Role of the Systemic Immune-Inflammation Index in Patients with Metastatic Renal Cell Carcinoma Treated with First-Line Ipilimumab plus Nivolumab
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Characteristics
3.2. Survival Analysis
3.3. Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bedke, J.; Albiges, L.; Capitanio, U.; Giles, R.H.; Hora, M.; Lam, T.B.; Ljungberg, B.; Marconik, L.; Klattel, T.; Volpe, A.; et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2022 Update. Eur. Urol. 2022, 81, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Bedke, J.; Albiges, L.; Capitanio, U.; Giles, R.H.; Hora, M.; Lam, T.B.; Ljungberg, B.; Marconi, L.; Klatte, T.; Volpe, A.; et al. The 2021 Updated European Association of Urology Guidelines on Renal Cell Carcinoma: Immune Checkpoint Inhibitor–based Combination Therapies for Treatment-naive Metastatic Clear-cell Renal Cell Carcinoma Are Standard of Care. Eur. Urol. 2021, 80, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Deleuze, A.; Saout, J.; Dugay, F.; Peyronnet, B.; Mathieu, R.; Verhoest, G.; Bensalah, K.; Crouzet, L.; Laguerre, B.; Belaud-Rotureau, M.-A.; et al. Immunotherapy in Renal Cell Carcinoma: The Future Is Now. Int. J. Mol. Sci. 2020, 21, 2532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massari, F.; Rizzo, A.; Mollica, V.; Rosellini, M.; Marchetti, A.; Ardizzoni, A.; Santoni, M. Immune-based combinations for the treatment of metastatic renal cell carcinoma: A meta-analysis of randomised clinical trials. Eur. J. Cancer 2021, 154, 120–127. [Google Scholar] [CrossRef]
- Heng, D.Y.; Xie, W.; Regan, M.M.; Warren, M.A.; Golshayan, A.R.; Sahi, C.; Eigl, B.J.; Ruether, J.D.; Cheng, T.; North, S.; et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: Results from a large, multicenter study. J. Clin. Oncol. 2009, 27, 5794–5799. [Google Scholar] [CrossRef]
- Heng, D.Y.; Xie, W.; Regan, M.M.; Harshman, L.C.; Bjarnason, G.A.; Vaishampayan, U.N.; Mackenzie, M.; Wood, L.; Donskov, F.; Tan, M.-H.; et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: A population-based study. Lancet Oncol. 2013, 14, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, A.; Mollica, V.; Santoni, M.; Ricci, A.D.; Rosellini, M.; Marchetti, A.; Montironi, R.; Ardizzoni, A.; Massari, F. Impact of Clinicopathological Features on Survival in Patients Treated with First-line Immune Checkpoint Inhibitors Plus Tyrosine Kinase Inhibitors for Renal Cell Carcinoma: A Meta-analysis of Randomized Clinical Trials. Eur. Urol. Focus 2021, 8, S2405–S4569. [Google Scholar] [CrossRef]
- Díaz-Montero, C.M.; Rini, B.I.; Finke, J.H. The immunology of renal cell carcinoma. Nat. Rev. Nephrol. 2020, 16, 721–735. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, S.; Wang, A.; Xie, H.; Guo, L.; Jiang, N.; Niu, Y. Platelet-lymphocyte ratio acts as an independent predictor of prognosis in patients with renal cell carcinoma. Clin. Chim. Acta 2018, 480, 166–172. [Google Scholar] [CrossRef]
- Li, M.; Deng, Q.; Zhang, L.; He, S.; Rong, J.; Zheng, F. The pretreatment lymphocyte to monocyte ratio predicts clinical outcome for patients with urological cancers: A meta-analysis. Pathol.-Res. Pract. 2018, 215, 5–11. [Google Scholar] [CrossRef]
