Clinical Benefits of Indocyanine Green Fluorescence in Robot-Assisted Partial Nephrectomy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. ICG Injection
2.3. Statistical Analysis
3. Results
3.1. Patients Characteristics
3.2. Patients with Benign Renal Tumors
3.3. Patients with Malignant Renal Tumors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mir, M.C.; Derweesh, I.; Porpiglia, F.; Zargar, H.; Mottrie, A.; Autorino, R. Partial Nephrectomy Versus Radical Nephrectomy for Clinical T1b and T2 Renal Tumors: A Systematic Review and Meta-analysis of Comparative Studies. Eur. Urol. 2017, 71, 606–617. [Google Scholar] [CrossRef]
- Gershman, B.; Leibovich, B.C.; Kim, S.P. Partial Versus Radical Nephrectomy for the Clinical T1a Renal Mass. Eur. Urol. Focus 2019, 5, 970–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ljungberg, B.; Albiges, L.; Abu-Ghanem, Y.; Bensalah, K.; Dabestani, S.; Fernández-Pello, S.; Giles, R.H.; Hofmann, F.; Hora, M.; Kuczyk, M.A.; et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update. Eur. Urol. 2019, 75, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.C.; Clark, P.E.; Chang, S.S.; Karam, J.A.; Souter, L.; Uzzo, R.G. Renal Mass and Localized Renal Cancer: Evaluation, Management, and Follow-Up: AUA Guideline: Part I. J. Urol. 2021, 206, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Cacciamani, G.E.; Medina, L.G.; Gill, T.; Abreu, A.; Sotelo, R.; Artibani, W.; Gill, I.S. Impact of Surgical Factors on Robotic Partial Nephrectomy Outcomes: Comprehensive Systematic Review and Meta-Analysis. J. Urol. 2018, 200, 258–274. [Google Scholar] [CrossRef]
- Carbonara, U.; Simone, G.; Minervini, A.; Sundaram, C.P.; Larcher, A.; Lee, J.; Checcucci, E.; Fiori, C.; Patel, D.; Meagher, M.; et al. Outcomes of robot-assisted partial nephrectomy for completely endophytic renal tumors: A multicenter analysis. Eur. J. Surg. Oncol. 2021, 47, 1179–1186. [Google Scholar] [CrossRef]
- Shatagopam, K.; Bahler, C.D.; Sundaram, C.P. Renorrhaphy techniques and effect on renal function with robotic partial nephrectomy. World J. Urol. 2020, 38, 1109–1112. [Google Scholar] [CrossRef]
- Ferroni, M.C.; Sentell, K.; Abaza, R. Current Role and Indications for the Use of Indocyanine Green in Robot-assisted Urologic Surgery. Eur. Urol. Focus 2018, 4, 648–651. [Google Scholar] [CrossRef]
- Hekman, M.C.H.; Rijpkema, M.; Langenhuijsen, J.F.; Boerman, O.C.; Oosterwijk, E.; Mulders, P.F.A. Intraoperative Imaging Techniques to Support Complete Tumor Resection in Partial Nephrectomy. Eur. Urol. Focus 2018, 4, 960–968. [Google Scholar] [CrossRef]
- Sentell, K.T.; Ferroni, M.C.; Abaza, R. Near-infrared fluorescence imaging for intraoperative margin assessment during robot-assisted partial nephrectomy. BJU Int. 2020, 126, 259–264. [Google Scholar] [CrossRef]
