Effects of Multimodal Bundle with Remote Ischemic Preconditioning and Intrathecal Analgesia on Early Recovery of Estimated Glomerular Filtration Rate after Robot-Assisted Laparoscopic Partial Nephrectomy for Renal Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Randomization
2.4. RIPC and ITMB Interventions
2.5. RALPN and Anesthesia
2.6. Primary Outcome
2.7. Secondary Outcomes
2.8. Clinical Variables
2.9. Sample Size and Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Perioperative eGFR Outcomes
3.3. Postoperative Surgical and Analgesic Outcomes
3.4. Postoperative Inflammatory Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dieu, A.; Huynen, P.; Lavand’homme, P.; Beloeil, H.; Freys, S.M.; Pogatzki-Zahn, E.M.; Joshi, G.P.; Van de Velde, M. Pain management after open liver resection: Procedure-Specific Postoperative Pain Management (PROSPECT) recommendations. Reg. Anesth. Pain Med. 2021, 46, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Thiel, D.D.; Winfield, H.N. Robotics in urology: Past, present, and future. J. Endourol. 2008, 22, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.H.; Lane, B.R.; Lohse, C.M.; Leibovich, B.C.; Fergany, A.; Frank, I.; Gill, I.S.; Blute, M.L.; Campbell, S.C. Renal function after partial nephrectomy: Effect of warm ischemia relative to quantity and quality of preserved kidney. Urology 2012, 79, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.H.; Lane, B.R.; Lohse, C.M.; Leibovich, B.C.; Fergany, A.; Frank, I.; Gill, I.S.; Blute, M.L.; Campbell, S.C. Every minute counts when the renal hilum is clamped during partial nephrectomy. Eur. Urol. 2010, 58, 340–345. [Google Scholar] [CrossRef]
- Desai, M.M.; de Castro Abreu, A.L.; Leslie, S.; Cai, J.; Huang, E.Y.; Lewandowski, P.M.; Lee, D.; Dharmaraja, A.; Berger, A.K.; Goh, A.; et al. Robotic partial nephrectomy with superselective versus main artery clamping: A retrospective comparison. Eur. Urol. 2014, 66, 713–719. [Google Scholar] [CrossRef]
- Hung, A.J.; Cai, J.; Simmons, M.N.; Gill, I.S. “Trifecta” in partial nephrectomy. J. Urol. 2013, 189, 36–42. [Google Scholar] [CrossRef]
- Gill, I.S.; Patil, M.B.; Abreu, A.L.; Ng, C.; Cai, J.; Berger, A.; Eisenberg, M.S.; Nakamoto, M.; Ukimura, O.; Goh, A.C.; et al. Zero ischemia anatomical partial nephrectomy: A novel approach. J. Urol. 2012, 187, 807–814. [Google Scholar] [CrossRef]
- Smith, G.L.; Kenney, P.A.; Lee, Y.; Libertino, J.A. Non-clamped partial nephrectomy: Techniques and surgical outcomes. BJU Int. 2011, 107, 1054–1058. [Google Scholar] [CrossRef]
- Zhang, L.; Diao, Y.; Chen, G.; Tanaka, A.; Eastwood, G.M.; Bellomo, R. Remote ischemic conditioning for kidney protection: A meta-analysis. J. Crit. Care 2016, 33, 224–232. [Google Scholar] [CrossRef]
- Heusch, G.; Bøtker, H.E.; Przyklenk, K.; Redington, A.; Yellon, D. Remote ischemic conditioning. J. Am. Coll. Cardiol. 2015, 65, 177–195. [Google Scholar] [CrossRef] [Green Version]
