 (2.2%) | 1 (0.8%) | 0.92 |
Adjuvant therapy, n, % | 0.17 | 0.18 | ||||
Chemotherapy | 89 (20.4%) | 41 (17.5%) | 9 (19.6%) | 13 (10.2%) | ||
Radiotherapy | 5 (1.1%) | 6 (2.6%) | 0 (0%) | 0 (0%) | ||
Chemotherapy and Radiotherapy | 8 (1.8%) | 9 (3.8%) | 0 (0%) | 2 (1.6%) | ||
Refused by the patient | 17 (3.9%) | 7 (3%) | 0.71 | 0 (0%) | 1 (0.8%) | 1.00 |
Adjuvant therapy by node status, n, % | ||||||
pN+ | 51 (54.8%) | 34 (56.7%) | 0.96 | 3 (75%) | 6 (85.7%) | 1.00 |
pN1 | 32 (52.5%) | 13 (43.3%) | 0.55 | 2 (66.7%) | 5 (83.3%) | 1.00 |
pN2 | 19 (59.4%) | 21 (70%) | 0.54 | 1 (100%) | 1 (100%) | 1.00 |
Lobectomy | Segmentectomy | |||||
---|---|---|---|---|---|---|
VATS n = 436 | RATS n = 234 | p | VATS n = 46 | RATS n = 128 | p | |
Follow-up of disease-free survivors, months, median (Q1; Q3) | 25.3 (6.9; 56.6) | 24 (10.1; 43.2) | 0.90 * | 16.0 (7.2; 48.0) | 22.7 (11.8; 40.9) | 0.42 * |
Lost to follow-up, n, % | 28 (6.4%) | 15 (6.4%) | 1.00 | 3 (6.5%) | 2 (1.6%) | 0.23 |
First recurrence within 5-Y, n,% | 0.52 | 0.75 | ||||
None | 349 (80.4%) | 186 (79.8%) | 40 (87%) | 108 (84.4%) | ||
Local | 32 (7.4%) | 23 (9.9%) | 2 (4.3%) | 6 (4.7%) | ||
Metastatic | 36 (8.3%) | 14 (6%) | 3 (6.5%) | 6 (4.7%) | ||
Local and metastatic | 17 (3.9%) | 10 (4.3%) | 1 (2.2%) | 8 (6.2%) | ||
Treatment of first recurrence within 5-Y, n,% | 0.73 | 0.10 | ||||
Chemotherapy | 26 (30.6%) | 15 (31.9%) | 1 (16.7%) | 9 (45%) | ||
Radiotherapy | 11 (12.9%) | 9 (19.1%) | 2 (33.3%) | 0 (0%) | ||
Chemotherapy and Radiotherapy | 8 (9.4%) | 3 (6.4%) | 1 (16.7%) | 4 (20%) | ||
Palliative care only | 40 (47.1%) | 20 (42.6%) | 2 (33.3%) | 7 (35%) | ||
pTNM stage # | 5-Y Disease Free Survival, % (95% CI) | 3-Y Disease Free Survival, % (95% CI) | ||||
IA | 68.0% (57.8–76.3%) | 69.9% (49.2–83.1%) | 82.4% (57.5–94.3%) | 78.0% (64.3–87.5%) | ||
IB | 42.5% (27.9–56.6%) | 63.7% (27.2–80.6%) | UTC | UTC | ||
IIA | 65.4% (39.3–83.3%) | 38.2% (2.1–64.4%) | UTC | UTC | ||
IIB | 40.7% (7.6–69.0%) | 18.1% (0.6–59.4%) | UTC | UTC | ||
IIIA | 26.7% (4.7–53.2%) | UTC | UTC | UTC | ||
IIIB | UTC | UTC | UTC | UTC | ||
IV | 7.3% (0.2–33.8%) | 30.0% (1.1–70.1%) | UTC | UTC | ||
pTNM stage # | 5-Y Overall Survival, % (95% CI) | 3-Y Overall Survival, % (95% CI) | ||||
IA | 76.0% (65.8–83.7%) | 70.4% (49.6–84.3%) | 87.8% (62.7–97.7%) | 90.1% (77.9–96.3%) | ||
IB | 47.9% (32.2–62.4%) | 69.5% (33.9–86.1%) | UTC | UTC | ||
IIA | 63.3% (36.5–83.5%) | 28.5% (1.2–64.8%) | UTC | UTC | ||
IIB | 44.3% (12.6–72.5%) | UTC | UTC | UTC | ||
IIIA | 36.5% (12.9–61.0%) | UTC | UTC | UTC | ||
IIIB | UTC | UTC | UTC | UTC | ||
IV | 40.5% (6.6–76.0%) | 48.2% (7.7–84.5%) | UTC | UTC | ||
Death cause, beyond day 90, n,% | 0.82 | 0.60 | ||||
Related to the lung cancer | 77 (71.3%) | 38 (77.6%) | 4 (80%) | 13 (86.7%) | ||
Related to another cancer | 13 (12%) | 5 (10.2%) | 0 (0%) | 1 (6.7%) | ||
Non-cancer disease | 18 (16.7%) | 6 (12.2%) | 1 (20%) | 1 (6.7%) |
VATS | RATS | |||
---|---|---|---|---|
Lobectomy for cTNM IA# | ||||
Sample size | n events/N patients | n events/N patients | ||
5-Y DFS | 44/213 | 17/112 | ||
5-Y OS | 30/213 | 15/112 | ||
5-Y TTR | 34/213 | 13/112 | ||
Unadjusted surv | Surv (95% CI) | Surv (95% CI) | Surv difference (95% CI) | p |
5-Y DFS | 68.0% (59.2–76.2%) | 69.9% (54.7–83.1%) | 1.9% (−16.1 to 18.0%) | 0.81 |
5-Y OS | 76.0% (67.6–84.1%) | 70.4% (54.0–84.7%) | −5.7% (−24.2 to 11.1%) | 0.54 |
5-Y TTR | 74.6% (66.4–82.3%) | 75.3% (60.0–88.4%) | 0.6% (−16.6 to 16.3%) | 0.92 |
Propensity score adjusted surv | Surv (95% CI) | Surv (95% CI) | Surv difference (95% CI) | p |
