MR-Guided Adaptive Radiotherapy for OAR Sparing in Head and Neck Cancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. OAR Sparing in Conventional IMRT Planning Process
3. MR-Linac Overview
4. NTCP Modelling
5. ART Strategies
6. Ongoing Phase 2 Studies in HNC
6.1. MR-ADAPTOR—NCT03224000
6.2. MARTHA-Trial—NCT03972072
6.3. INSIGHT-2—NCT04242459
7. Direction of the Technology
7.1. Decision-Making Models
7.2. Quantitative MRI Biomarkers
7.2.1. Diffusion-Weighted Imaging
7.2.2. Dynamic Contrast-Enhanced (DCE) MRI
7.2.3. MR Relaxometry
7.2.4. Radiomics
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chencharick, J.D.; Mossman, K.L. Nutritional Consequenses of the Radiotherapy of Head and Neck Cancer. Cancer 1983, 51, 811–815. [Google Scholar] [CrossRef]
- Barker, J.L.; Garden, A.; Ang, K.; O’Daniel, J.C.; Wang, H.; Court, L.; Morrison, W.H.; Rosenthal, D.; Chao, K.; Tucker, S.L.; et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int. J. Radiat. Oncol. 2004, 59, 960–970. [Google Scholar] [CrossRef] [PubMed]
- Bhide, S.A.; Davies, M.; Burke, K.; McNair, H.A.; Hansen, V.; Barbachano, Y.; El-Hariry, I.; Newbold, K.; Harrington, K.J.; Nutting, C.M. Weekly Volume and Dosimetric Changes During Chemoradiotherapy With Intensity-Modulated Radiation Therapy for Head and Neck Cancer: A Prospective Observational Study. Int. J. Radiat. Oncol. 2010, 76, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Brodin, N.P.; Tomé, W.A. Revisiting the dose constraints for head and neck OARs in the current era of IMRT. Oral Oncol. 2018, 86, 8–18. [Google Scholar] [CrossRef]
- Marcu, L.G. Improving Therapeutic Ratio in Head and Neck Cancer with Adjuvant and Cisplatin-Based Treatments. BioMed Res. Int. 2013, 2013, 817279. [Google Scholar] [CrossRef]
- Woods, K.; Chin, R.; Cook, K.; Sheng, K.; Kishan, A.; Hegde, J.; Tenn, S.; Steinberg, M.; Cao, M. Automated Non-Coplanar VMAT for Dose Escalation in Recurrent Head and Neck Cancer Patients. Cancers 2021, 13, 1910. [Google Scholar] [CrossRef]
- Fan, B.; Li, C.; Mu, F.; Qin, W.; Wang, L.; Sun, X.; Wang, C.; Zou, B.; Wang, S.; Li, W.; et al. Dose escalation guided by 18F-FDG PET/CT for esophageal cancer. Radiat. Med. Prot. 2021, 2, 55–60. [Google Scholar] [CrossRef]
- Glide-Hurst, C.K.; Lee, P.; Yock, A.D.; Olsen, J.R.; Cao, M.; Siddiqui, F.; Parker, W.; Doemer, A.; Rong, Y.; Kishan, A.U.; et al. Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology. Int. J. Radiat. Oncol. 2021, 109, 1054–1075. [Google Scholar] [CrossRef]
- Webb, S. Optimisation of conformal radiotherapy dose distribution by simulated annealing. Phys. Med. Biol. 1989, 34, 1349–1370. [Google Scholar] [CrossRef]
- Tribius, S.; Bergelt, C. Intensity-modulated radiotherapy versus conventional and 3D conformal radiotherapy in patients with head and neck cancer: Is there a worthwhile quality of life gain? Cancer Treat. Rev. 2011, 37, 511–519. [Google Scholar] [CrossRef]