- Gassanov, N.; Nia, A.M.; Caglayan, E.; Er, F. Remote ischemic preconditioning and renoprotection: From myth to a novel therapeutic option? J. Am. Soc. Nephrol. JASN 2014, 25, 216–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.; Hur, M.; Cho, H.; Bae, J.; Yoon, H.K.; Lee, H.J.; Jeong, Y.H.; Cho, Y.J.; Ku, J.H.; Kim, W.H. The Effect of Remote Ischemic Preconditioning on Serum Creatinine in Patients Undergoing Partial Nephrectomy: A Randomized Controlled Trial. J. Clin. Med. 2021, 10, 1636. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, P.; Bordeianou, L. Implementation of an ERAS Pathway in Colorectal Surgery. Clin. Colon Rectal Surg. 2019, 32, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Frassanito, L.; Vergari, A.; Nestorini, R.; Cerulli, G.; Placella, G.; Pace, V.; Rossi, M. Enhanced recovery after surgery (ERAS) in hip and knee replacement surgery: Description of a multidisciplinary program to improve management of the patients undergoing major orthopedic surgery. Musculoskelet. Surg. 2020, 104, 87–92. [Google Scholar] [CrossRef]
- Chiu, C.; Aleshi, P.; Esserman, L.J.; Inglis-Arkell, C.; Yap, E.; Whitlock, E.L.; Harbell, M.W. Improved analgesia and reduced post-operative nausea and vomiting after implementation of an enhanced recovery after surgery (ERAS) pathway for total mastectomy. BMC Anesthesiol. 2018, 18, 41. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, M.; Park, Y.H.; Park, M.; Shim, J.W.; Lee, H.M.; Kim, Y.S.; Moon, Y.E.; Hong, S.H.; Chae, M.S. Delayed remnant kidney function recovery is less observed in living donors who receive an analgesic, intrathecal morphine block in laparoscopic nephrectomy for kidney transplantation: A propensity score-matched analysis. BMC Anesthesiol. 2020, 20, 165. [Google Scholar] [CrossRef]
- Baar, W.; Goebel, U.; Buerkle, H.; Jaenigen, B.; Kaufmann, K.; Heinrich, S. Lower rate of delayed graft function is observed when epidural analgesia for living donor nephrectomy is administered. BMC Anesthesiol. 2019, 19, 38. [Google Scholar] [CrossRef] [Green Version]
- Koning, M.V.; Teunissen, A.J.W.; van der Harst, E.; Ruijgrok, E.J.; Stolker, R.J. Intrathecal Morphine for Laparoscopic Segmental Colonic Resection as Part of an Enhanced Recovery Protocol: A Randomized Controlled Trial. Reg. Anesth. Pain Med. 2018, 43, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. BMJ Clin. Res. Ed. 2010, 340, c332. [Google Scholar] [CrossRef]
- Cohen, H.T.; McGovern, F.J. Renal-cell carcinoma. N. Engl. J. Med. 2005, 353, 2477–2490. [Google Scholar] [CrossRef] [Green Version]
- Horvath, B.; Kloesel, B.; Todd, M.M.; Cole, D.J.; Prielipp, R.C. The Evolution, Current Value, and Future of the American Society of Anesthesiologists Physical Status Classification System. Anesthesiology 2021, 135, 904–919. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J.; Balk, E.; Kausz, A.T.; Levin, A.; Steffes, M.W.; Hogg, R.J.; Perrone, R.D.; Lau, J.; Eknoyan, G. National Kidney Foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann. Intern. Med. 2003, 139, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Practice guidelines for perioperative blood management: An updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management. Anesthesiology 2015, 122, 241–275. [CrossRef] [PubMed]