- Yasar, H.A.; Yucel, K.B.; Arslan, C.; Ucar, G.; Karakaya, S.; Bilgin, B.; Taban, H.; Kucukarda, A.; Erturk, I.; Hızal, M.; et al. The relationship between prognostic nutritional index and treatment response in patients with metastatic renal cell cancer. J. Oncol. Pharm. Pract. 2019, 26, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wang, Y.; Yang, W.-X.; Dou, W.-C.; Shao, Y.-X.; Li, X. Modified Glasgow prognostic score as a prognostic factor for renal cell carcinomas: A systematic review and meta-analysis. Cancer Manag. Res. 2019, ume 11, 6163–6173. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Gao, Y.; Wu, Y.; Lin, H. Prognostic value of systemic immune-inflammation index in patients with urologic cancers: A meta-analysis. Cancer Cell Int. 2020, 20, 499. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Chang, Q.; Meng, X.; Gao, N.; Wang, W. Prognostic value of Systemic immune-inflammation index in cancer: A meta-analysis. J. Cancer 2018, 9, 3295–3302. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.-H.; Huang, D.-H.; Chen, Z.-Y. Prognostic role of systemic immune-inflammation index in solid tumors: A systematic review and meta-analysis. Oncotarget 2017, 8, 75381–75388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akan, S.; Ediz, C.; Sahin, A.; Tavukcu, H.H.; Urkmez, A.; Horasan, A.; Yilmaz, O.; Verit, A. Can the systemic immune inflammation index be a predictor of BCG response in patients with high-risk non-muscle invasive bladder cancer? Int. J. Clin. Pract. 2021, 75, e13813. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Shang, Z.; Jia, C.; Wu, J.; Cui, B.; Wang, Q.; Ou, T. Predictive Values of Preoperative Prognostic Nutritional Index and Systemic Immune-Inflammation Index for Long-Term Survival in High-Risk Non-Muscle-Invasive Bladder Cancer Patients: A Single-Centre Retrospective Study. Cancer Manag. Res. 2020, ume 12, 9471–9483. [Google Scholar] [CrossRef]
- Bittoni, A.; Pecci, F.; Mentrasti, G.; Crocetti, S.; Lupi, A.; Lanese, A.; Pellei, C.; Ciotti, C.; Cantini, L.; Giampieri, R.; et al. Systemic immune-inflammation index: A prognostic tiebreaker among all in advanced pancreatic cancer. Ann. Transl. Med. 2021, 9, 251. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, H.; Zhao, Y.; Li, Y.; Wang, G.; Zhang, Y.; Guo, D.; Ji, S.; Sun, Z. Systemic immune-inflammation index changes predict outcome in stage III non-small-cell lung cancer patients treated with concurrent chemoradiotherapy. Futur. Oncol. 2021, 17, 2141–2149. [Google Scholar] [CrossRef]
- Atasever Akkas, E.; Yucel, B. Prognostic value of systemic ımmune ınflammation ındex in patients with laryngeal cancer. Eur. Arch. Otorhinolaryngol. 2021, 278, 1945–1955. [Google Scholar] [CrossRef]
- Tsilimigras, D.I.; Moris, D.; Mehta, R.; Paredes, A.Z.; Sahara, K.; Guglielmi, A.; Aldrighetti, L.; Weiss, M.; Bauer, T.W.; Alexandrescu, S.; et al. The systemic immune-inflammation index predicts prognosis in intrahepatic cholangiocarcinoma: An international multi-institutional analysis. HPB 2020, 22, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Yuan, S.; Yuan, Y.; Yi, L. Prognostic and Clinicopathological Significance of the Systemic Immune-Inflammation Index in Patients with Renal Cell Carcinoma: A Meta-Analysis. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Mishra, M.K.; Aggarwal, H. Inflammation, Immunity, and Cancer. Mediators Inflamm. 2017, 2017, 6027305. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Y.; Ge, P.; Zhang, P.-Y.; Zhao, M.; Ren, L. Role of Neutrophil to Lymphocyte Ratio or Platelet to Lymphocyte Ratio in Prediction of Bone Metastasis of Prostate Cancer. Clin. Lab. 2019, 65. [Google Scholar] [CrossRef]
