Target Definition in MR-Guided Adaptive Radiotherapy for Head and Neck Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Tumor Target Definition before RT Treatment
2.1. The Current Role of CT
2.2. The Current Role of Multiparametric MRI
Anatomical Imaging
2.3. The New Role of Multiparametric MRI
2.3.1. Anatomical Imaging
2.3.2. Functional Imaging
2.4. MR-Only Workflow
2.5. MRI Scan Duration
3. Adaptive Tumor Target Definition during RT Treatment
3.1. Adaptation of Target Areas
3.1.1. Adaptation Based on Tumor Regression/Progression
3.1.2. Adaptation Based on Functional Imaging of the Target Areas
3.2. Motion Management of Target Areas
- Pre-treatment motion quantification for margin estimation. This method is used most often and is available in most modern radiotherapy departments. This can be performed using 2D cine images with a high frequency [85]. Another method is retrospectively rebinned 4D CT of 4D MRI to show 3D CTs or 3D MRIs of respiratory phases [86]. PTV margins incorporating this breathing related motion are extended by approximately 2 mm in cranio-caudal direction for laryngeal/hypopharyngeal tumors [83].
- Daily motion assessment before treatment starts using 2D cine MRI. A cine-MRI can be acquired as a part of the standard protocol and consists of continuous real-time imaging for a fixed time. On MR-guided systems, it is possible to acquire real-time cine MRIs to track the anatomy or tumor during treatment. This enables the use of patient’s individual PTV margins [83].
- Next step is online gating: real-time tracking using continuous 2D cines to track the position of the tumor and use gated delivery of radiation dose to limit margins and thereby limit the dose to the surrounding tissue. This method is mostly used in stereotactic radiotherapy of lung tumors [87]. The downside of this method is the increase in delivery time, which makes it less efficient.
- The ultimate step is online guidance or tracking: by trailing or tracking of the tumor using real-time cine images, the margins can be minimized with minimal dose to surrounding tissues. At this moment, imaging is not fast enough to perform online 3D tracking and trailing, but it will be in the next decade.
4. Future Perspectives on Target Definition for HNSCC Treatments
4.1. New MR-L Treatments
4.2. New Elective Nodal Target Definition
4.3. Treatment Adaptation of the Elective Lymph Node Regions
4.3.1. Reducing the Dose
4.3.2. Reducing the Target Volume
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gatta, G.; Botta, L.; Sanchez, M.J.; Anderson, L.A.; Pierannunzio, D.; Licitra, L.; EUROCARE Working Group. Prognoses and improvement for head and neck cancers diagnosed in Europe in early 2000s: The EUROCARE-5 population-based study. Eur. J. Cancer 2015, 51, 2130–2143. [Google Scholar] [CrossRef] [PubMed]
- Lubin, J.H.; Purdue, M.; Kelsey, K.; Zhang, Z.F.; Winn, D.; Wei, Q.; Talamini, R.; Szeszenia-Dabrowska, N.; Sturgis, E.M.; Smith, E.; et al. Total exposure and exposure rate effects for alcohol and smoking and risk of head and neck cancer: A pooled analysis of case-control studies. Am. J. Epidemiol. 2009, 170, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Mork, J.; Lie, A.K.; Glattre, E.; Hallmans, G.; Jellum, E.; Koskela, P.; Moller, B.; Pukkala, E.; Schiller, J.T.; Youngman, L.; et al. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2001, 344, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- O’Rorke, M.A.; Ellison, M.V.; Murray, L.J.; Moran, M.; James, J.; Anderson, L.A. Human papillomavirus related head and neck cancer survival: A systematic review and meta-analysis. Oral Oncol. 2012, 48, 1191–1201. [Google Scholar] [CrossRef]
- Chao, K.S.; Ozyigit, G.; Blanco, A.I.; Thorstad, W.L.; Deasy, J.O.; Haughey, B.H.; Spector, G.J.; Sessions, D.G. Intensity-modulated radiation therapy for oropharyngeal carcinoma: Impact of tumor volume. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 43–50. [Google Scholar] [CrossRef]
- Gupta, T.; Agarwal, J.; Jain, S.; Phurailatpam, R.; Kannan, S.; Ghosh-Laskar, S.; Murthy, V.; Budrukkar, A.; Dinshaw, K.; Prabhash, K.; et al. Three-dimensional conformal radiotherapy (3D-CRT) versus intensity modulated radiation therapy (IMRT) in squamous cell carcinoma of the head and neck: A randomized controlled trial. Radiother. Oncol. 2012, 104, 343–348. [Google Scholar] [CrossRef]