- Benway, B.M.; Wang, A.J.; Cabello, J.M.; Bhayani, S.B. Robotic partial nephrectomy with sliding-clip renorrhaphy: Technique and outcomes. Eur. Urol. 2009, 55, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Go, J.; Park, S.C.; Yun, S.S.; Ku, J.; Park, J.; Shim, J.W.; Lee, H.M.; Kim, Y.S.; Moon, Y.E.; Hong, S.H.; et al. Exposure to Hyperchloremia Is Associated with Poor Early Recovery of Kidney Graft Function after Living-Donor Kidney Transplantation: A Propensity Score-Matching Analysis. J. Clin. Med. 2019, 8, 955. [Google Scholar] [CrossRef] [Green Version]
- Yoon, P.D.; Chalasani, V.; Woo, H.H. Use of Clavien-Dindo classification in reporting and grading complications after urological surgical procedures: Analysis of 2010 to 2012. J. Urol. 2013, 190, 1271–1274. [Google Scholar] [CrossRef]
- Kutikov, A.; Uzzo, R.G. The R.E.N.A.L. nephrometry score: A comprehensive standardized system for quantitating renal tumor size, location and depth. J. Urol. 2009, 182, 844–853. [Google Scholar] [CrossRef]
- Ho, P.W.; Pang, W.F.; Szeto, C.C. Remote ischaemic pre-conditioning for the prevention of acute kidney injury. Nephrology 2016, 21, 274–285. [Google Scholar] [CrossRef] [Green Version]
- Hommos, M.S.; Glassock, R.J.; Rule, A.D. Structural and Functional Changes in Human Kidneys with Healthy Aging. J. Am. Soc. Nephrol. JASN 2017, 28, 2838–2844. [Google Scholar] [CrossRef] [Green Version]
- Malek, M.; Nematbakhsh, M. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J. Ren. Inj. Prev. 2015, 4, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Wever, K.E.; Menting, T.P.; Rovers, M.; van der Vliet, J.A.; Rongen, G.A.; Masereeuw, R.; Ritskes-Hoitinga, M.; Hooijmans, C.R.; Warlé, M. Ischemic preconditioning in the animal kidney, a systematic review and meta-analysis. PLoS ONE 2012, 7, e32296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wever, K.E.; Warlé, M.C.; Wagener, F.A.; van der Hoorn, J.W.; Masereeuw, R.; van der Vliet, J.A.; Rongen, G.A. Remote ischaemic preconditioning by brief hind limb ischaemia protects against renal ischaemia-reperfusion injury: The role of adenosine. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2011, 26, 3108–3117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, M.; Das, D.K. Molecular mechanism of preconditioning. IUBMB Life 2008, 60, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Dong, H.L.; Li, Y.Z.; Luo, Z.J.; Sun, L.; Yang, Q.Z.; Yang, L.F.; Xiong, L. Effects of remote ischemic preconditioning on biochemical markers and neurologic outcomes in patients undergoing elective cervical decompression surgery: A prospective randomized controlled trial. J. Neurosurg. Anesthesiol. 2010, 22, 46–52. [Google Scholar] [CrossRef]