5-Y DFS | 71.9% (59.4–83.0%) | 67.7% (50.5–84.4%) | −4.2% (−24.3 to 17.1%) | 0.80 |
5-Y OS | 80.9% (69.5–90.5%) | 66.2% (47.6–84.9%) | −14.7% (−34.8 to 7.3%) | 0.20 |
5-Y TTR | 75.5% (63.3–86.1%) | 74.0% (57.0–89.6%) | −1.5% (−21.5 to 18.4%) | 0.99 |
Segmentectomy for cTNM IA # | ||||
Sample size | n events/N patients | n events/N patients | ||
3-Y DFS | 5/38 | 16/111 | ||
3-Y OS | 3/38 | 7/111 | ||
3-Y TTR | 4/38 | 16/111 | ||
Unadjusted | Surv (95% CI) | Surv (95% CI) | Surv difference (95% CI) | p |
3-Y DFS | 82.4% (66.4–96.0%) | 78.0% (66.8–87.7%) | −4.5% (−21.8 to 14.2%) | 0.59 |
3-Y OS | 87.8% (71.5–100.0%) | 90.1% (81.6–96.8%) | 2.3% (−12.3 to 20.2%) | 0.81 |
3-Y TTR | 84.7% (68.8–96.9%) | 78.0% (66.8–87.7%) | −6.7% (−23.6 to 12.0%) | 0.43 |
Propensity score adjusted | Surv (95% CI) | Surv (95% CI) | Surv difference (95% CI) | p |
3-Y DFS | 83.4% (67.9–100.0%) | 68.3% (44.3–91.4%) | −15.1% (−44.4 to 7.5%) | 0.17 |
3-Y OS | 89.5% (77.4–100.0%) | 80.8% (62.6–99.9%) | −8.7% (−28.2 to 9.9%) | 0.51 |
3-Y TTR | 86.3% (71.4–100.0%) | 68.3% (44.3–91.4%) | −18.0% (−47.7 to 3.9%) | 0.096 |
Reference | Study Setting | OS RATS vs. VATS Adjusted HR (95% CI) | DFS RATS vs. VATS Adjusted HR (95% CI) |
---|---|---|---|
Ma et al. 2021; BMC Cancer; Systematic review and meta-analysis [21] | Systematic review and meta-analysis 18 studies included Lobectomy + segmentectomy 5114 RATS 6133 VATS 2008 to 2019 | 1.02 (0.82–1.26) | 1.03 (0.66–1.61) |
Aiolfi 2021 [11] | Systematic review and meta-analysis Lobectomy 34 studies included 79,171 VATS 15,390 RATS 1990 to 2018 | 1.53 (0.87–2.88) | |
Wu 2020 [23] | Systematic review and meta-analysis Lobectomy 25 studies included 7135 RATS 43,269 VATS 2011 to 2020 | 0.77 (0.57–1.05) | 0.76 (0.59–0.97) |
Kneuertz 2020 [22] | Society of Thoracic Surgery General Thoracic Surgery Database Lobectomy stage I to III 245 RATS 118 VATS 2012 to 2017 | 0.72 (0.42–1.22) | 0.67 (0.43–1.04) |
Veluswamy 2019 [26] | SEER–Medicare database. Lobectomy stage I to IIIA Age > 65 years 338 RATS 1127 VATS 2008 to 2013 | 0.91 (0.70–1.18) | |
Yang 2017 [27] | Retrospective single-center cohort Lobectomy stage IA to IB 172 RATS (after matching) 141 VATS (after matching) 2002 to 2012 | 1.07 (0.62–1.83) | 1.12 (0.73–1.74) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montagne, F.; Chaari, Z.; Bottet, B.; Sarsam, M.; Mbadinga, F.; Selim, J.; Guisier, F.; Gillibert, A.; Baste, J.-M. Long-Term Survival Following Minimally Invasive Lung Cancer Surgery: Comparing Robotic-Assisted and Video-Assisted Surgery. Cancers 2022, 14, 2611. https://doi.org/10.3390/cancers14112611
Montagne F, Chaari Z, Bottet B, Sarsam M, Mbadinga F, Selim J, Guisier F, Gillibert A, Baste J-M. Long-Term Survival Following Minimally Invasive Lung Cancer Surgery: Comparing Robotic-Assisted and Video-Assisted Surgery. Cancers. 2022; 14(11):2611. https://doi.org/10.3390/cancers14112611
Chicago/Turabian StyleMontagne, François, Zied Chaari, Benjamin Bottet, Matthieu Sarsam, Frankie Mbadinga, Jean Selim, Florian Guisier, André Gillibert, and Jean-Marc Baste. 2022. "Long-Term Survival Following Minimally Invasive Lung Cancer Surgery: Comparing Robotic-Assisted and Video-Assisted Surgery" Cancers 14, no. 11: 2611. https://doi.org/10.3390/cancers14112611
APA StyleMontagne, F., Chaari, Z., Bottet, B., Sarsam, M., Mbadinga, F., Selim, J., Guisier, F., Gillibert, A., & Baste, J. -M. (2022). Long-Term Survival Following Minimally Invasive Lung Cancer Surgery: Comparing Robotic-Assisted and Video-Assisted Surgery. Cancers, 14(11), 2611. https://doi.org/10.3390/cancers14112611