- Nutting, C.M.; Morden, J.P.; Harrington, K.J.; Urbano, T.G.; Bhide, S.A.; Clark, C.; Miles, E.A.; Miah, A.B.; Newbold, K.; Tanay, M.; et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): A phase 3 multicentre randomised controlled trial. Lancet Oncol. 2011, 12, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Ramaekers, B.L.; Joore, M.A.; Grutters, J.P.; van den Ende, P.; Jong, J.; Houben, R.; Lambin, P.; Christianen, M.; Beetz, I.; Pijls-Johannesma, M.; et al. The impact of late treatment-toxicity on generic health-related quality of life in head and neck cancer patients after radiotherapy. Oral Oncol. 2011, 47, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, C.L.; Steenbakkers, R.J.; van den Heuvel, E.; Duppen, J.C.; Navran, A.; Bijl, H.P.; Chouvalova, O.; Burlage, F.R.; Meertens, H.; Langendijk, J.A.; et al. 3D Variation in delineation of head and neck organs at risk. Radiat. Oncol. 2012, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Van der Veen, J.; Gulyban, A.; Willems, S.; Maes, F.; Nuyts, S. Interobserver variability in organ at risk delineation in head and neck cancer. Radiat. Oncol. 2021, 16, 120. [Google Scholar] [CrossRef]
- Van der Veen, J.; Gulyban, A.; Nuyts, S. Interobserver variability in delineation of target volumes in head and neck cancer. Radiother. Oncol. 2019, 137, 9–15. [Google Scholar] [CrossRef]
- Kaanders, J.; van den Bosch, S.; Dijkema, T.; Al-Mamgani, A.; Raaijmakers, C.P.J.; Vogel, W.V. Advances in cancer imaging require renewed radiotherapy dose and target volume concepts. Radiother. Oncol. 2020, 148, 140–142. [Google Scholar] [CrossRef] [PubMed]
- Lomax, A.J. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: The potential effects of inter-fraction and inter-field motions. Phys. Med. Biol. 2008, 53, 1043–1056. [Google Scholar] [CrossRef] [PubMed]
- Van der Voort, S.; van de Water, S.; Perko, Z.; Heijmen, B.; Lathouwers, D.; Hoogeman, M. Robustness Recipes for Minimax Robust Optimization in Intensity Modulated Proton Therapy for Oropharyngeal Cancer Patients. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Burigo, L.N.; Oborn, B.M. Integrated MRI-guided proton therapy planning: Accounting for the full MRI field in a perpendicular system. Med. Phys. 2022, 49, 1853–1873. [Google Scholar] [CrossRef] [PubMed]
- Pennazio, F.; Ferrero, V.; D’Onghia, G.; Garbolino, S.; Fiorina, E.; Marti Villarreal, O.A.; Mas Milian, F.; Monaco, V.; Monti, V.; Patera, A.; et al. Proton therapy monitoring: Spatiotemporal emission reconstruction with prompt gamma timing and implementation with PET detectors. Phys. Med. Biol. 2022, 67, 065005. [Google Scholar] [CrossRef]
- Hernandez, S.; Sjogreen, C.; Gay, S.S.; Nguyen, C.; Netherton, T.; Olanrewaju, A.; Zhang, L.J.; Rhee, D.J.; Mendez, J.D.; Court, L.E.; et al. Development and dosimetric assessment of an automatic dental artifact classification tool to guide artifact management techniques in a fully automated treatment planning workflow. Comput. Med. Imaging Graph. 2021, 90, 101907. [Google Scholar] [CrossRef]
- Gregoire, V.; Ang, K.; Budach, W.; Grau, C.; Hamoir, M.; Langendijk, J.A.; Lee, A.; Le, Q.T.; Maingon, P.; Nutting, C.; et al. Delineation of the neck node levels for head and neck tumors: A 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother. Oncol. 2014, 110, 172–181. [Google Scholar] [CrossRef]
- Gregoire, V.; Evans, M.; Le, Q.T.; Bourhis, J.; Budach, V.; Chen, A.; Eisbruch, A.; Feng, M.; Giralt, J.; Gupta, T.; et al. Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines. Radiother. Oncol. 2018, 126, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Pettit, L.; Hartley, A.; Bowden, S.J.; Mehanna, H.; Glaholm, J.; Cashmore, J.; Sanghera, P. Variation in volume definition between UK head and neck oncologists treating oropharyngeal carcinoma. Clin. Oncol. 2011, 23, 654–655. [Google Scholar] [CrossRef]
- Hansen, C.R.; Johansen, J.; Samsoe, E.; Andersen, E.; Petersen, J.B.B.; Jensen, K.; Andersen, L.J.; Sand, H.M.B.; Bertelsen, A.S.; Grau, C. Consequences of introducing geometric GTV to CTV margin expansion in DAHANCA contouring guidelines for head and neck radiotherapy. Radiother. Oncol. 2018, 126, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Chung, N.N.; Ting, L.L.; Hsu, W.C.; Lui, L.T.; Wang, P.M. Impact of magnetic resonance imaging versus CT on nasopharyngeal carcinoma: Primary tumor target delineation for radiotherapy. Head Neck 2004, 26, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Wendl, C.M.; Eiglsperger, J.; Dendl, L.M.; Brodoefel, H.; Schebesch, K.M.; Stroszczynski, C.; Fellner, C. Fat suppression in magnetic resonance imaging of the head and neck region: Is the two-point DIXON technique superior to spectral fat suppression? Br. J. Radiol. 2018, 91, 20170078. [Google Scholar] [CrossRef] [PubMed]