- Simone, G.; Tuderti, G.; Anceschi, U.; Ferriero, M.; Costantini, M.; Minisola, F.; Vallati, G.; Pizzi, G.; Guaglianone, S.; Misuraca, L.; et al. “Ride the Green Light”: Indocyanine Green—Marked Off-clamp Robotic Partial Nephrectomy for Totally Endophytic Renal Masses. Eur. Urol. 2019, 75, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Veccia, A.; Antonelli, A.; Hampton, L.J.; Greco, F.; Perdonà, S.; Lima, E.; Hemal, A.K.; Derweesh, I.; Porpiglia, F.; Autorino, R. Near-infrared Fluorescence Imaging with Indocyanine Green in Robot-assisted Partial Nephrectomy: Pooled Analysis of Comparative Studies. Eur. Urol. Focus 2020, 6, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Cacciamani, G.E.; Shakir, A.; Tafuri, A.; Gill, K.; Han, J.; Ahmadi, N.; Hueber, P.A.; Gallucci, M.; Simone, G.; Campi, R.; et al. Best practices in near-infrared fluorescence imaging with indocyanine green (NIRF/ICG)-guided robotic urologic surgery: A systematic review-based expert consensus. World J. Urol. 2020, 38, 883–896. [Google Scholar] [CrossRef]
- Mattevi, D.; Luciani, L.G.; Mantovani, W.; Cai, T.; Chiodini, S.; Vattovani, V.; Puglisi, M.; Malossini, G. Fluorescence-guided selective arterial clamping during RAPN provides better early functional outcomes based on renal scan compared to standard clamping. J. Robot. Surg. 2019, 13, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Diana, P.; Buffi, N.M.; Lughezzani, G.; Dell’Oglio, P.; Mazzone, E.; Porter, J.; Mottrie, A. The Role of Intraoperative Indocyanine Green in Robot-assisted Partial Nephrectomy: Results from a Large, Multi-institutional Series. Eur. Urol. 2020, 78, 743–749. [Google Scholar] [CrossRef]
- Lukas Gadus, J.K.; Chmelik, F.; Matejkova, M.; Heracek, J. Robotic Partial Nephrectomy with Indocyanine Green Fluorescence Navigation. Contrast Media Mol. Imaging 2020, 2020, 8. [Google Scholar]
- Krane, L.S.; Manny, T.B.; Hemal, A.K. Is near infrared fluorescence imaging using indocyanine green dye useful in robotic partial nephrectomy: A prospective comparative study of 94 patients. Urology 2012, 80, 110–116. [Google Scholar] [CrossRef]
- Borofsky, M.S.; Gill, I.S.; Hemal, A.K.; Marien, T.P.; Jayaratna, I.; Krane, L.S.; Stifelman, M.D. Near-infrared fluorescence imaging to facilitate super-selective arterial clamping during zero-ischaemia robotic partial nephrectomy. BJU Int. 2013, 111, 604–610. [Google Scholar] [CrossRef] [Green Version]
- McClintock, T.R.; Bjurlin, M.A.; Wysock, J.S.; Borofsky, M.S.; Marien, T.P.; Okoro, C.; Stifelman, M.D. Can selective arterial clamping with fluorescence imaging preserve kidney function during robotic partial nephrectomy? Urology 2014, 84, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Esposito, C.; Settimi, A.; Del Conte, F.; Cerulo, M.; Coppola, V.; Farina, A.; Crocetto, F.; Ricciardi, E.; Esposito, G.; Escolino, M. Image-Guided Pediatric Surgery Using Indocyanine Green (ICG) Fluorescence in Laparoscopic and Robotic Surgery. Front. Pediatrics 2020, 8, 314. [Google Scholar] [CrossRef]