- Hoole, S.P.; Heck, P.M.; Sharples, L.; Khan, S.N.; Duehmke, R.; Densem, C.G.; Clarke, S.C.; Shapiro, L.M.; Schofield, P.M.; O'Sullivan, M.; et al. Cardiac Remote Ischemic Preconditioning in Coronary Stenting (CRISP Stent) Study: A prospective, randomized control trial. Circulation 2009, 119, 820–827. [Google Scholar] [CrossRef] [Green Version]
- Hausenloy, D.J.; Mwamure, P.K.; Venugopal, V.; Harris, J.; Barnard, M.; Grundy, E.; Ashley, E.; Vichare, S.; Di Salvo, C.; Kolvekar, S.; et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: A randomised controlled trial. Lancet 2007, 370, 575–579. [Google Scholar] [CrossRef]
- Zimmerman, R.F.; Ezeanuna, P.U.; Kane, J.C.; Cleland, C.D.; Kempananjappa, T.J.; Lucas, F.L.; Kramer, R.S. Ischemic preconditioning at a remote site prevents acute kidney injury in patients following cardiac surgery. Kidney Int. 2011, 80, 861–867. [Google Scholar] [CrossRef] [Green Version]
- Venugopal, V.; Laing, C.M.; Ludman, A.; Yellon, D.M.; Hausenloy, D. Effect of remote ischemic preconditioning on acute kidney injury in nondiabetic patients undergoing coronary artery bypass graft surgery: A secondary analysis of 2 small randomized trials. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2010, 56, 1043–1049. [Google Scholar] [CrossRef] [Green Version]
- Ali, Z.A.; Callaghan, C.J.; Lim, E.; Ali, A.A.; Nouraei, S.A.; Akthar, A.M.; Boyle, J.R.; Varty, K.; Kharbanda, R.K.; Dutka, D.P.; et al. Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: A randomized controlled trial. Circulation 2007, 116, I98-105. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Chen, Y.; Dong, B.; Kong, W.; Zhang, J.; Xue, W.; Liu, D.; Huang, Y. Effect of remote ischaemic preconditioning on renal protection in patients undergoing laparoscopic partial nephrectomy: A ‘blinded’ randomised controlled trial. BJU Int. 2013, 112, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.C.; Ercole, C.; Takagi, T.; Zhang, Z.; Velet, L.; Remer, E.M.; Demirjian, S.; Campbell, S.C. Decline in renal function after partial nephrectomy: Etiology and prevention. J. Urol. 2015, 193, 1889–1898. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, A.; Allinovi, M.; Cocci, A.; Russo, G.I.; Schiavina, R.; Rocco, B.; Giovannalberto, P.; Celia, A.; Galfano, A.; Varca, V.; et al. The Predictive Role of Biomarkers for the Detection of Acute Kidney Injury After Partial or Radical Nephrectomy: A Systematic Review of the Literature. Eur. Urol. Focus 2020, 6, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cheng, L.; Zhang, H.; Ma, L.; Wang, Y.; Niu, W.; Liu, Z.; Song, Y.; Liang, P.; Zhao, G.; et al. Laparoscopic and Robotic-Assisted Partial Nephrectomy: An Overview of Hot Issues. Urol. Int. 2020, 104, 669–677. [Google Scholar] [CrossRef]
- Shiroki, R.; Fukami, N.; Fukaya, K.; Kusaka, M.; Natsume, T.; Ichihara, T.; Toyama, H. Robot-assisted partial nephrectomy: Superiority over laparoscopic partial nephrectomy. Int. J. Urol. Off. J. Jpn. Urol. Assoc. 2016, 23, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Elgendy, H.; Helmy, H.A.R. Intrathecal Morphine Improves Hemodynamic Parameters and Analgesia in Patients Undergoing Aortic Valve Replacement Surgery: A Prospective, Double-Blind, Randomized Trial. Pain Physician 2017, 20, 405–412. [Google Scholar]