- Rasch, C.; Keus, R.; Pameijer, F.A.; Koops, W.; de Ru, V.; Muller, S.; Touw, A.; Bartelink, H.; van Herk, M.; Lebesque, J.V. The potential impact of CT-MRI matching on tumor volume delineation in advanced head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 1997, 39, 841–848. [Google Scholar] [CrossRef]
- Rasch, C.R.; Steenbakkers, R.J.; Fitton, I.; Duppen, J.C.; Nowak, P.J.; Pameijer, F.A.; Eisbruch, A.; Kaanders, J.H.; Paulsen, F.; van Herk, M. Decreased 3D observer variation with matched CT-MRI, for target delineation in Nasopharynx cancer. Radiat. Oncol. 2010, 5, 21. [Google Scholar] [CrossRef]
- Thiagarajan, A.; Caria, N.; Schoder, H.; Iyer, N.G.; Wolden, S.; Wong, R.J.; Sherman, E.; Fury, M.G.; Lee, N. Target volume delineation in oropharyngeal cancer: Impact of PET, MRI, and physical examination. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.; Rawat, S.; Sharma, M.K.; Ahlawat, P.; Pal, M.; Gupta, G.; Dewan, A.; Gupta, M.; Sharma, S.; Dodagoudar, C.; et al. Improving the accuracy of target volume delineation by combined use of computed tomography, magnetic resonance imaging and positron emission tomography in head and neck carcinomas. J. Cancer Res. Ther. 2015, 11, 746–751. [Google Scholar] [CrossRef]
- Bird, D.; Scarsbrook, A.F.; Sykes, J.; Ramasamy, S.; Subesinghe, M.; Carey, B.; Wilson, D.J.; Roberts, N.; McDermott, G.; Karakaya, E.; et al. Multimodality imaging with CT, MR and FDG-PET for radiotherapy target volume delineation in oropharyngeal squamous cell carcinoma. BMC Cancer 2015, 15, 844. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, C.E.; Blinde, S.E.; Mohamed, A.S.R.; Ng, S.P.; Raaijmakers, C.; Philippens, M.; Kotte, A.; Al-Mamgani, A.A.; Karam, I.; Thomson, D.J.; et al. Comprehensive Quantitative Evaluation of Variability in MR-guided Delineation of Oropharyngeal Gross Tumor Volumes and High-risk Clinical Target Volumes: An R-IDEAL Stage 0 Prospective Study. Int. J. Radiat. Oncol. Biol. Phys. 2022, 113, 426–436. [Google Scholar] [CrossRef]
- Daisne, J.F.; Duprez, T.; Weynand, B.; Lonneux, M.; Hamoir, M.; Reychler, H.; Gregoire, V. Tumor volume in pharyngolaryngeal squamous cell carcinoma: Comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004, 233, 93–100. [Google Scholar] [CrossRef]
- Caldas-Magalhaes, J.; Kasperts, N.; Kooij, N.; van den Berg, C.A.; Terhaard, C.H.; Raaijmakers, C.P.; Philippens, M.E. Validation of imaging with pathology in laryngeal cancer: Accuracy of the registration methodology. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, e289–e298. [Google Scholar] [CrossRef] [PubMed]
- Ligtenberg, H.; Jager, E.A.; Caldas-Magalhaes, J.; Schakel, T.; Pameijer, F.A.; Kasperts, N.; Willems, S.M.; Terhaard, C.H.; Raaijmakers, C.P.; Philippens, M.E. Modality-specific target definition for laryngeal and hypopharyngeal cancer on FDG-PET, CT and MRI. Radiother. Oncol. 2017, 123, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, M.; Zbaren, P.; Casselman, J.W.; Kohler, R.; Dulguerov, P.; Becker, C.D. Neoplastic invasion of laryngeal cartilage: Reassessment of criteria for diagnosis at MR imaging. Radiology 2008, 249, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Schakel, T.; Hoogduin, J.M.; Terhaard, C.H.J.; Philippens, M.E.P. Technical Note: Diffusion-weighted MRI with minimal distortion in head-and-neck radiotherapy using a turbo spin echo acquisition method. Med. Phys. 2017, 44, 4188–4193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jager, E.A.; Ligtenberg, H.; Caldas-Magalhaes, J.; Schakel, T.; Philippens, M.E.; Pameijer, F.A.; Kasperts, N.; Willems, S.M.; Terhaard, C.H.; Raaijmakers, C.P. Validated guidelines for tumor delineation on magnetic resonance imaging for laryngeal and hypopharyngeal cancer. Acta Oncol. 2016, 55, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Vreugdenhil, M.; Fong, C.; Iqbal, G.; Roques, T.; Evans, M.; Palaniappan, N.; Yang, H.; O’Toole, L.; Sanghera, P.; Nutting, C.; et al. Improvement in Dysphagia Outcomes Following Clinical Target Volume Reduction in the De-ESCALaTE Study. Clin. Oncol. 2021, 33, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Al-Mamgani, A.; Kessels, R.; Janssen, T.; Navran, A.; van Beek, S.; Carbaat, C.; Schreuder, W.H.; Sonke, J.J.; Marijnen, C.A.M. The dosimetric and clinical advantages of the GTV-CTV-PTV margins reduction by 6 mm in head and neck squamous cell carcinoma: Significant acute and late toxicity reduction. Radiother. Oncol. 2022, 168, 16–22. [Google Scholar] [CrossRef]