- Esposito, C.; Coppola, V.; Del Conte, F.; Cerulo, M.; Esposito, G.; Farina, A.; Crocetto, F.; Castagnetti, M.; Settimi, A.; Escolino, M. Near-Infrared fluorescence imaging using indocyanine green (ICG): Emerging applications in pediatric urology. J. Pediatric Urol. 2020, 16, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Harke, N.; Schoen, G.; Schiefelbein, F.; Heinrich, E. Selective clamping under the usage of near-infrared fluorescence imaging with indocyanine green in robot-assisted partial nephrectomy: A single-surgeon matched-pair study. World J. Urol. 2014, 32, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Lanchon, C.; Arnoux, V.; Fiard, G.; Descotes, J.L.; Rambeaud, J.J.; Lefrancq, J.B.; Poncet, D.; Terrier, N.; Overs, C.; Franquet, Q.; et al. Super-selective robot-assisted partial nephrectomy using near-infrared flurorescence versus early-unclamping of the renal artery: Results of a prospective matched-pair analysis. Int. Braz. J. Urol. 2018, 44, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, A.; Feldman, A.S.; Hakimi, A.A. Current Management of Small Renal Masses, Including Patient Selection, Renal Tumor Biopsy, Active Surveillance, and Thermal Ablation. J. Clin. Oncol. 2018, 36, 3591–3600. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.C.; Uzzo, R.G.; Karam, J.A.; Chang, S.S.; Clark, P.E.; Souter, L. Renal Mass and Localized Renal Cancer: Evaluation, Management, and Follow-up: AUA Guideline: Part II. J. Urol. 2021, 206, 209–218. [Google Scholar] [CrossRef]
- Thompson, R.H.; Lane, B.R.; Lohse, C.M.; Leibovich, B.C.; Fergany, A.; Frank, I.; Gill, I.S.; Blute, M.L.; Campbell, S.C. Every minute counts when the renal hilum is clamped during partial nephrectomy. Eur. Urol. 2010, 58, 340–345. [Google Scholar] [CrossRef]
- Capitanio, U.; Bensalah, K.; Bex, A.; Boorjian, S.A.; Bray, F.; Coleman, J.; Gore, J.L.; Sun, M.; Wood, C.; Russo, P. Epidemiology of Renal Cell Carcinoma. Eur. Urol. 2019, 75, 74–84. [Google Scholar] [CrossRef]
- Chang, Y.H.; Chang, S.W.; Liu, C.Y.; Lin, P.H.; Yu, K.J.; Pang, S.T.; Chuang, C.K.; Kan, H.C.; Shao, I.H. Demographic characteristics and complications of open and minimally invasive surgeries for renal cell carcinoma: A population-based case-control study in Taiwan. Ther. Clin. Risk Manag. 2018, 14, 1235–1241. [Google Scholar] [CrossRef] [Green Version]
- Flum, A.S.; Hamoui, N.; Said, M.A.; Yang, X.J.; Casalino, D.D.; McGuire, B.B.; Perry, K.T.; Nadler, R.B. Update on the Diagnosis and Management of Renal Angiomyolipoma. J. Urol. 2016, 195, 834–846. [Google Scholar] [CrossRef]
- Richard, P.O.; Jewett, M.A.; Bhatt, J.R.; Evans, A.J.; Timilsina, N.; Finelli, A. Active Surveillance for Renal Neoplasms with Oncocytic Features is Safe. J. Urol. 2016, 195, 581–586. [Google Scholar] [CrossRef]