- Jackson, S.M.; Perry, L.A.; Borg, C.; Ramson, D.M.; Campbell, R.; Liu, Z.; Nguyen, J.; Douglas, N.; Kok, J.; Penny-Dimri, J. Prognostic Significance of Preoperative Neutrophil-Lymphocyte Ratio in Vascular Surgery: Systematic Review and Meta-Analysis. Vasc. Endovasc. Surg. 2020, 54, 697–706. [Google Scholar] [CrossRef]
- Tan, T.P.; Arekapudi, A.; Metha, J.; Prasad, A.; Venkatraghavan, L. Neutrophil-lymphocyte ratio as predictor of mortality and morbidity in cardiovascular surgery: A systematic review. ANZ J. Surg. 2015, 85, 414–419. [Google Scholar] [CrossRef]
- Perico, N.; Cattaneo, D.; Sayegh, M.H.; Remuzzi, G. Delayed graft function in kidney transplantation. Lancet 2004, 364, 1814–1827. [Google Scholar] [CrossRef]
- Warltier, D.C.; Pagel, P.S.; Kersten, J.R. Approaches to the prevention of perioperative myocardial ischemia. Anesthesiology 2000, 92, 253–259. [Google Scholar] [CrossRef]
- Daudel, F.; Freise, H.; Westphal, M.; Stubbe, H.D.; Lauer, S.; Bone, H.G.; Van Aken, H.; Sielenkämper, A.W. Continuous thoracic epidural anesthesia improves gut mucosal microcirculation in rats with sepsis. Shock 2007, 28, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Nygård, E.; Kofoed, K.F.; Freiberg, J.; Holm, S.; Aldershvile, J.; Eliasen, K.; Kelbaek, H. Effects of high thoracic epidural analgesia on myocardial blood flow in patients with ischemic heart disease. Circulation 2005, 111, 2165–2170. [Google Scholar] [CrossRef] [PubMed]
- Koza, Y. Acute kidney injury: Current concepts and new insights. J. Inj. Violence Res. 2016, 8, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Teo, S.H.; Endre, Z.H. Biomarkers in acute kidney injury (AKI). Best Pract. Res. Clin. Anaesthesiol. 2017, 31, 331–344. [Google Scholar] [CrossRef]
Group | Non-Bundle Group | Bundle Group | p Value |
---|---|---|---|
n | 40 | 40 | |
Preoperative Findings | |||
Sex (female) | 15 (37.5%) | 22 (55.0%) | 0.178 |
Age (years) | 49 (44–58) | 58 (46–64) | 0.075 |
Renal cell carcinoma | |||
Site (left kidney) | 18 (45.0%) | 18 (45.0%) | >0.999 |
Size (cm) | 2.65 (1.6–4.75) | 2.85 (1.8–4.7) | 0.623 |
RENAL nephrometry scoring system (points) | 6 (4–7) | 6 (5–7) | 0.606 |
Radius (maximal diameter in cm), (points) | 1 (1–2) | 1 (1–2) | 0.679 |
Exophytic/endophytic properties (points) | 1 (1–2) | 1 (1–2) | 0.932 |
Nearness of the tumor to the collecting system or sinus (mm), (points) | 1 (1–2) | 1 (1–2) | 0.308 |
Location relative to the polar lines (points) | 1 (1–2) | 1 (1–2) | 0.69 |
Body mass index (kg/m2) | 25.35 (22.38–27.4) | 24.55 (21.73–27.13) | 0.444 |
Comorbidity | |||
Hypertension | 9 (22.5%) | 12 (30.0%) | 0.612 |
Diabetes mellitus | 7 (17.5%) | 7 (17.5%) | >0.999 |
Vital sign | |||
SBP (mmHg) | 121.5 (115.0–130.8) | 130.5 (116.0–140.75) | 0.205 |
DBP (mmHg) | 80.0 (70.0–82.5) | 73.0 (70.0–82.25) | 0.455 |
HR (beats/min) | 72.0 (66.0–80.0) | 69.0 (66.0–76.0) | 0.198 |