- Abel, E.; Silander, E.; Nyman, J.; Bove, M.; Johansson, L.; Björk-Eriksson, T.; Hammerlid, E. Impact on quality of life of IMRT versus 3-D conformal radiation therapy in head and neck cancer patients: A case control study. Adv. Radiat. Oncol. 2017, 2, 346–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrachina, J.G.-M.; Sainz, I.J.; Rozos, A.P.; Ros, J.C.R.; Serrano, M.D.T.; Perez, Y.L.; Carmona, J.A.M. Potential advantages of volumetric arc therapy in head and neck cancer. Head Neck 2014, 37, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Deasy, J.O.; Moiseenko, V.; Marks, L.; Chao, K.C.; Nam, J.; Eisbruch, A. Radiotherapy Dose–Volume Effects on Salivary Gland Function. Int. J. Radiat. Oncol. 2010, 76, S58–S63. [Google Scholar] [CrossRef] [Green Version]
- Miften, M.; Olch, A.; Mihailidis, D.; Moran, J.; Pawlicki, T.; Molineu, A.; Li, H.; Wijesooriya, K.; Shi, J.; Xia, P.; et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med. Phys. 2018, 45, e53–e83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, T.S.; Tomé, W.A.; Chappell, R.J.; Chinnaiyan, P.; Mehta, M.P.; Harari, P.M. The impact of daily setup variations on head-and-neck intensity-modulated radiation therapy. Int. J. Radiat. Oncol. 2005, 61, 779–788. [Google Scholar] [CrossRef]
- Raaymakers, B.W.; Jürgenliemk-Schulz, I.M.; Bol, G.H.; Glitzner, M.; Kotte, A.N.T.J.; Van Asselen, B.; De Boer, J.C.J.; Bluemink, J.J.; Hackett, S.L.; Moerland, A.M.; et al. First patients treated with a 1.5 T MRI-Linac: Clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys. Med. Biol. 2017, 62, L41–L50. [Google Scholar] [CrossRef]
- Mazzola, R.; Cuccia, F.; Figlia, V.; Rigo, M.; Nicosia, L.; Giaj-Levra, N.; Ricchetti, F.; Vitale, C.; Mantoan, B.; Di Paola, G.; et al. Stereotactic body radiotherapy for oligometastatic castration sensitive prostate cancer using 1.5 T MRI-Linac: Preliminary data on feasibility and acute patient-reported outcomes. Radiol. Med. 2021, 126, 989–997. [Google Scholar] [CrossRef]
- Crockett, C.B.; Samson, P.; Chuter, R.; Dubec, M.; Faivre-Finn, C.; Green, O.L.; Hackett, S.L.; McDonald, F.; Robinson, C.; Shiarli, A.-M.; et al. Initial Clinical Experience of MR-Guided Radiotherapy for Non-Small Cell Lung Cancer. Front. Oncol. 2021, 11, 617–681. [Google Scholar] [CrossRef]
- Fast, M.; van de Schoot, A.; van de Lindt, T.; Carbaat, C.; van der Heide, U.; Sonke, J.-J. Tumor trailing for liver SBRT on the MR-linac. Int. J. Radiat. Oncol. Biol. Phys. 2018, 103, 468–478. [Google Scholar] [CrossRef]
- Mazzola, R.; Figlia, V.; Rigo, M.; Cuccia, F.; Ricchetti, F.; Giaj-Levra, N.; Nicosia, L.; Vitale, C.; Sicignano, G.; De Simone, A.; et al. Feasibility and safety of 1.5 T MR-guided and daily adapted abdominal-pelvic SBRT for elderly cancer patients: Geriatric assessment tools and preliminary patient-reported outcomes. J. Cancer Res. Clin. Oncol. 2020, 146, 2379–2397. [Google Scholar] [CrossRef]
- Hall, W.; Straza, M.W.; Chen, X.; Mickevicius, N.; Erickson, B.; Schultz, C.; Awan, M.; Ahunbay, E.; Li, X.A.; Paulson, E.S. Intial clinical experience of stereotactic body radiation therapy (SBRT) for liver metastases, primary liver malignancy, and pancreatic cancer for 4D-MRI based online adaptation and real-time MRI monitoring using a 1.5T MR-linac. PLoS ONE 2020, 15, e0236570. [Google Scholar]
- McDonald, B.A.; Vedam, S.; Yang, J.; Wang, J.; Castillo, P.; Lee, B.; Sobremonte, A.; Ahmed, S.; Ding, Y.; Mohamed, A.S.; et al. Initial Feasibility and Clinical Implementation of Daily MR-Guided Adaptive Head and Neck Cancer Radiation Therapy on a 1.5T MR-Linac System: Prospective R-IDEAL 2a/2b Systematic Clinical Evaluation of Technical Innovation. Int. J. Radiat. Oncol. 2020, 109, 1606–1618. [Google Scholar] [CrossRef] [PubMed]