- Al-Mamgani, A.; Kessels, R.; Navran, A.; Hamming-Vrieze, O.; Zuur, C.L.; Paul de Boer, J.; Jonker, M.C.J.; Janssen, T.; Sonke, J.J.; Marijnen, C.A.M. Reduction of GTV to high-risk CTV radiation margin in head and neck squamous cell carcinoma significantly reduced acute and late radiation-related toxicity with comparable outcomes. Radiother. Oncol. 2021, 162, 170–177. [Google Scholar] [CrossRef]
- Brouwer, C.L.; Steenbakkers, R.J.; Bourhis, J.; Budach, W.; Grau, C.; Gregoire, V.; van Herk, M.; Lee, A.; Maingon, P.; Nutting, C.; et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines. Radiother. Oncol. 2015, 117, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Christianen, M.E.; van der Schaaf, A.; van der Laan, H.P.; Verdonck-de Leeuw, I.M.; Doornaert, P.; Chouvalova, O.; Steenbakkers, R.J.; Leemans, C.R.; Oosting, S.F.; van der Laan, B.F.; et al. Swallowing sparing intensity modulated radiotherapy (SW-IMRT) in head and neck cancer: Clinical validation according to the model-based approach. Radiother. Oncol. 2016, 118, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Jellema, A.P.; Doornaert, P.; Slotman, B.J.; Leemans, C.R.; Langendijk, J.A. Does radiation dose to the salivary glands and oral cavity predict patient-rated xerostomia and sticky saliva in head and neck cancer patients treated with curative radiotherapy? Radiother. Oncol. 2005, 77, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Alterio, D.; Ciardo, D.; Preda, L.; Argenone, A.; Caspiani, O.; Micera, R.; Ruo Redda, M.G.; Russi, E.G.; Bianchi, E.; Orlandi, E.; et al. Contouring of the Pharyngeal Superior Constrictor Muscle (PSCM). A cooperative study of the Italian Association of Radiation Oncology (AIRO) Head and Neck Group. Radiother. Oncol. 2014, 112, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Houweling, A.C.; van den Berg, C.A.; Roesink, J.M.; Terhaard, C.H.; Raaijmakers, C.P. Magnetic resonance imaging at 3.0T for submandibular gland sparing radiotherapy. Radiother. Oncol. 2010, 97, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Brizel, D.M.; Sibley, G.S.; Prosnitz, L.R.; Scher, R.L.; Dewhirst, M.W. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int. J. Radiat. Oncol. Biol. Phys. 1997, 38, 285–289. [Google Scholar] [CrossRef]
- Hoogsteen, I.J.; Marres, H.A.; van der Kogel, A.J.; Kaanders, J.H. The hypoxic tumour microenvironment, patient selection and hypoxia-modifying treatments. Clin. Oncol. 2007, 19, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Schornack, P.A.; Secomb, T.W.; Raghunand, N. Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1999, 1, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y. The promise of dynamic contrast-enhanced imaging in radiation therapy. Semin. Radiat. Oncol. 2011, 21, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Popovtzer, A.; Eisbruch, A.; Cao, Y. An approach to identify, from DCE MRI, significant subvolumes of tumors related to outcomes in advanced head-and-neck cancer. Med. Phys. 2012, 39, 5277–5285. [Google Scholar] [CrossRef] [Green Version]
- Shukla-Dave, A.; Lee, N.Y.; Jansen, J.F.; Thaler, H.T.; Stambuk, H.E.; Fury, M.G.; Patel, S.G.; Moreira, A.L.; Sherman, E.; Karimi, S.; et al. Dynamic contrast-enhanced magnetic resonance imaging as a predictor of outcome in head-and-neck squamous cell carcinoma patients with nodal metastases. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 1837–1844. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.H.; Lin, C.Y.; Chan, S.C.; Yen, T.C.; Liao, C.T.; Chang, J.T.; Ko, S.F.; Wang, H.M.; Huang, S.F.; Lin, Y.C.; et al. Dynamic contrast-enhanced MR imaging predicts local control in oropharyngeal or hypopharyngeal squamous cell carcinoma treated with chemoradiotherapy. PLoS ONE 2013, 8, e72230. [Google Scholar] [CrossRef]
- Ng, S.H.; Lin, C.Y.; Chan, S.C.; Lin, Y.C.; Yen, T.C.; Liao, C.T.; Chang, J.T.; Ko, S.F.; Wang, H.M.; Chang, C.J.; et al. Clinical utility of multimodality imaging with dynamic contrast-enhanced MRI, diffusion-weighted MRI, and 18F-FDG PET/CT for the prediction of neck control in oropharyngeal or hypopharyngeal squamous cell carcinoma treated with chemoradiation. PLoS ONE 2014, 9, e115933. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Loevner, L.A.; Quon, H.; Kilger, A.; Sherman, E.; Weinstein, G.; Chalian, A.; Poptani, H. Prediction of response to chemoradiation therapy in squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging. AJNR Am. J. Neuroradiol. 2010, 31, 262–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoskin, P.J.; Saunders, M.I.; Goodchild, K.; Powell, M.E.; Taylor, N.J.; Baddeley, H. Dynamic contrast enhanced magnetic resonance scanning as a predictor of response to accelerated radiotherapy for advanced head and neck cancer. Br. J. Radiol. 1999, 72, 1093–1098. [Google Scholar] [CrossRef]