BT (°C) | 36.45 (36.3–36.65) | 36.35 (36.13–36.61) | 0.316 |
Laboratory values | |||
WBC (×109/L) | 6.36 (5.52–8.26) | 6.04 (4.91–7.2) | 0.092 |
Neutrophil (%) | 60.35 (50.13–68.25) | 56.35 (50.7–62.33) | 0.26 |
Lymphocyte (%) | 30.3 (24.5–38.52) | 33.45 (26.48–38.33) | 0.361 |
Hemoglobin (g/dL) | 14.5 (13.4–15.5) | 13.7 (12.55–14.88) | 0.141 |
Glucose (mg/dL) | 104.5 (96.0–118.75) | 104.0 (93.0–112.5) | 0.476 |
Albumin (g/dL) | 4.5 (4.3–4.68) | 4.5 (4.33–4.8) | 0.662 |
Total bilirubin (mg/dL) | 0.75 (0.58–0.9) | 0.65 (0.48–0.87) | 0.204 |
AST (IU/L) | 21.0 (18.0–27.0) | 23.5 (20.0–26.0) | 0.399 |
ALT (IU/L) | 21.0 (14.25–27.75) | 20.5 (15.0–31.75) | 0.859 |
Sodium (mEq/L) | 142.0 (141.0–142.75) | 141.0 (140.0–142.75) | 0.413 |
Chloride (mEq/L) | 104.0 (103.0–105.0) | 104.0 (103.0–105.0) | 0.853 |
Potassium (mEq/L) | 4.3 (4.1–4.48) | 4.25 (4.1–4.58) | 0.927 |
Calcium (mg/dL) | 9.35 (9.13–9.58) | 9.3 (9.1–9.5) | 0.471 |
Platelet (×109/L) | 253.5 (212.0–294.75) | 249.5 (213.75–299.25) | 0.942 |
INR | 0.99 (0.97–1.02) | 0.99 (0.95–1.03) | 0.421 |
aPTT (sec) | 27.3 (25.9–28.48) | 27.3 (25.88–29.25) | 0.969 |
Intraoperative findings | |||
Total operation time (min) | 168.5 (131.25–182.25) | 150.0 (130.0–163.75) | 0.069 |
Warm ischemic time (min) | 13.46 (12.2–18.24) | 14.81 (12.27–19.8) | 0.637 |
Average of vital sign | |||
SBP (mmHg) | 120.5 (112.42–125.08) | 114.67 (109.42–122.33) | 0.122 |
DBP (mmHg) | 75.5 (69.83–80.92) | 74.17 (69.33–80.83) | 0.544 |
HR (beats/min) | 72.0 (70.75–76.67) | 69.67 (63.08–74.67) | 0.052 |
BT (°C) | 36.43 (36.28–36.63) | 36.32 (36.13–36.57) | 0.207 |
Requirement of rescue vasopressor | 3 (7.5%) | 3 (7.5%) | >0.999 |
Crystalloid input (mL/kg/h) | 3.94 (3.18–5.76) | 3.31 (2.34–4.78) | 0.059 |
Urine output (mL/kg/h) | 1.12 (0.43–2.19) | 0.72 (0.52–1.56) | 0.541 |
Bleeding loss (mL) | 100.0 (50.0–200.0) | 100.0 (50.0–100.0) | 0.397 |
Group | Non-Bundle Group | Bundle Group | p Value |
---|---|---|---|
n | 40 | 40 | |
Absolute estimated glomerular filtration rates (mL/min/1.73 m2) | |||
Preoperative day | 88.09 (80.09–96.1) | 88.14 (80.04–97.96) | 0.862 |
Immediately after surgery | 71.06 (66.3–84.95) *** | 83.53 (67.53–95.99) ** | 0.017 |
Postoperative day 1 | 77.96 (61.31–84.57) *** | 83.95 (69.64–97.38) | 0.072 |
Postoperative day 2 | 79.94 (67.28–90.3) ** | 84.99 (74.06–98.01) | 0.16 |
3 months after surgery | 85.65 (78.94–90.82) * | 84.83 (78.91–98.57) | 0.693 |
6 months after surgery | 88.41 (81.59–97.88) | 86.03 (80.72–104.95) | 0.992 |
Changes in estimated glomerular filtration rates (%) | |||
Preoperative day (reference) | - | - | - |
Immediately after surgery | −18.7 (−26.26–−4.23) | −9.34 (−17.35–1.78) | 0.008 |
Postoperative day 1 | −13.21 (−25.88–−2.5) | −5.14 (−16.25–12.09) | 0.018 |
Postoperative day 2 | −7.65 (−22.63–1.62) | −5.84 (−15.16–5.25) | 0.24 |
3 months after surgery | −2.98 (−10.73–3.89) | −0.93 (−10.13–5.72) | 0.57 |
6 months after surgery | 0.63 (−10.13–7.68) | 1.64 (−11.57–11.78) | 0.651 |
Group | Non-Bundle Group | Bundle Group | p Value |
---|---|---|---|