- Rajwa, P.; Życzkowski, M.; Paradysz, A.; Slabon-Turska, M.; Suliga, K.; Bujak, K.; Bryniarski, P. Novel hematological biomarkers predict survival in renal cell carcinoma patients treated with nephrectomy. Arch. Med Sci. 2020, 16, 1062–1071. [Google Scholar] [CrossRef]
- Ménétrier-Caux, C.; Ray-Coquard, I.; Blay, J.Y.; Caux, C. Lymphopenia in Cancer Patients and its Effects on Response to Immunotherapy: An opportunity for combination with Cytokines? J. Immunother. Cancer 2019, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Saxena, S.; Awaji, M.; Singh, R.K. Tumor-Associated Neutrophils in Cancer: Going Pro. Cancers 2019, 11, 564. [Google Scholar] [CrossRef] [Green Version]
- Shaul, M.E.; Fridlender, Z.G. Neutrophils as active regulators of the immune system in the tumor microenvironment. J. Leukoc. Biol. 2017, 102, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Mollinedo, F. Neutrophil Degranulation, Plasticity, and Cancer Metastasis. Trends Immunol. 2019, 40, 228–242. [Google Scholar] [CrossRef]
- Giese, M.A.; Hind, L.E.; Huttenlocher, A. Neutrophil plasticity in the tumor microenvironment. Blood 2019, 133, 2159–2167. [Google Scholar] [CrossRef] [PubMed]
- Riedl, J.; Pabinger, I.; Ay, C. Platelets in cancer and thrombosis. Hamostaseologie 2014, 34, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Labelle, M.; Begum, S.; Hynes, R.O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011, 20, 576–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumacher, D.; Strilic, B.; Sivaraj, K.K.; Wettschureck, N.; Offermanns, S. Platelet-Derived Nucleotides Promote Tumor-Cell Transendothelial Migration and Metastasis via P2Y2 Receptor. Cancer Cell 2013, 24, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Ferrone, C.; Dranoff, G. Dual Roles for Immunity in Gastrointestinal Cancers. J. Clin. Oncol. 2010, 28, 4045–4051. [Google Scholar] [CrossRef] [Green Version]
- Ray-Coquard, I.; Cropet, C.; van Glabbeke, M.; Sebban, C.; Le Cesne, A.; Judson, I.; Tredan, O.; Verweij, J.; Biron, P.; Labidi-Galy, S.I.; et al. Lymphopenia as a Prognostic Factor for Overall Survival in Advanced Carcinomas, Sarcomas, and Lymphomas. Cancer Res. 2009, 69, 5383–5391. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Huang, Y.; Lin, T. Prognostic impact of elevated pre-treatment systemic immune-inflammation index (SII) in hepatocellular carcinoma: A meta-analysis. Medicine 2020, 99, e18571. [Google Scholar] [CrossRef]
- Fu, S.; Yan, J.; Tan, Y.; Liu, D. Prognostic value of systemic immune-inflammatory index in survival outcome in gastric cancer: A meta-analysis. J. Gastrointest. Oncol. 2021, 12, 344–354. [Google Scholar] [CrossRef]
- Li, J.; Shao, J.; Zhang, X.; Chen, X.; Zhao, W.; Qian, H.; Cui, X.; Jiang, X. Prognostic Value of the Pretreatment Systemic Immune-Inflammation Index in Patients with Colorectal Cancer. Gastroenterol. Res. Pract. 2020, 2020, 8781674. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, H. Prognostic prediction of systemic immune-inflammation index for patients with gynecological and breast cancers: A meta-analysis. World J. Surg. Oncol. 2020, 18, 197. [Google Scholar] [CrossRef]