- Chawla, S.; Kim, S.; Loevner, L.A.; Hwang, W.T.; Weinstein, G.; Chalian, A.; Quon, H.; Poptani, H. Prediction of disease-free survival in patients with squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging. AJNR Am. J. Neuroradiol. 2011, 32, 778–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chawla, S.; Kim, S.; Dougherty, L.; Wang, S.; Loevner, L.A.; Quon, H.; Poptani, H. Pretreatment diffusion-weighted and dynamic contrast-enhanced MRI for prediction of local treatment response in squamous cell carcinomas of the head and neck. AJR Am. J. Roentgenol. 2013, 200, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, S.; Awasthi, R.; Singh, A.; Haris, M.; Gupta, R.K.; Rathore, R.K. An exploratory study into the role of dynamic contrast-enhanced (DCE) MRI metrics as predictors of response in head and neck cancers. Clin. Radiol. 2012, 67, e1–e5. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.H.; Wada, M.; Anderson, N.J.; Lim Joon, D.; Lee, S.T.; Gong, S.J.; Gunawardana, D.H.; Sachinidis, J.; O’Keefe, G.; Gan, H.K.; et al. Hypoxia-targeted radiotherapy dose painting for head and neck cancer using (18)F-FMISO PET: A biological modeling study. Acta Oncol. 2013, 52, 1723–1729. [Google Scholar] [CrossRef] [Green Version]
- Henriques de Figueiredo, B.; Zacharatou, C.; Galland-Girodet, S.; Benech, J.; de Clermont-Gallerande, H.; Lamare, F.; Hatt, M.; Digue, L.; de Mones del Pujol, E.; Fernandez, P. Hypoxia imaging with [18F]-FMISO-PET for guided dose escalation with intensity-modulated radiotherapy in head-and-neck cancers. Strahlenther. Onkol. 2015, 191, 217–224. [Google Scholar] [CrossRef]
- Lee, N.Y.; Mechalakos, J.G.; Nehmeh, S.; Lin, Z.; Squire, O.D.; Cai, S.; Chan, K.; Zanzonico, P.B.; Greco, C.; Ling, C.C.; et al. Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: A feasibility study. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Thorwarth, D.; Eschmann, S.M.; Scheiderbauer, J.; Paulsen, F.; Alber, M. Kinetic analysis of dynamic 18F-fluoromisonidazole PET correlates with radiation treatment outcome in head-and-neck cancer. BMC Cancer 2005, 5, 152. [Google Scholar] [CrossRef] [Green Version]
- Remmele, S.; Sprinkart, A.M.; Muller, A.; Traber, F.; von Lehe, M.; Gieseke, J.; Flacke, S.; Willinek, W.A.; Schild, H.H.; Senegas, J.; et al. Dynamic and simultaneous MR measurement of R1 and R2*changes during respiratory challenges for the assessment of blood and tissue oxygenation. Magn. Reson. Med. 2013, 70, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Rijpkema, M.; Kaanders, J.H.; Joosten, F.B.; van der Kogel, A.J.; Heerschap, A. Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 1185–1191. [Google Scholar] [CrossRef]
- Rumley, C.N.; Lee, M.T.; Holloway, L.; Rai, R.; Min, M.; Forstner, D.; Fowler, A.; Liney, G. Multiparametric magnetic resonance imaging in mucosal primary head and neck cancer: A prospective imaging biomarker study. BMC Cancer 2017, 17, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoeny, H.C.; de Keyzer, F.; King, A.D. Diffusion-weighted MR imaging in the head and neck. Radiology 2012, 263, 19–32. [Google Scholar] [CrossRef]
- Schakel, T.; Peltenburg, B.; Dankbaar, J.W.; Cardenas, C.E.; Aristophanous, M.; Terhaard, C.H.J.; Hoogduin, J.M.; Philippens, M.E.P. Evaluation of diffusion weighted imaging for tumor delineation in head-and-neck radiotherapy by comparison with automatically segmented (18)F-fluorodeoxyglucose positron emission tomography. Phys. Imaging Radiat. Oncol. 2018, 5, 13–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligtenberg, H.; Schakel, T.; Dankbaar, J.W.; Ruiter, L.N.; Peltenburg, B.; Willems, S.M.; Kasperts, N.; Terhaard, C.H.J.; Raaijmakers, C.P.J.; Philippens, M.E.P. Target Volume Delineation Using Diffusion-weighted Imaging for MR-guided Radiotherapy: A Case Series of Laryngeal Cancer Validated by Pathology. Cureus 2018, 10, e2465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulin, K.; Urie, M.M.; Cherlow, J.M. Results of a multi-institutional benchmark test for cranial CT/MR image registration. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 1584–1589. [Google Scholar] [CrossRef] [Green Version]