- Raaymakers, B.W.; Lagendijk, J.J.W.; Overweg, J.; Kok, J.G.M.; Raaijmakers, E.A.J.; Kerkhof, E.M.; Van Der Put, R.W.; Meijsing, I.; Crijns, S.P.M.; Benedosso, F.; et al. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: Proof of concept. Phys. Med. Biol. 2009, 54, N229–N237. [Google Scholar] [CrossRef] [PubMed]
- Lagendijk, J.J.; Raaymakers, B.W.; Raaijmakers, A.J.; Overweg, J.; Brown, K.J.; Kerkhof, E.M.; van der Put, R.W.; Hårdemark, B.; van Vulpen, M.; van der Heide, U.A. MRI/linac integration. Radiother. Oncol. 2008, 86, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Mannerberg, A.; Persson, E.; Jonsson, J.; Gustafsson, C.J.; Gunnlaugsson, A.; Olsson, L.E.; Ceberg, S. Dosimetric effects of adaptive prostate cancer radiotherapy in an MR-linac workflow. Radiat. Oncol. 2020, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, E.; Wyatt, J.; Henry, A.M.; Short, S.C.; Sebag-Montefiore, D.; Murray, L.; Kelly, C.G.; McCallum, H.M.; Speight, R. Systematic Review of Synthetic Computed Tomography Generation Methodologies for Use in Magnetic Resonance Imaging–Only Radiation Therapy. Int. J. Radiat. Oncol. 2018, 100, 199–217. [Google Scholar] [CrossRef]
- Lyman, J.T. Complication Probability as Assessed from Dose-Volume Histograms. Radiat. Res. 1985, 104, S13. [Google Scholar] [CrossRef]
- Beetz, I.; Steenbakkers, R.J.H.M.; Chouvalova, O.; Leemans, C.R.; Doornaert, P.; Van Der Laan, B.F.A.M.; Christianen, M.E.M.C.; Vissink, A.; Bijl, H.P.; Van Luijk, P.; et al. The QUANTEC criteria for parotid gland dose and their efficacy to prevent moderate to severe patient-rated xerostomia. Acta Oncol. 2013, 53, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Christianen, M.E.; Schilstra, C.; Beetz, I.; Muijs, C.T.; Chouvalova, O.; Burlage, F.R.; Doornaert, P.; Koken, P.W.; Leemans, C.R.; Rinkel, R.; et al. Predictive modelling for swallowing dysfunction after primary (chemo)radiation: Results of a prospective observational study. Radiother. Oncol. 2012, 105, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Bosch, L.V.D.; van der Schaaf, A.; van der Laan, H.P.; Hoebers, F.J.; Wijers, O.B.; Hoek, J.G.V.D.; Moons, K.G.; Reitsma, J.B.; Steenbakkers, R.J.; Schuit, E.; et al. Comprehensive toxicity risk profiling in radiation therapy for head and neck cancer: A new concept for individually optimised treatment. Radiother. Oncol. 2021, 157, 147–154. [Google Scholar] [CrossRef]
- Stieb, S.; Lee, A.; van Dijk, L.V.; Frank, S.; Fuller, C.D.; Blanchard, P. NTCP Modeling of Late Effects for Head and Neck Cancer: A Systematic Review. Int. J. Part. Ther. 2021, 8, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, L.V.; Steenbakkers, R.J.H.M.; Haken, B.T.; Van Der Laan, H.P.; Veld, A.A.V.T.; Langendijk, J.A.; Korevaar, E.W. Robust Intensity Modulated Proton Therapy (IMPT) Increases Estimated Clinical Benefit in Head and Neck Cancer Patients. PLoS ONE 2016, 11, e0152477. [Google Scholar] [CrossRef] [PubMed]