- Hu, X.; Shao, Y.-X.; Yang, Z.-Q.; Dou, W.-C.; Xiong, S.-C.; Li, X. Preoperative systemic immune-inflammation index predicts prognosis of patients with non-metastatic renal cell carcinoma: A propensity score-matched analysis. Cancer Cell Int. 2020, 20, 222. [Google Scholar] [CrossRef]
- Basal, F.B.; Karacin, C.; Bilgetekin, I.; Oksuzoglu, O.B. Can Systemic Immune-Inflammation Index Create a New Perspective for the IMDC Scoring System in Patients with Metastatic Renal Cell Carcinoma? Urol. Int. 2021, 105, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Lolli, C.; Basso, U.; Derosa, L.; Scarpi, E.; Sava, T.; Santoni, M.; Crabb, S.J.; Massari, F.; Aieta, M.; Conteduca, V.; et al. Systemic immune-inflammation index predicts the clinical outcome in patients with metastatic renal cell cancer treated with sunitinib. Oncotarget 2016, 7, 54564–54571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Jiang, J.; Tang, S.; Sun, G. Predictive value of neutrophil-lymphocyte ratio and platelet-lymphocyte ratio in non-small cell lung cancer patients treated with immune checkpoint inhibitors: A meta-analysis. Int. Immunopharmacol. 2020, 85, 106677. [Google Scholar] [CrossRef] [PubMed]
- Dharmapuri, S.; Özbek, U.; Lin, J.Y.; Sung, M.; Schwartz, M.; Branch, A.D.; Ang, C. Predictive value of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in advanced hepatocellular carcinoma patients treated with anti–PD-1 therapy. Cancer Med. 2020, 9, 4962–4970. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, U.; Procopio, G.; Giannarelli, D.; Sabbatini, R.; Bearz, A.; Buti, S.; Basso, U.; Mitterer, M.; Ortega, C.; Bidoli, P.; et al. Association of Systemic Inflammation Index and Body Mass Index with Survival in Patients with Renal Cell Cancer Treated with Nivolumab. Clin. Cancer Res. 2019, 25, 3839–3846. [Google Scholar] [CrossRef] [Green Version]
- Iinuma, K.; Enomoto, T.; Kawada, K.; Fujimoto, S.; Ishida, T.; Takagi, K.; Nagai, S.; Ito, H.; Kawase, M.; Nakai, C.; et al. Utility of Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, and Systemic Immune Inflammation Index as Prognostic, Predictive Biomarkers in Patients with Metastatic Renal Cell Carcinoma Treated with Nivolumab and Ipilimumab. J. Clin. Med. 2021, 10, 5325. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; Aren Frontera, O.; Melichar, B.; Powles, T.; Donskov, F.; Plimack, E.R.; Barthélémy, P.; Hammers, H.J.; et al. Survival outcomes and independent response assessment with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma: 42-month follow-up of a randomized phase 3 clinical trial. J. Immunother. Cancer 2020, 8, e000891. [Google Scholar] [CrossRef]
- Deshpande, R.P.; Sharma, S.; Watabe, K. The Confounders of Cancer Immunotherapy: Roles of Lifestyle, Metabolic Disorders and Sociological Factors. Cancers 2020, 12, 2983. [Google Scholar] [CrossRef]
- Mollica, V.; Santoni, M.; Matrana, M.R.; Basso, U.; de Giorgi, U.; Rizzo, A.; Maruzzo, M.; Marchetti, A.; Rosellini, M.; Bleve, S.; et al. Concomitant Proton Pump Inhibitors and Outcome of Patients Treated with Nivolumab Alone or Plus Ipilimumab for Advanced Renal Cell Carcinoma. Target. Oncol. 2021, 17, 61–68. [Google Scholar] [CrossRef]
Overall, n = 49 | Low SII (<788), n = 20 | High SII (≥788), n = 29 | p-Value | |
---|---|---|---|---|
Age-median (IQR) | ||||
RCC diagnosis | 63.6 (39.9–82.7) | 64.6 (46.9–79.9) | 62.9 (39.9–82.7) | 0.502 |