- Han, X. MR-based synthetic CT generation using a deep convolutional neural network method. Med. Phys. 2017, 44, 1408–1419. [Google Scholar] [CrossRef] [Green Version]
- Farjam, R.; Tyagi, N.; Deasy, J.O.; Hunt, M.A. Dosimetric evaluation of an atlas-based synthetic CT generation approach for MR-only radiotherapy of pelvis anatomy. J. Appl. Clin. Med. Phys. 2019, 20, 101–109. [Google Scholar] [CrossRef]
- Dinkla, A.M.; Florkow, M.C.; Maspero, M.; Savenije, M.H.F.; Zijlstra, F.; Doornaert, P.A.H.; van Stralen, M.; Philippens, M.E.P.; van den Berg, C.A.T.; Seevinck, P.R. Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural network. Med. Phys. 2019, 46, 4095–4104. [Google Scholar] [CrossRef]
- Spadea, M.F.; Maspero, M.; Zaffino, P.; Seco, J. Deep learning based synthetic-CT generation in radiotherapy and PET: A review. Med. Phys. 2021, 48, 6537–6566. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Ohno, Y.; Murayama, K.; Yamamoto, K.; Iwase, A.; Fukuba, T.; Toyama, H. Compressed sensing and parallel imaging accelerated T2 FSE sequence for head and neck MR imaging: Comparison of its utility in routine clinical practice. Eur. J. Radiol. 2021, 135, 109501. [Google Scholar] [CrossRef] [PubMed]
- Bhide, S.A.; Davies, M.; Burke, K.; McNair, H.A.; Hansen, V.; Barbachano, Y.; El-Hariry, I.A.; Newbold, K.; Harrington, K.J.; Nutting, C.M. Weekly volume and dosimetric changes during chemoradiotherapy with intensity-modulated radiation therapy for head and neck cancer: A prospective observational study. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Van Timmeren, J.E.; Chamberlain, M.; Bogowicz, M.; Ehrbar, S.; Dal Bello, R.; Garcia Schuler, H.; Krayenbuehl, J.; Wilke, L.; Andratschke, N.; Guckenberger, M.; et al. MR-Guided Adaptive Radiotherapy for Head and Neck Cancer: Prospective Evaluation of Migration and Anatomical Changes of the Major Salivary Glands. Cancers 2021, 13, 5404. [Google Scholar] [CrossRef] [PubMed]
- Peltenburg, B.; Philippens, M.; de Bree, R.; Terhaard, C. Treatment response on MR during radiotherapy in patients with head and neck squamous cell carcinoma. Radiother. Oncol. 2019, 133, S1038. [Google Scholar] [CrossRef]
- Ng, S.P.; Cardenas, C.E.; Bahig, H.; Elgohari, B.; Wang, J.; Johnson, J.M.; Moreno, A.C.; Shah, S.J.; Garden, A.S.; Phan, J.; et al. Changes In Apparent Diffusion Coefficient (ADC) In Serial Weekly MRI During Radiotherapy In Patients With Head And Neck Cancer: Results From The PREDICT-HN Study. Int. J. Radiat. Oncol. 2020, 108, E790–E791. [Google Scholar] [CrossRef]
- Martens, R.M.; Koopman, T.; Lavini, C.; Brug, T.V.; Zwezerijnen, G.J.C.; Marcus, J.T.; Vergeer, M.R.; Leemans, C.R.; Bree, R.; Graaf, P.; et al. Early Response Prediction of Multiparametric Functional MRI and (18)F-FDG-PET in Patients with Head and Neck Squamous Cell Carcinoma Treated with (Chemo)Radiation. Cancers 2022, 14, 216. [Google Scholar] [CrossRef]
- Cao, Y.; Popovtzer, A.; Li, D.; Chepeha, D.B.; Moyer, J.S.; Prince, M.E.; Worden, F.; Teknos, T.; Bradford, C.; Mukherji, S.K.; et al. Early prediction of outcome in advanced head-and-neck cancer based on tumor blood volume alterations during therapy: A prospective study. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 1287–1290. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, N.; Riaz, N.; Hunt, M.; Wengler, K.; Hatzoglou, V.; Young, R.; Mechalakos, J.; Lee, N. Weekly response assessment of involved lymph nodes to radiotherapy using diffusion-weighted MRI in oropharynx squamous cell carcinoma. Med. Phys. 2016, 43, 137. [Google Scholar] [CrossRef] [Green Version]
- Bentzen, S.M.; Gregoire, V. Molecular imaging-based dose painting: A novel paradigm for radiation therapy prescription. Semin. Radiat. Oncol. 2011, 21, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Heukelom, J.; Hamming, O.; Bartelink, H.; Hoebers, F.; Giralt, J.; Herlestam, T.; Verheij, M.; van den Brekel, M.; Vogel, W.; Slevin, N.; et al. Adaptive and innovative Radiation Treatment FOR improving Cancer treatment outcomE (ARTFORCE); A randomized controlled phase II trial for individualized treatment of head and neck cancer. BMC Cancer 2013, 13, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Asselen, B.; Raaijmakers, C.P.; Lagendijk, J.J.; Terhaard, C.H. Intrafraction motions of the larynx during radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 384–390. [Google Scholar] [CrossRef]