- van Luijk, P.; Pringle, S.; Deasy, J.O.; Moiseenko, V.V.; Faber, H.; Hovan, A.; Baanstra, M.; van der Laan, H.P.; Kierkels, R.G.J.; van der Schaaf, A.; et al. Sparing the region of the salivary gland containing stem cells preserves saliva production after radiotherapy for head and neck cancer. Sci. Transl. Med. 2015, 7, 305ra147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobi, A.; Stützer, K.; Bandurska-Luque, A.; Löck, S.; Haase, R.; Wack, L.-J.; Mönnich, D.; Thorwarth, D.; Perez, D.; Lühr, A.; et al. NTCP reduction for advanced head and neck cancer patients using proton therapy for complete or sequential boost treatment versus photon therapy. Acta Oncol. 2015, 54, 1658–1664. [Google Scholar] [CrossRef] [Green Version]
- Gurney-Champion, O.J.; McQuaid, D.; Dunlop, A.; Wong, K.H.; Welsh, L.C.; Riddell, A.M.; Koh, D.-M.; Oelfke, U.; Leach, M.O.; Nutting, C.M.; et al. MRI-based Assessment of 3D Intrafractional Motion of Head and Neck Cancer for Radiation Therapy. Int. J. Radiat. Oncol. 2018, 100, 306–316. [Google Scholar] [CrossRef] [Green Version]
- Jager-Wittenaar, H.; Dijkstra, P.U.; Vissink, A.; van der Laan, B.F.A.M.; van Oort, R.P.; Roodenburg, J.L.N. Critical weight loss in head and neck cancer—prevalence and risk factors at diagnosis: An explorative study. Support. Care Cancer 2007, 15, 1045–1050. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Vicini, F.; Wong, J.; Martinez, A. Adaptive radiation therapy. Phys. Med. Biol. 1997, 42, 123–132. [Google Scholar] [CrossRef]
- Castadot, P.; Lee, J.A.; Geets, X.; Grégoire, V. Adaptive Radiotherapy of Head and Neck Cancer. Semin. Radiat. Oncol. 2010, 20, 84–93. [Google Scholar] [CrossRef]
- Heukelom, J.; Fuller, C.D. Head and Neck Cancer Adaptive Radiation Therapy (ART): Conceptual Considerations for the Informed Clinician. Semin. Radiat. Oncol. 2019, 29, 258–273. [Google Scholar] [CrossRef]
- Hvid, C.A.; Elstrøm, U.V.; Jensen, K.; Grau, C. Cone-beam computed tomography (CBCT) for adaptive image guided head and neck radiation therapy. Acta Oncol. 2018, 57, 552–556. [Google Scholar] [CrossRef] [Green Version]
- Kontaxis, C.; Keizer, D.M.D.M.; Kerkmeijer, L.G.; Willigenburg, T.; Hartogh, M.D.D.; Zyp, J.R.V.D.V.V.; Breugel, E.N.D.G.-V.; Hes, J.; Raaymakers, B.W.; Lagendijk, J.J.; et al. Delivered dose quantification in prostate radiotherapy using online 3D cine imaging and treatment log files on a combined 1.5T magnetic resonance imaging and linear accelerator system. Phys. Imaging Radiat. Oncol. 2020, 15, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Glitzner, M.; Crijns, S.P.M.; De Senneville, B.D.; Kontaxis, C.; Prins, F.M.; Lagendijk, J.J.W.; Raaymakers, B.W. On-line MR imaging for dose validation of abdominal radiotherapy. Phys. Med. Biol. 2015, 60, 8869–8883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahig, H.; Yuan, Y.; Mohamed, A.; Brock, K.K.; Ng, S.P.; Wang, J.; Ding, Y.; Hutcheson, K.; McCulloch, M.; Balter, P.A.; et al. Magnetic Resonance-based Response Assessment and Dose Adaptation in Human Papilloma Virus Positive Tumors of the Oropharynx treated with Radiotherapy (MR-ADAPTOR): An R-IDEAL stage 2a-2b/Bayesian phase II trial. Clin. Transl. Radiat. Oncol. 2018, 13, 19–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, C.D. Bayesian Phase II Trial of Magnetic Resonance Imaging Guided Radiotherapy Dose Adaptation in Human Papilloma Virus Positive Oropharyngeal Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT03224000 (accessed on 14 September 2021).