First metastasis | 64.6 (39.9–83.5) | 64.8 (46.9–81.8) | 63.6 (39.9–83.5) | 0.807 |
Male gender | 35 (71.4%) | 15 (75%) | 20 (70%) | 0.842 |
Karnofsky <80% | 2 (4.1%) | 0 | 2 (6.9%) | 0.406 |
Histology | ||||
Clear cell | 39 (79.6%) | 17 (85%) | 22 (75.9%) | |
Papillary | 5 (10.2%) | 1 (5%) | 4 (13.8%) | |
Chromophobe | 1 (2.0%) | 0 | 1 (3.5%) | |
Other | 3 (6.1%) | 2 (10%) | 1 (3.5%) | |
NE | 1 (2.0) | 1 (3.5%) | 0.578 | |
pT stage | ||||
pT1 | 8 (16.3%) | 2 (10%) | 6 (20.7%) | |
pT2 | 5 (10.2%) | 2 (10%) | 3 (10.4%) | |
pT3 | 24 (49.0%) | 12 60%) | 12 (41.4%) | |
pT4 | 4 (8.2%) | 0 | 4 (13.8%) | |
NE | 8 (16.3%) | 4 (20%) | 4 (13.8%) | 0.361 |
Nodal status | ||||
pN0 | 27 (55.1%) | 11 (55%) | 16 (55.2%) | |
pN+ | 21 (42.9%) | 8 (40%) | 13 (44.8%) | |
pNx | 1 (2.0%) | 1 (5%) | 0 | 0.854 |
Metastasis | ||||
synchronous | 30 (61.2%) | 13 (65%) | 17 (58.6%) | |
metachronous | 19 (38.8%) | 7 (35%) | 12 (41.4%) | 0.836 |
≥2 metastastic sites | 36 (73.5%) | 13 (65%) | 23 (79.3%) | 0.270 |
Prior curative metastasectomy | 7 (14.3%) | 4 (20%) | 3 (10.3%) | 0.347 |
Time from diagnosis to systemic treatment <1 year | 37 (75.5%) | 16 (80%) | 21 (72.4%) | 0.548 |
MSKCC score | ||||
Good | 4 (8.2%) | 1 (5%) | 3 (10.3%) | |
Intermediate | 39 (79.6%) | 18 (90%) | 21 (72.4%) | |
Poor | 5 (10.2%) | 0 | 5 (17.2%) | |
NE | 1 (2.0%) | 1 (5%) | 0 | 0.538 |
IMDC score | ||||
Good | 2 (4.1%) | 0 | 2 (6.9%) | |
Intermediate | 34 (69.4%) | 16 (80%) | 18 (62.1%) | |
Poor | 9 (18.4%) | 1 (5%) | 8 (27.6%) | |
NE | 4 (8.2%) | 3 (15%) | 1 (3.5%) | 0.265 |
First imaging | ||||
Progressive disease | 23 (46.9%) | 4 (20%) | 19 (65.5%) | |
Stable disease | 7 (14.3%) | 4 (20%) | 3 (10.4%) | |
partial response | 18 (36.7%) | 12 (60%) | 6 (20.7%) | |
NE | 1 (2.0%) | 1 (3.5%) | 0.001 *** | |
Median time from primary tumor to metastasis (range, in months) | 0 (0–198.4) | 0 (0.33–118.5) | 0 (0–198.4) | 0.799 |
Median time to treatment (first diagnosis RCC to start ipilimumab plus nivolumab (range, in months) | 4.41 (0.10–198.77) | 3.93 (0.10–179.08) | 5.10 (0.20–198.77) | 0.669 |
Median time on ipilimumab plus nivolumab (range, in months) | 4.64 (0.33–33.6) | 6.64 (0.99–33.6) | 3.42 (0.33–24.69) | 0.014 * |
Median follow up from start ipilimumab plus nivolumab to last follow up or death (range, in months) | 9.53 (0.33–45.9) | 17.4 (5.6–45.9) | 7.36 (0.33–39.8) | 0.008 ** |
(A) | ||||
---|---|---|---|---|
PFS | ||||
Group under Investigation | Median (Months) | HR | 95% CI | p-Value |
SII Index < 788 (n = 20) vs. SII Index > 788 (n = 28) | 9.04 (0.99–33.60) 4.01 (0.33–24.69) | 1 2.70 | 0.22–5.97 | 0.014 * |
SII Index < 854 (n = 22) vs. SII Index > 854 (n = 26) | 8.29 (0.99–33.60) 4.18 (0.33–24.69) | 1 2.15 | 1.01–4.55 | 0.046 * |
Metastasis metachronous (n = 18) vs. synchronous (n = 30) | 4.18 (0.33–24.69) 6.08 (0.66–33.60) | 1 0.60 | 0.29–1.23 | 0.165 |
Time nephrectomy to metastasis ≥1 year (n = 12) vs. <1 year (n = 36) | 4.64 (0.33–24.69) 5.29 (0.66–33.60) | 1 0.82 | 0.37–1.79 | 0.615 |
MSKCC favorable (n = 4) vs. intermediate/poor (n = 43) | 8.29 (2.63–24.69) 5.29 (0.33–33.60) | 1 1.13 | 0.39–3.29 | 0.818 |
IMDC favorable (n = 2) vs. intermediate/poor (n = 43) | 2.63 (2.63–16.27) 6.08 (0.33–33.60) | 1 0.61 | 0.14–2.60 | 0.503 |