- Bruijnen, T.; Stemkens, B.; Terhaard, C.H.J.; Lagendijk, J.J.W.; Raaijmakers, C.P.J.; Tijssen, R.H.N. Intrafraction motion quantification and planning target volume margin determination of head-and-neck tumors using cine magnetic resonance imaging. Radiother. Oncol. 2019, 130, 82–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Mamgani, A.; Kwa, S.L.; Tans, L.; Moring, M.; Fransen, D.; Mehilal, R.; Verduijn, G.M.; Baatenburg de Jong, R.J.; Heijmen, B.J.; Levendag, P.C. Single Vocal Cord Irradiation: Image Guided Intensity Modulated Hypofractionated Radiation Therapy for T1a Glottic Cancer: Early Clinical Results. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Mohamed, A.S.R.; Bahig, H.; Ding, Y.; Wang, J.; Ng, S.P.; Lai, S.; Miller, A.; Hutcheson, K.A.; Fuller, C.D.; et al. Automatic registration of 2D MR cine images for swallowing motion estimation. PLoS ONE 2020, 15, e0228652. [Google Scholar] [CrossRef]
- Keall, P. 4-dimensional computed tomography imaging and treatment planning. Semin. Radiat. Oncol. 2004, 14, 81–90. [Google Scholar] [CrossRef]
- Finazzi, T.; Palacios, M.A.; Haasbeek, C.J.A.; Admiraal, M.A.; Spoelstra, F.O.B.; Bruynzeel, A.M.E.; Slotman, B.J.; Lagerwaard, F.J.; Senan, S. Stereotactic MR-guided adaptive radiation therapy for peripheral lung tumors. Radiother. Oncol. 2020, 144, 46–52. [Google Scholar] [CrossRef]
- Heimann, T.; Meinzer, H.P. Statistical shape models for 3D medical image segmentation: A review. Med. Image Anal. 2009, 13, 543–563. [Google Scholar] [CrossRef]
- Hermann, M.; Klein, R. A visual analytics perspective on shape analysis: State of the art and future prospects. Comput. Graph. 2015, 53, 63–71. [Google Scholar] [CrossRef]
- Gao, X.B.; Su, Y.; Li, X.L.; Tao, D.C. A Review of Active Appearance Models. IEEE Trans. Syst. Man Cybern. Part C 2010, 40, 145–158. [Google Scholar] [CrossRef]
- Rhee, D.J.; Cardenas, C.E.; Elhalawani, H.; McCarroll, R.; Zhang, L.; Yang, J.; Garden, A.S.; Peterson, C.B.; Beadle, B.M.; Court, L.E. Automatic detection of contouring errors using convolutional neural networks. Med. Phys. 2019, 46, 5086–5097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandfort, V.; Yan, K.; Graffy, P.M.; Pickhardt, P.J.; Summers, R.M. Use of Variational Autoencoders with Unsupervised Learning to Detect Incorrect Organ Segmentations at CT. Radiol. Artif. Intell. 2021, 3, e200218. [Google Scholar] [CrossRef] [PubMed]
- Al-Taie, A.; Hahn, H.K.; Linsen, L. Uncertainty estimation and visualization in probabilistic segmentation. Comput. Graph. 2014, 39, 48–59. [Google Scholar] [CrossRef]
- Mendenhall, W.M.; Million, R.R.; Cassisi, N.J. Elective neck irradiation in squamous-cell carcinoma of the head and neck. Head Neck Surg. 1980, 3, 15–20. [Google Scholar] [CrossRef]
- Fletcher, G.H. Elective irradiation of subclinical disease in cancers of the head and neck. Cancer 1972, 29, 1450–1454. [Google Scholar] [CrossRef]
- De Veij Mestdagh, P.D.; van Werkhoven, E.; Navran, A.; de Boer, J.P.; Schreuder, W.H.; Vogel, W.V.; Al-Mamgani, A. Incidence of contralateral regional failure in the electively irradiated contralateral neck of patients with head and neck squamous cell carcinoma. Clin. Transl. Radiat. Oncol. 2019, 17, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Maguire, P.D.; Neal, C.R.; Hardy, S.M.; Schreiber, A.M. Single-Arm Phase 2 Trial of Elective Nodal Dose Reduction for Patients With Locoregionally Advanced Squamous Cell Carcinoma of the Head and Neck. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 1210–1216. [Google Scholar] [CrossRef]
- Deschuymer, S.; Nevens, D.; Duprez, F.; Daisne, J.F.; Voordeckers, M.; de Neve, W.; Nuyts, S. Randomized Clinical Trial on Reduction of Radiotherapy Dose to the Elective Neck in Head and Neck Squamous Cell Carcinoma: Results on the Quality of Life. Qual. Life Res. 2021, 30, 117–127. [Google Scholar] [CrossRef]
- Sher, D.J.; Pham, N.L.; Shah, J.L.; Sen, N.; Williams, K.A.; Subramaniam, R.M.; Moore, W.; Chorley, R.; Ahn, C.; Khan, S.M. Prospective Phase 2 Study of Radiation Therapy Dose and Volume De-escalation for Elective Neck Treatment of Oropharyngeal and Laryngeal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 932–940. [Google Scholar] [CrossRef]
- Van den Bosch, S.; Dijkema, T.; Kunze-Busch, M.C.; Terhaard, C.H.; Raaijmakers, C.P.; Doornaert, P.A.; Hoebers, F.J.; Vergeer, M.R.; Kreike, B.; Wijers, O.B.; et al. Uniform FDG-PET guided GRAdient Dose prEscription to reduce late Radiation Toxicity (UPGRADE-RT): Study protocol for a randomized clinical trial with dose reduction to the elective neck in head and neck squamous cell carcinoma. BMC Cancer 2017, 17, 208. [Google Scholar] [CrossRef] [Green Version]