- Balermpas, P. MARTHA-trial: MRI-Guided Adaptive RadoiTHerapy for Reducing XerostomiA in Head and Neck Cancer Including Longitudinal Evaluation of the Patient’s Immune Profile Under Radiotherapy. Available online: https://clinicaltrials.gov/ct2/show/NCT03972072 (accessed on 15 September 2021).
- Kee, H.; Wong, M. Optimising Radiaiton Therapy in Head and Neck Cancers Using Functional Image-Guided Radiotherapy and Novel Biomarkers. Available online: https://clinicaltrials.gov/ct2/show/NCT04242459?cond=NCT04242459&draw=2&rank=1 (accessed on 14 September 2021).
- Kim, N.; Chun, J.; Chang, J.; Lee, C.; Keum, K.; Kim, J. Feasibility of Continual Deep Learning-Based Segmentation for Personalized Adaptive Radiation Therapy in Head and Neck Area. Cancers 2021, 13, 702. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Sheng, Y.; Zhang, J.; Wang, W.; Yin, F.; Wu, Q.; Ge, Y. An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN). Med. Phys. 2021, 48, 2714–2723. [Google Scholar] [CrossRef]
- Kim, M.; Ghate, A.; Phillips, M.H. A Markov decision process approach to temporal modulation of dose fractions in radiation therapy planning. Phys. Med. Biol. 2009, 54, 4455–4476. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, J.M.; Homer, J.J.; West, C.M. Dynamic contrast-enhanced magnetic resonance imaging biomarkers in head and neck cancer: Potential to guide treatment? A systematic review. Oral Oncol. 2014, 50, 963–970. [Google Scholar] [CrossRef]
- McGee, K.P.; Hwang, K.; Sullivan, D.C.; Kurhanewicz, J.; Hu, Y.; Wang, J.; Li, W.; Debbins, J.; Paulson, E.; Olsen, J.R.; et al. Magnetic resonance biomarkers in radiation oncology: The report of AAPM Task Group 294. Med. Phys. 2021, 48, e697–e732. [Google Scholar] [CrossRef]
- Ma, D.; Gulani, V.; Seiberlich, N.; Liu, K.; Sunshine, J.L.; Duerk, J.L.; Griswold, M.A. Magnetic resonance fingerprinting. Nature 2013, 495, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Ma, D.; Keenan, K.; Stupic, K.F.; Gulani, V.; Griswold, M.A. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom. Magn. Reson. Med. 2017, 78, 1452–1457. [Google Scholar] [CrossRef]
- Shukla-Dave, A.; Obuchowski, N.A.; Chenevert, T.L.; Jambawalikar, S.; Schwartz, L.H.; Malyarenko, D.; Huang, W.; Noworolski, S.M.; Young, R.J.; Shiroishi, M.S.; et al. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J. Magn. Reson. Imaging 2019, 49, e101–e121. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Yin, Q.; Ren, J.; Wu, F.; Lan, M.; Wang, H.; Wang, M.; Li, L.; Chen, X.; Lang, J. Dynamic Three-Dimensional ADC Changes of Parotid Glands During Radiotherapy Predict the Salivary Secretary Function in Patients With Head and Neck Squamous Carcinoma. Front. Oncol. 2021, 11, 1201. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.P.B.; Tofts, P.S.; Miles, A.K.; Parkes, L.M.; Thompson, G.; Jackson, A. Dynamic contrast-enhanced imaging techniques: CT and MRI. Br. J. Radiol. 2011, 84, S112–S120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joint Head and Neck Radiotherapy-MRI Development Cooperative; Sandulache, V.; Hobbs, B.P.; Mohamed, A.; Frank, S.J.; Song, J.; Ding, Y.; Ger, R.; Court, L.; Kalpathy-Cramer, J.; et al. Dynamic contrast-enhanced MRI detects acute radiotherapy-induced alterations in mandibular microvasculature: Prospective assessment of imaging biomarkers of normal tissue injury. Sci. Rep. 2016, 6, 29864. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.S.; He, R.; Ding, Y.; Wang, J.; Fahim, J.; Elgohari, B.; Elhalawani, H.; Kim, A.D.; Ahmed, H.; Garcia, J.A.; et al. Quantitative Dynamic Contrast-Enhanced MRI Identifies Radiation-Induced Vascular Damage in Patients With Advanced Osteoradionecrosis: Results of a Prospective Study. Int. J. Radiat. Oncol. 2020, 108, 1319–1328. [Google Scholar] [CrossRef]
- Wang, J.; Salzillo, T.; Jiang, Y.; Mackeyev, Y.; Fuller, C.D.; Chung, C.; Choi, S.; Hughes, N.; Ding, Y.; Yang, J.; et al. Stability of MRI contrast agents in high-energy radiation of a 1.5T MR-Linac. Radiother. Oncol. 2021, 161, 55–64. [Google Scholar] [CrossRef]
- Gultekin, D.H.; Raidy, T.E.; Gore, J.C. Effects of radiation on the NMR relaxation effects of aqueous solutions of gadolinium contrast agents. Contrast Media Mol. Imaging 2008, 4, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Bontempi, P.; Scartoni, D.; Amelio, D.; Cianchetti, M.; Turkaj, A.; Amichetti, M.; Farace, P. Multicomponent T 2 relaxometry reveals early myelin white matter changes induced by proton radiation treatment. Magn. Reson. Med. 2021, 86, 3236–3245. [Google Scholar] [CrossRef]
- Körzdörfer, G.; Kirsch, R.; Liu, K.; Pfeuffer, J.; Hensel, B.; Jiang, Y.; Ma, D.; Gratz, M.; Bär, P.; Bogner, W.; et al. Reproducibility and Repeatability of MR Fingerprinting Relaxometry in the Human Brain. Radiology 2019, 292, 429–437. [Google Scholar] [CrossRef]
- Zhou, N.; Chu, C.; Dou, X.; Li, M.; Liu, S.; Guo, T.; Zhu, L.; Liu, B.; Chen, W.; He, J.; et al. Early Changes of Irradiated Parotid Glands Evaluated by T1rho-Weighted Imaging: A Pilot Study. J. Comput. Assist. Tomogr. 2017, 41, 472–476. [Google Scholar] [CrossRef]
- Meheissen, M.A.; Mohamed, A.S.; Kamal, M.; Hernandez, M.; Volpe, S.; Elhalawani, H.; Barrow, M.P.; Ding, Y.; Wang, J.; Davuluri, R.; et al. A prospective longitudinal assessment of MRI signal intensity kinetics of non-target muscles in patients with advanced stage oropharyngeal cancer in relationship to radiotherapy dose and post-treatment radiation-associated dysphagia: Preliminary findings from a randomized trial. Radiother. Oncol. 2019, 130, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Messer, J.A.; Mohamed, A.S.; Hutcheson, K.A.; Ding, Y.; Lewin, J.S.; Wang, J.; Lai, S.Y.; Frank, S.J.; Garden, A.S.; Sandulache, V.; et al. Magnetic resonance imaging of swallowing-related structures in nasopharyngeal carcinoma patients receiving IMRT: Longitudinal dose–response characterization of quantitative signal kinetics. Radiother. Oncol. 2016, 118, 315–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popovtzer, A.; Cao, Y.; Feng, F.Y.; Eisbruch, A. Anatomical changes in the pharyngeal constrictors after chemo-irradiation of head and neck cancer and their dose–effect relationships: MRI-based study. Radiother. Oncol. 2009, 93, 510–515. [Google Scholar] [CrossRef] [Green Version]
- Ai, Q.Y.H.; Zhang, H.; Jiang, B.; So, T.Y.; Mo, F.K.; Qamar, S.; Chen, W.; King, A.D. Test-retest repeatability of T1rho (T1ρ) MR imaging in the head and neck. Eur. J. Radiol. 2021, 135, 109489. [Google Scholar] [CrossRef] [PubMed]