n | 40 | 40 | |
Length of hospital stay (day) | 4 (4–5) | 4 (4–4) | 0.032 |
Clavien-Dindo classification | |||
Grade I | 38 (95.0%) | 39 (97.5%) | >0.999 |
Grade II | 2 (5.0%) | 1 (2.5%) | |
Pain outcome during postoperative day 2 | |||
Peak numeric pain rating scale | <0.001 | ||
Mild (1–3 scale) | 3 (7.5%) | 24 (60.0%) | |
Moderate (4–6 scale) | 30 (75.0%) | 15 (37.5%) | |
Severe (7–10 scale) | 7 (17.5%) | 1 (2.5%) | |
Rescue fentanyl (mcg) | 50 (50–100) | 0 (0–50) | <0.001 |
Total amount of IV-PCA (mL) | 47.7 (31.6–58.7) | 28.9 (15.2–36.0) | <0.001 |
Group | Non-Bundle Group | Bundle Group | p Value |
---|---|---|---|
n | 40 | 40 | |
White blood cell (×109/L) | |||
Immediately after surgery | 12.8 (10.6–16.3) | 12.5 (10.6–14.1) | 0.416 |
Postoperative day 1 | 11.6 (10.1–14.6) | 11.2 (9.6–12.9) | 0.341 |
Postoperative day 2 | 8.9 (7.7–11.6) | 8.5 (6.9–10.1) | 0.092 |
Neutrophil (%) | |||
Immediately after surgery | 85.0 (82.1–90.0) | 83.1 (79.3–86.0) | 0.037 |
Postoperative day 1 | 82.6 (76.7–86.9) | 80.2 (77.5–82.6) | 0.044 |
Postoperative day 2 | 73.7 (70.7–77.5) | 72.4 (70.5–76.8) | 0.583 |
Lymphocyte (%) | |||
Immediately after surgery | 11.4 (8.8–14.2) | 13.4 (10.6–15.3) | 0.096 |
Postoperative day 1 | 18.2 (14.7–23.1) | 20.1 (15.9–23.0) | 0.361 |
Postoperative day 2 | 24.2 (19.5–30.7) | 26.7 (21.2–30.7) | 0.351 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chae, M.S.; Shim, J.-W.; Choi, H.; Hong, S.H.; Lee, J.Y.; Jeong, W.; Lee, B.; Kim, E.; Hong, S.H. Effects of Multimodal Bundle with Remote Ischemic Preconditioning and Intrathecal Analgesia on Early Recovery of Estimated Glomerular Filtration Rate after Robot-Assisted Laparoscopic Partial Nephrectomy for Renal Cell Carcinoma. Cancers 2022, 14, 1985. https://doi.org/10.3390/cancers14081985
Chae MS, Shim J-W, Choi H, Hong SH, Lee JY, Jeong W, Lee B, Kim E, Hong SH. Effects of Multimodal Bundle with Remote Ischemic Preconditioning and Intrathecal Analgesia on Early Recovery of Estimated Glomerular Filtration Rate after Robot-Assisted Laparoscopic Partial Nephrectomy for Renal Cell Carcinoma. Cancers. 2022; 14(8):1985. https://doi.org/10.3390/cancers14081985
Chicago/Turabian StyleChae, Min Suk, Jung-Woo Shim, Hoon Choi, Sung Hoo Hong, Ji Youl Lee, Woohyung Jeong, Bongsung Lee, Eunji Kim, and Sang Hyun Hong. 2022. "Effects of Multimodal Bundle with Remote Ischemic Preconditioning and Intrathecal Analgesia on Early Recovery of Estimated Glomerular Filtration Rate after Robot-Assisted Laparoscopic Partial Nephrectomy for Renal Cell Carcinoma" Cancers 14, no. 8: 1985. https://doi.org/10.3390/cancers14081985
APA StyleChae, M. S., Shim, J. -W., Choi, H., Hong, S. H., Lee, J. Y., Jeong, W., Lee, B., Kim, E., & Hong, S. H. (2022). Effects of Multimodal Bundle with Remote Ischemic Preconditioning and Intrathecal Analgesia on Early Recovery of Estimated Glomerular Filtration Rate after Robot-Assisted Laparoscopic Partial Nephrectomy for Renal Cell Carcinoma. Cancers, 14(8), 1985. https://doi.org/10.3390/cancers14081985