- De Veij Mestdagh, P.D.; Walraven, I.; Vogel, W.V.; Schreuder, W.H.; van Werkhoven, E.; Carbaat, C.; Donswijk, M.L.; van den Brekel, M.W.M.; Al-Mamgani, A. SPECT/CT-guided elective nodal irradiation for head and neck cancer is oncologically safe and less toxic: A potentially practice-changing approach. Radiother. Oncol. 2020, 147, 56–63. [Google Scholar] [CrossRef] [PubMed]
- De Veij Mestdagh, P.D.; Schreuder, W.H.; Vogel, W.V.; Donswijk, M.L.; van Werkhoven, E.; van der Wal, J.E.; Dirven, R.; Karakullukcu, B.; Sonke, J.J.; van den Brekel, M.W.M.; et al. Mapping of sentinel lymph node drainage using SPECT/CT to tailor elective nodal irradiation in head and neck cancer patients (SUSPECT-2): A single-center prospective trial. BMC Cancer 2019, 19, 1110. [Google Scholar] [CrossRef] [PubMed]
- Reinders, F.C.J.; Heijst, T.; Mases, J.; Terhaard, C.H.J.; Doornaert, P.A.H.; Philippens, M.E.P.; Raaijmakers, C.P.J. Magnetic resonance guided elective neck irradiation targeting individual lymph nodes: A new concept. Phys. Imaging Radiat. Oncol. 2021, 20, 76–81. [Google Scholar] [CrossRef] [PubMed]
- De Bree, R.; de Keizer, B.; Civantos, F.J.; Takes, R.P.; Rodrigo, J.P.; Hernandez-Prera, J.C.; Halmos, G.B.; Rinaldo, A.; Ferlito, A. What is the role of sentinel lymph node biopsy in the management of oral cancer in 2020? Eur. Arch. Otorhinolaryngol. 2021, 278, 3181–3191. [Google Scholar] [CrossRef]
- Mahieu, R.; de Maar, J.S.; Nieuwenhuis, E.R.; Deckers, R.; Moonen, C.; Alic, L.; Ten Haken, B.; de Keizer, B.; Bree, R. New Developments in Imaging for Sentinel Lymph Node Biopsy in Early-Stage Oral Cavity Squamous Cell Carcinoma. Cancers 2020, 12, 3055. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, K.; Motoyama, S.; Tomura, N.; Sashi, R.; Imano, H.; Ogawa, J.; Narita, K.; Watarai, J. Visualization of lymphatic basin from the tumor using magnetic resonance lymphography with superparamagnetic iron oxide in patients with thoracic esophageal cancer. J. Comput. Assist. Tomogr. 2006, 30, 270–275. [Google Scholar] [CrossRef]
- Sugiyama, S.; Iwai, T.; Baba, J.; Oguri, S.; Izumi, T.; Sekino, M.; Kusakabe, M.; Mitsudo, K. MR lymphography with superparamagnetic iron oxide for sentinel lymph node mapping of N0 early oral cancer: A pilot study. Dentomaxillofac. Radiol. 2021, 50, 20200333. [Google Scholar] [CrossRef]
- Sugiyama, S.; Iwai, T.; Baba, J.; Oguri, S.; Izumi, T.; Kuwahata, A.; Sekino, M.; Kusakabe, M.; Mitsudo, K. Sentinel lymph node biopsy with a handheld cordless magnetic probe following preoperative MR lymphography using superparamagnetic iron oxide for clinically N0 early oral cancer: A feasibility study. J. Stomatol. Oral Maxillofac. Surg. 2022; in press. [Google Scholar] [CrossRef]
- Nieuwenhuis, E.R.; Kolenaar, B.; van Bemmel, A.J.M.; Hof, J.J.; van Baarlen, J.; Christenhusz, A.; Pouw, J.J.; Ten Haken, B.; Alic, L.; de Bree, R. A complete magnetic sentinel lymph node biopsy procedure in oral cancer patients: A pilot study. Oral Oncol. 2021, 121, 105464. [Google Scholar] [CrossRef]
MR Sequence | Acquisition Time (Minutes) |
---|---|
M Survey | 00:31 |
B0 map calibrate | 01:55 |
T T2 TSE mDIXON AP | 06:39 |
T DWI SPLICE RL | 06:13 |
S T1 FFE cine | 00:59 |
T T1 TSE RL | 02:39 |
Dynamic13 RL | 01:29 |
T T1 3D TFE mDIXON gd | 04:47 |
Total protocol | 25:10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ridder, M.d.; Raaijmakers, C.P.J.; Pameijer, F.A.; Bree, R.d.; Reinders, F.C.J.; Doornaert, P.A.H.; Terhaard, C.H.J.; Philippens, M.E.P. Target Definition in MR-Guided Adaptive Radiotherapy for Head and Neck Cancer. Cancers 2022, 14, 3027. https://doi.org/10.3390/cancers14123027
Ridder Md, Raaijmakers CPJ, Pameijer FA, Bree Rd, Reinders FCJ, Doornaert PAH, Terhaard CHJ, Philippens MEP. Target Definition in MR-Guided Adaptive Radiotherapy for Head and Neck Cancer. Cancers. 2022; 14(12):3027. https://doi.org/10.3390/cancers14123027
Chicago/Turabian StyleRidder, Mischa de, Cornelis P. J. Raaijmakers, Frank A. Pameijer, Remco de Bree, Floris C. J. Reinders, Patricia A. H. Doornaert, Chris H. J. Terhaard, and Marielle E. P. Philippens. 2022. "Target Definition in MR-Guided Adaptive Radiotherapy for Head and Neck Cancer" Cancers 14, no. 12: 3027. https://doi.org/10.3390/cancers14123027
APA StyleRidder, M. d., Raaijmakers, C. P. J., Pameijer, F. A., Bree, R. d., Reinders, F. C. J., Doornaert, P. A. H., Terhaard, C. H. J., & Philippens, M. E. P. (2022). Target Definition in MR-Guided Adaptive Radiotherapy for Head and Neck Cancer. Cancers, 14(12), 3027. https://doi.org/10.3390/cancers14123027