- Flack, C.K.; Calaway, A.C.; Miller, B.L.; Picken, M.M.; Gondim, D.D.; Idrees, M.T.; Abel, E.J.; Gupta, G.N.; Boris, R.S. Comparing oncologic outcomes in patients undergoing surgery for oncocytic neoplasms, conventional oncocytoma, and chromophobe renal cell carcinoma. Urol. Oncol. 2019, 37, 811.e17–811.e21. [Google Scholar] [CrossRef] [PubMed]
- Bjurlin, M.A.; McClintock, T.R.; Stifelman, M.D. Near-infrared fluorescence imaging with intraoperative administration of indocyanine green for robotic partial nephrectomy. Curr. Urol. Rep. 2015, 16, 20. [Google Scholar] [CrossRef] [PubMed]
- Golijanin, D.; Marshall, J.; Cardin, A.; Singer, E.; Wood, R.; Reeder, J.; Wu, G.; Yao, J.; Passamonti, S.; Messing, E. Bilitranslocase (BTL) is immunolocalised in proximal and distal renal tubules and absent in renal cortical tumors accurately corresponding to intraoperative near infrared fluorescence (NIRF) expression of renal cortical tumors using intravenous indocyanine green (ICG). J. Urol. 2008, 179, 137. [Google Scholar]
- Elias, M.M.; Lunazzi, G.C.; Passamonti, S.; Gazzin, B.; Miccio, M.; Stanta, G.; Sottocasa, G.L.; Tiribelli, C. Bilitranslocase localization and function in basolateral plasma membrane of renal proximal tubule in rat. Am. J. Physiol. 1990, 259, F559–F564. [Google Scholar] [CrossRef]
- Mir, M.C.; Campbell, R.A.; Sharma, N.; Remer, E.M.; Simmons, M.N.; Li, J.; Demirjian, S.; Kaouk, J.; Campbell, S.C. Parenchymal volume preservation and ischemia during partial nephrectomy: Functional and volumetric analysis. Urology 2013, 82, 263–268. [Google Scholar] [CrossRef]
- Dagenais, J.; Maurice, M.J.; Mouracade, P.; Kara, O.; Malkoc, E.; Kaouk, J.H. Excisional Precision Matters: Understanding the Influence of Excisional Volume Loss on Renal Function after Partial Nephrectomy. Eur. Urol. 2017, 72, 168–170. [Google Scholar] [CrossRef]
- Chu, W.; Chennamsetty, A.; Toroussian, R.; Lau, C. Anaphylactic Shock after Intravenous Administration of Indocyanine Green during Robotic Partial Nephrectomy. Urol. Case Rep. 2017, 12, 37–38. [Google Scholar] [CrossRef]
- Chapman, D.; Moore, R.; Klarenbach, S.; Braam, B. Residual renal function after partial or radical nephrectomy for renal cell carcinoma. Can. Urol. Assoc. J. 2010, 4, 337–343. [Google Scholar] [CrossRef]
Variable | Total (n = 127) | ||
---|---|---|---|
Patients, n | ICG (21) | No ICG (106) | p-Value |
Age (years), median (IQR) | 58 (42–67) | 57 (49–66) | 0.343 |
Male, n (%) | 12 (57) | 60 (57) | 0.964 |
BMI (kg/m2), median (IQR) | 26.5 (23.2–29.2) | 25.1 (23.1–28.1) | 0.219 |
Hypertension, n (%) | 8 (38) | 51 (48) | 0.4 |
Diabetes, n (%) | 4 (19) | 30 (28) | 0.59 |
ASA score, median (IQR) | 2 (2–2) | 2 (2–2) | 0.819 |
ASA score, n (%) | 0.933 | ||
1 | 4 (19) | 25 (24) | |
2 | 15 (71) | 69 (65) | |
3 | 2 (10) | 12 (11) | |
Left side, n (%) | 8 (38) | 43 (41) | 0.833 |
RENAL score, median (IQR) | 8 (6–8) | 8 (6–9) | 0.763 |
Tumor complexity, n (%) | 0.78 | ||
Low (4–6) | 7 (33) | 28 (26.9) | |
Intermediate (7–9) | 12 (57) | 63 (60.6) | |