Index metastasis only one organ system (n = 12) vs. multiple organ systems (n = 36) | 8.29 (2.53–33.60) 4.18 (0.33–30.94) | 1 1.52 | 0.65–3.54 | 0.330 |
(B) | ||||
OS | ||||
Group under Investigation | Median (Months) | HR | 95% CI | p-Value |
SII Index < 788 (n = 20) vs. SII Index > 788 (n = 29) | NR (5.59–45.90) 19.69 (0.33–39.81) | 1 10.53 | 1.34–82.68 | 0.025 * |
SII Index < 854 (n = 22) vs. SII Index > 854 (n = 27) | NR (3.58–45.90) 19.69 (0.33–39.81) | 1 5.64 | 1.21–26.28 | 0.028 * |
Metastasis metachronous (n = 18) vs. synchronous (n = 31) | NR (1.05–45.90) NR (0.33–39.81) | 1 0.59 | 0.18–1.93 | 0.381 |
Time nephrectomy to metastasis ≥1 year (n = 12) vs. <1 year (n = 37) | NR (0.33–39.81) NR (1.05–45.90) | 1 1.72 | 0.37–8.00 | 0.489 |
MSKCC favorable (n = 4) vs. intermediate/poor (n = 44) | NR (23.08–36.62) NR (0.33–45.90) | 1 26.55 | 0.02–41,875.67 | 0.383 |
IMDC favorable (n = 2) vs. IMDC intermediate/poor (n = 43) | NR (23.09) NR (0.33–45.90) | 1 23.34 | 0.00–55,5052.05 | 0.540 |
Index metastasis only one organ system (n = 13) vs. multiple organ systems (n = 36) | NR (4.64–39.81) NR (0.33–45.90) | 1 3.92 | 0.50–30.67 | 0.193 |
(A) | ||||
---|---|---|---|---|
PFS | ||||
Group under Investigation | HR | 95% CI | p-Value | |
SII Index > 788 (ref. < 788) | 3.63 | 1.35–9.74 | 0.010 ** | |
IMDC Intermediate/poor (ref. favorable) | 2.31 | 0.33–16.16 | 0.400 | |
Index metastasis multiple organ systems (ref. only one organ system) | 2.16 | 0.64–7.34 | 0.218 | |
Metastasis synchronous (ref. metachronous) | 1.27 | 0.51–3.11 | 0.609 | |
(B) | ||||
OS | ||||
Group under Investigation | HR | 95% CI | p-Value | |
SII Index > 788 (ref. < 788) | 6.91 | 0.87–55.22 | 0.068 | |
IMDC Intermediate/poor (ref. favorable) | 9.76 | 0.00-NR | 0.977 | |
Index metastasis multiple organ systems (ref. only one organ system) | 11.33 | 0.00-NR | 0.974 | |
Metastasis synchronous (ref. metachronous) | 2.64 | 0.74–9.44 | 0.135 | |
(C) | ||||
First Imaging | ||||
PR + SD | PD | Total | p-Value | |
SII score on first imaging | ||||
Increase >20% Decrease > 20% or stable | 4 21 | 13 10 | 17 31 | |
Total | 25 | 23 | 48 | |
Pearson’s Chi-square (two-sided) | 0.003 ** | |||
Fisher’s exact test (two-sided) | 0.006 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stühler, V.; Herrmann, L.; Rausch, S.; Stenzl, A.; Bedke, J. Role of the Systemic Immune-Inflammation Index in Patients with Metastatic Renal Cell Carcinoma Treated with First-Line Ipilimumab plus Nivolumab. Cancers 2022, 14, 2972. https://doi.org/10.3390/cancers14122972
Stühler V, Herrmann L, Rausch S, Stenzl A, Bedke J. Role of the Systemic Immune-Inflammation Index in Patients with Metastatic Renal Cell Carcinoma Treated with First-Line Ipilimumab plus Nivolumab. Cancers. 2022; 14(12):2972. https://doi.org/10.3390/cancers14122972
Chicago/Turabian StyleStühler, Viktoria, Lisa Herrmann, Steffen Rausch, Arnulf Stenzl, and Jens Bedke. 2022. "Role of the Systemic Immune-Inflammation Index in Patients with Metastatic Renal Cell Carcinoma Treated with First-Line Ipilimumab plus Nivolumab" Cancers 14, no. 12: 2972. https://doi.org/10.3390/cancers14122972
APA StyleStühler, V., Herrmann, L., Rausch, S., Stenzl, A., & Bedke, J. (2022). Role of the Systemic Immune-Inflammation Index in Patients with Metastatic Renal Cell Carcinoma Treated with First-Line Ipilimumab plus Nivolumab. Cancers, 14(12), 2972. https://doi.org/10.3390/cancers14122972