- van Rij, C.; Oughlane-Heemsbergen, W.; Ackerstaff, A.; Lamers, E.; Balm, A.; Rasch, C. Parotid gland sparing IMRT for head and neck cancer improves xerostomia related quality of life. Radiat. Oncol. 2008, 3, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serai, S.D. Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging. Pediatr. Radiol. 2021, 52, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Wáng, Y.-X.J.; Zhang, Q.; Li, X.; Chen, W.; Ahuja, A.; Yuan, J. T1ρ magnetic resonance: Basic physics principles and applications in knee and intervertebral disc imaging. Quant. Imaging Med. Surg. 2015, 5, 858–885. [Google Scholar] [CrossRef]
- Wang, Y.-X.J.; Yuan, J.; Chu, E.S.H.; Go, M.Y.Y.; Huang, H.; Ahuja, A.T.; Sung, J.J.Y.; Yu, J. T1ρ MR Imaging Is Sensitive to Evaluate Liver Fibrosis: An Experimental Study in a Rat Biliary Duct Ligation Model. Radiology 2011, 259, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Westbury, C.; Yarnold, J. Radiation Fibrosis–Current Clinical and Therapeutic Perspectives. Clin. Oncol. 2012, 24, 657–672. [Google Scholar] [CrossRef]
- Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.W.L.; Dekker, A.; Fenstermacher, D.; et al. Radiomics: The process and the challenges. Magn. Reson. Imaging 2012, 30, 1234–1248. [Google Scholar] [CrossRef] [Green Version]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int. J. Radiat. Oncol. 2018, 102, 1143–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, W.T.; Suraweera, H.; Quaioit, K.; Cardenas, D.; Leong, K.X.; Karam, I.; Poon, I.; Jang, D.; Sannachi, L.; Gangeh, M.; et al. Predictive quantitative ultrasound radiomic markers associated with treatment response in head and neck cancer. Futur. Sci. OA 2020, 6, FSO433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatima, K.; Dasgupta, A.; DiCenzo, D.; Kolios, C.; Quiaoit, K.; Saifuddin, M.; Sandhu, M.; Bhardwaj, D.; Karam, I.; Poon, I.; et al. Ultrasound delta-radiomics during radiotherapy to predict recurrence in patients with head and neck squamous cell carcinoma. Clin. Transl. Radiat. Oncol. 2021, 28, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, L.V.; Langendijk, J.A.; Zhai, T.-T.; Vedelaar, T.A.; Noordzij, W.; Steenbakkers, R.J.H.M.; Sijtsema, N.M. Delta-radiomics features during radiotherapy improve the prediction of late xerostomia. Sci. Rep. 2019, 9, 12483. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, K.; Lee, S.H.; Cheng, Z.; Lakshminarayanan, P.; Peng, L.; Han, P.; McNutt, T.R.; Quon, H.; Lee, J. Predicting acute radiation induced xerostomia in head and neck Cancer using MR and CT Radiomics of parotid and submandibular glands. Radiat. Oncol. 2019, 14, 131. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Shi, H.; Huang, S.; Chen, X.; Zhou, H.; Chang, H.; Xia, Y.; Wang, G.; Yang, X. Early prediction of acute xerostomia during radiation therapy for nasopharyngeal cancer based on delta radiomics from CT images. Quant. Imaging Med. Surg. 2019, 9, 1288–1302. [Google Scholar] [CrossRef]
- Gabryś, H.S.; Buettner, F.; Sterzing, F.; Hauswald, H.; Bangert, M. Design and Selection of Machine Learning Methods Using Radiomics and Dosiomics for Normal Tissue Complication Probability Modeling of Xerostomia. Front. Oncol. 2018, 8, 35. [Google Scholar] [CrossRef]