High (10–12) | 2 (10) | 13 (12.5) | |
Tumor diameter in CT/MRI (cm), median (IQR) | 3.5 (2.7–7.3) | 3.2 (2.5–4.8) | 0.239 |
Preoperative Hb (g/dL), median (IQR) | 14.4 (12.7–16.0) | 13.7 (12.5–15.0) | 0.188 |
Preoperative eGFR (mL/min/1.73 m2), median (IQR) | 91.9 (74.3–109.1) | 91.5 (74.4–110.5) | 0.731 |
Variable | Total (n = 127) | ||
---|---|---|---|
Patients, n | ICG (21) | No ICG (106) | p-Value |
Operative time (min), median (IQR) | 311 (263–360) | 271 (217–310) | 0.006 |
Estimated blood loss (mL), median (IQR) | 50 (30–200) | 100 (50–200) | 0.09 |
Warm ischemia time (min), median (IQR) | 21 (16–27) | 24 (17–35) | 0.25 |
Tumor size (cm), median (IQR) | 3.3 (2.5–5.8) | 2.9 (2.3–4.1) | 0.174 |
Stay length (day), median (IQR) | 7 (6–8) | 7 (6–8) | 0.545 |
Positive surgical margins, n (%) | 2 (11) | 8 (8) | 0.66 |
Postoperative complications, n (%) | 4 (19) | 25 (24) | 0.781 |
Minor (Clavien-Dindo I–II) | 3 (14) | 20 (19) | 0.902 |
Major (Clavien-Dindo III–IV) | 1 (5) | 5 (5) | |
Clavien-Dindo III ≥ 3, n (%) | 1 (5) | 5 (5) | 1 |
One-year recurrence, n (%) | 0 (0) | 3 (4) | 1 |
Trifecta achievement, n (%) | 9 (56) | 44 (46) | 0.462 |
Post-op Hb at day one (g/dL), median (IQR) | 12.9 (11.1–14.4) | 12.2 (10.8–13.6) | 0.223 |
Preservation rate of post-op Hb at day one (%), median (IQR) | 89 (84–92) | 89 (86–95) | 0.398 |
Post-op eGFR at day one (mL/min/1.73 m3), median (IQR) | 81.0 (64.0–93.8) | 68.6 (51.5–93.9) | 0.296 |
Preservation rate of post-op eGFR at day one (%), median (IQR) | 84 (70–96) | 79 (68–90) | 0.2 |
Post-op eGFR at 3-months (mL/min/1.73 m3), median (IQR) | 74.3 (62.8–91.7) | 77.7 (65.1–94.0) | 0.762 |
Preservation rate of post-op eGFR at 3-months (%), median (IQR) | 90 (85–97) | 85 (77–91) | 0.031 |
Post-op eGFR at 6-months (mL/min/1.73 m3), median (IQR) | 71.5 (65.6–94.6) | 76.1 (64.9–90.1) | 0.735 |
Preservation rate of post-op eGFR at 6-months (%), median (IQR) | 83 (80–91) | 81 (74–94) | 0.346 |
Variable | Benign (n = 38) | Malignant (n = 89) | Variable | |||
---|---|---|---|---|---|---|
Patients, n | ICG (10) | No ICG (28) | p | ICG (11) | No ICG (78) | p Value |
Operative time (min), median (IQR) | 325 (275–396) | 228 (187–291) | 0.001 | 298 (247–350) | 280 (222–325) | 0.25 |
Estimated blood loss (mL), median (IQR) | 200 (50–350) | 90 (50–200) | 0.272 | 30 (20–50) | 100 (50–200) | <0.001 |
Warm ischemia time (min), median (IQR) | 20 (16–25) | 20 (15–29) | 0.722 | 24 (15–28) | 26 (18–36) | 0.207 |
Tumor size (cm), median (IQR) | 5.6 (2.3–9.2) | 3.8 (2.7–5.5) | 0.36 | 2.9 (2.5–3.7) | 2.7 (2.2–3.7) | 0.447 |
Stay length (day), median (IQR) | 8 (6–8) | 7 (6–8) | 0.317 | 6 (5–8) | 7 (6–8) | 0.074 |
Positive surgical margins, n (%) | 1 (13) | 4 (18) | 1 | 1 (9) | 4 (5) | 0.491 |
Post-op complications, n (%) | 2 (20) | 4 (14) | 0.644 | 2 (18) | 21 (27) | 0.721 |
Minor (Clavien-Dindo I–II) | 2 (20) | 4 (14) | 0.644 | 1 (9) | 16 (21) | 0.627 |
Major (Clavien-Dindo III–IV) | 0 (0) | 0 (0) | 1 (9) | 5 (6) | ||
Clavien-Dindo III ≥ 3, n (%) | 0 (0) | 0 (0) | 1 (9) | 5 (6) | 0.558 | |
One-year recurrence, n (%) | 0 (0) | 2 (8) | 1 | 0 (0) | 1 (2) | 1 |
Trifecta achievement, n (%) | 6 (67) | 10 (48) | 0.44 | 3 (43) | 34 (46) | 1 |
Post-op Hb at day one (g/dL), median (IQR) | 11.5 (10.9–13.3) | 11.5 (11.0–12.2) | 0.66 | 13.7 (11.4–15.2) | 12.5 (10.8–14.0) | 0.1 |
Preservation rate of post-op Hb at day one (%), median (IQR) | 87 (83–90) | 89 (86–93) | 0.351 | 91 (84–96) | 90 (86–95) | 0.985 |
Post-op eGFR at day one (mL/min/1.73 m3), median (IQR) | 80.0 (66.0–119.1) | 89.2 (71.7–114.1) | 0.66 | 81.0 (39.9–85.1) | 64.2 (45.0–84.4) | 0.48 |
Preservation rate of post-op eGFR at day one (%), median (IQR) | 93 (75–98) | 85 (79–99) | 0.961 | 77 (68–97) | 76 (65–87) | 0.313 |
Post-op eGFR at 3-months (mL/min/1.73 m3), median (IQR) | 73.5 (65.1–139.6) | 98.6 (83.7–121.3) | 0.775 | 75.0 (56.3–84.4) | 73.9 (61.2–90.1) | 0.736 |
Preservation rate of post-op eGFR at 3-months (%), median (IQR) | 93 (86–111) | 86 (80–89) | 0.095 | 88 (81–94) | 85 (76–92) | 0.201 |
Post-op eGFR at 6-months (mL/min/1.73 m3), median (IQR) | 97.1 (69.2–98.8) | 85.9 (67.3–100.0) | 0.787 | 68.5 (54.3–83.3) | 73.8 (64.2–88.1) | 0.348 |
Preservation rate of post-op eGFR at 6-months (%), median (IQR) | 84 (79–91) | 80 (72–96) | 0.516 | 83 (80–95) | 81 (74–94) | 0.448 |
Complication (Clavien-Dindo ≥ 3) | Benign | Malignant | Intervention | ||
---|---|---|---|---|---|
Patients, n | ICG (0) | No ICG (0) | ICG (1) | No ICG (5) | ICG (0) |
Renal pseudoaneurysm, n (%) | 0 | 0 | 1 (100) | 3 (60) | Transarterial embolization |
Hemogenic shock, n (%) | 0 | 0 | 0 | 1 (20) | Emergent re-open surgery |
Urine leakage with urinoma and UPJ obstruction, n (%) | 0 | 0 | 0 | 1 (20) | Stent placement |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.-K.; Hsieh, M.-L.; Chen, S.-Y.; Liu, C.-Y.; Lin, P.-H.; Kan, H.-C.; Pang, S.-T.; Yu, K.-J. Clinical Benefits of Indocyanine Green Fluorescence in Robot-Assisted Partial Nephrectomy. Cancers 2022, 14, 3032. https://doi.org/10.3390/cancers14123032
Yang Y-K, Hsieh M-L, Chen S-Y, Liu C-Y, Lin P-H, Kan H-C, Pang S-T, Yu K-J. Clinical Benefits of Indocyanine Green Fluorescence in Robot-Assisted Partial Nephrectomy. Cancers. 2022; 14(12):3032. https://doi.org/10.3390/cancers14123032
Chicago/Turabian StyleYang, Yu-Kuan, Ming-Li Hsieh, Sy-Yuan Chen, Chung-Yi Liu, Po-Hung Lin, Hung-Cheng Kan, See-Tong Pang, and Kai-Jie Yu. 2022. "Clinical Benefits of Indocyanine Green Fluorescence in Robot-Assisted Partial Nephrectomy" Cancers 14, no. 12: 3032. https://doi.org/10.3390/cancers14123032
APA StyleYang, Y. -K., Hsieh, M. -L., Chen, S. -Y., Liu, C. -Y., Lin, P. -H., Kan, H. -C., Pang, S. -T., & Yu, K. -J. (2022). Clinical Benefits of Indocyanine Green Fluorescence in Robot-Assisted Partial Nephrectomy. Cancers, 14(12), 3032. https://doi.org/10.3390/cancers14123032