- Yu, T.-T.; Lam, S.-K.; To, L.-H.; Tse, K.-Y.; Cheng, N.-Y.; Fan, Y.-N.; Lo, C.-L.; Or, K.-W.; Chan, M.-L.; Hui, K.-C.; et al. Pretreatment Prediction of Adaptive Radiation Therapy Eligibility Using MRI-Based Radiomics for Advanced Nasopharyngeal Carcinoma Patients. Front. Oncol. 2019, 9, 1050. [Google Scholar] [CrossRef]
- Wong, A.J.; Kanwar, A.; Mohamed, A.S.; Fuller, C.D. Radiomics in head and neck cancer: From exploration to application. Transl. Cancer Res. 2016, 5, 371–382. [Google Scholar] [CrossRef]
- Haider, S.P.; Burtness, B.; Yarbrough, W.G.; Payabvash, S. Applications of radiomics in precision diagnosis, prognostication and treatment planning of head and neck squamous cell carcinomas. Cancers Head Neck 2020, 5, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Korte, J.C.; Cardenas, C.; Hardcastle, N.; Kron, T.; Wang, J.; Bahig, H.; Elgohari, B.; Ger, R.; Court, L.; Fuller, C.D.; et al. Radiomics feature stability of open-source software evaluated on apparent diffusion coefficient maps in head and neck cancer. Sci. Rep. 2021, 11, 17633. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fournier, L.; Costaridou, L.; Bidaut, L.; Michoux, N.; Lecouvet, F.E.; de Geus-Oei, L.-F.; Boellaard, R.; Oprea-Lager, D.E.; Obuchowski, A.N.; Caroli, A.; et al. Incorporating radiomics into clinical trials: Expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers. Eur. Radiol. 2021, 31, 6001–6012. [Google Scholar] [CrossRef] [PubMed]
- Hosny, A.; Aerts, H.J.; Mak, R.H. Handcrafted versus deep learning radiomics for prediction of cancer therapy response. Lancet Digit. Health 2019, 1, e106–e107. [Google Scholar] [CrossRef] [Green Version]
- Diamant, A.; Chatterjee, A.; Vallières, M.; Shenouda, G.; Seuntjens, J. Deep learning in head & neck cancer outcome prediction. Sci. Rep. 2019, 9, 2764. [Google Scholar] [CrossRef] [Green Version]
- Baumann, M.; Krause, M.; Overgaard, J.; Debus, J.; Bentzen, S.M.; Daartz, J.; Richter, C.; Zips, D.; Bortfeld, T. Radiation oncology in the era of precision medicine. Nat. Cancer 2016, 16, 234–249. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulder, S.L.; Heukelom, J.; McDonald, B.A.; Van Dijk, L.; Wahid, K.A.; Sanders, K.; Salzillo, T.C.; Hemmati, M.; Schaefer, A.; Fuller, C.D. MR-Guided Adaptive Radiotherapy for OAR Sparing in Head and Neck Cancers. Cancers 2022, 14, 1909. https://doi.org/10.3390/cancers14081909
Mulder SL, Heukelom J, McDonald BA, Van Dijk L, Wahid KA, Sanders K, Salzillo TC, Hemmati M, Schaefer A, Fuller CD. MR-Guided Adaptive Radiotherapy for OAR Sparing in Head and Neck Cancers. Cancers. 2022; 14(8):1909. https://doi.org/10.3390/cancers14081909
Chicago/Turabian StyleMulder, Samuel L., Jolien Heukelom, Brigid A. McDonald, Lisanne Van Dijk, Kareem A. Wahid, Keith Sanders, Travis C. Salzillo, Mehdi Hemmati, Andrew Schaefer, and Clifton D. Fuller. 2022. "MR-Guided Adaptive Radiotherapy for OAR Sparing in Head and Neck Cancers" Cancers 14, no. 8: 1909. https://doi.org/10.3390/cancers14081909
APA StyleMulder, S. L., Heukelom, J., McDonald, B. A., Van Dijk, L., Wahid, K. A., Sanders, K., Salzillo, T. C., Hemmati, M., Schaefer, A., & Fuller, C. D. (2022). MR-Guided Adaptive Radiotherapy for OAR Sparing in Head and Neck Cancers. Cancers, 14(8), 1909. https://doi.org/10.3390/cancers14081909